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ABSTRACT Ensuring the validity of measurements in wind energy systems (WES) is a challenging
task in system diagnosis and data validation. This work, therefore, elaborates on the development of new
approaches aimed at improving the operation ofWES by developing intelligent and innovative fault diagnosis
frameworks. Therefore, an enhanced particle swarm optimization (PSO), data reduction, and interval-valued
representation are proposed. First, a feature selection tool using PSO Algorithm is developed. Then, in order
to maximize the diversity between data samples and improve the effectiveness of using PSO algorithm for
feature selection, the Euclidean distance metric is used in order to reduce the data and maximize the diversity
between data samples. Finally, PSO and RPSO-based interval centers and ranges and upper and lower bounds
techniques are developed to deal with model uncertainties in WES. The last retained features from the
proposed PSO-based methods are fed to the neural network (NN) classifier. The proposed methodology
improves the diagnosis abilities, reduces the computation time, and decreased the storage cost. The presented
experimental results prove the high performance of the suggested paradigms in terms of computation time
and accuracy.

INDEX TERMS Uncertainties, interval-valued data, wind energy systems, particle swarm optimization
(PSO), neural network (NN), feature selection, dataset size reduction.

LIST OF ABBREVIATIONS AND ACRONYMS
FD Fault Detection.
WES Wind Energy Systems.
ML Machine Learning.
IVD Interval-Valued Data.
PSO Particle Swarm Optimization.
RPSO Reduced PSO.
IPSO Interval PSO.
IRPSO Interval Reduced PSO.
NN Neural Network.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Duc Do .

ANN Artificial NN.
ED Euclidean Distance.
CR Centers and Ranges.
UL Upper and Lower.
CT Computation Time.
CM Confusion Matrix.

I. INTRODUCTION
Nowadays,Wind Energy systems (WES) have been attracting
an increased interest with the aim of reducing carbon dioxide
emissions [1], [2], [3], [4]. However, the effective opera-
tions of WES are facing several challenges mainly related
to wind intermittency, vibrations, and unexpected failures in
power converters [5], [6]. Thus, effective fault detection (FD)
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techniques should be applied [7]. Generally, two main classes
of FD techniques can be identified: model-based and data-
driven methods. Model-based approaches are based on a
consistency test between the observed process behavior of the
sensor and the expected behavior of a mathematical process
model, which is generally derived using a basic understand-
ing (using physical and chemical principles) of the process
under fault-free conditions. However, these methods belong
to the capability of the mathematical model to correctly char-
acterize the system’s behaviors. Data-driven techniques are
based on historical data collected during fault-free process
operations [8]. Using the training data, an empirical model
is built and used for faults detection by exploiting the future
measurement data [8].

The most well-known data-driven diagnosis techniques
applied to detect faults in WES include machine learning
and statistical process control [9]. For instance, density-
based spatial clustering was used to classify faults state, and
decision tree (DT) and random forest (RF) methods were
used to build the predictive models for WES anomalies.
In other works, a diagnostic technique based on the signal
analysis method has been developed [10]. This technique
eliminates redundant information using an empirical mode
decomposition and discrete wavelet transform (DWT) tech-
nique. In [11], a fault diagnosis technique includes support
vector machine (SVM) model and the optimal composition
of symptom parameters algorithm to diagnose the motor fault
inWES.However, this proposal suffers from some limitations
due to the selection of the features which may lead to the
misclassification of faults. To overcome the limits of using
classical SVM, a fault diagnosis technique that proposes a
large margin distributed machine (LDM) and introduces mar-
gin variance and mean on the basis of SVM is presented [12].
This proposal shows the best classification results compared
to classical SVM. A decision tree has been developed to
diagnose faults in WT systems [13]. Although this method is
easy to perform, it has drawbacks in dealing with missing val-
ues. Another fault detection method based on artificial neural
networks (ANN) is presented in [14]. Recently, deep learning
techniques such as convolution neural network (CNN), recur-
rent neural network, and long short-term memory (LSTM)
have been widely used in fault diagnosis of WES [15],
[16], [17]. In [18], a fusion neural network model is devel-
oped by combining long short-term memory neural network
(LSTM NN) and broad learning system (BLS) algorithm,
to outstanding predict the lithium-ion battery capacity and
remaining useful life (RUL). In [19], wavelet packet decom-
position is used to extract characteristics that are fed to CNN
classifier to perform the classification task. Deep learning
techniques can accurately detect several conventional faults,
but they have some limitations represented in the hard train-
ing step and the high time complexity. Different ways may
improve the use of machine learning (ML) for FD purposes.
Generally, the existing intelligent FD methods consist of two
main steps: feature selection and fault classification. In [5],

a fault diagnosis technique for WES based on an ML algo-
rithm is developed to solve performance problems flexibly
and reliably. In this case, the reduced kernel principal compo-
nents algorithm is used to extract the most significant features
from raw data and perform the classification task using a
random forest classifier. This proposal presents high diagno-
sis accuracy but it needs a high computation time. Another
fault diagnosis methodology based on features extraction and
selection step is introduced in [20]. This technique consists of
extracting and selecting features from raw sensor data using
an improved Gaussian process regression (GPR). The main
disadvantage of Gaussian processes is the loss of efficiency
in high-dimensional spaces. In [21], a hybrid approach is
proposed by combining the variational modal decomposition
(VMD), particle filter (PF), and GPR to forecasting bat-
tery future capacity and remaining useful life (RUL). In our
previous work [22], an efficient feature selection technique
based on particle swarm optimization (PSO) is proposed.
The basic objective behind the PSO algorithm is to remove
irrelevant features and extract only the most significant ones
from raw data in order to improve the classification task
using a neural network classifier. Besides, in this proposal,
an improved extension of the PSO model based on the use
of Euclidean distance (ED) is developed. The main idea
behind the use of the ED method is to avoid the problem
of premature convergence and local sub-optimal areas when
using the classical PSO optimization algorithm. Also, the
proposed reduced PSO-NN (RPSO-NN) algorithm aims to
improve the results in terms of accuracy as well as in terms
of complexity time, and storage cost. Generally, uncertainty
and inaccuracy might describe the significant information
characterizing the real systems [23]. Classical data is a
simplification during the data mining process and it may
cause severe loss of information. For this reason, interval-
valued data representation is important [24], [25]. Recently,
different faults diagnosis techniques have been proposed to
deal with noise in data, imbalanced data types and inadequate
fault sample data [26], [27]. In [26], an improved label-noise
robust generative adversarial network was used to ensure the
quality of the generated data and improve the generalizability
of the model under actual operating conditions scenarios by
performing a batch comparison between generated and actual
data.

In this paper, different classification paradigms, merging
the benefits of Particle Swarm Optimization (PSO) and Neu-
ral Networks (NN) algorithms, are proposed for classification
of faults in uncertain WES. The first developed method, so-
called PSO-based NN, is addressed so that PSO is applied
for feature selection, and then the selected pertinent features
are fed to the NN classifier to perform the classification
task. Unfortunately, the application of PSO-based NN algo-
rithms in complex problems is limited by the lack of diversity
causing premature convergences (local sub-optimal areas).
To overcome this limitation, an Euclidean distance (ED)-
based data reduction tool is used.
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One of the main objectives of this work is to improve data-
based diagnosis techniques in uncertain WES. Generally,
uncertainty and inaccuracy might describe the significant
information characterizing the real systems [23]. Classical
data is a simplification during the data mining procedure and
it may cause severe loss of information. Thus, interval-valued
data representation is of high importance [24], [25]. In this
work, more robust techniques can be achieved by describing
the process measurements by interval-valued data instead
of single-valued data. Therefore, interval models are to be
applied to handle the new nature of data.

The objective is to improve data-based monitoring meth-
ods, especially in experimental industrial applications with
imperfect measurements which significantly worsen the fault
diagnosis task. The developed techniques are able to improve
both fault diagnosis robustness and sensitivity while main-
taining a satisfactory and stable performance over long peri-
ods of process operation. To summarize, the main paper’s
contributions are as follows:

1) An effective PSO-based feature selection method is
proposed. The aim is to remove irrelevant features and
only extract the most significant ones from raw data
(better classification accuracy using NNs.

2) An Euclidean distance (ED)-based reduced PSO-
NN (RPSO-NN) algorithm is proposed (higher accu-
racy, lower complexity, and reduced storage cost) to
overcome the premature convergence and local sub-
optimum limitations of classical PSO optimization
algorithms.

3) The proposed techniques are extended to interval-
valued data to deal with model uncertainties such as
noise, measurement errors, and variability.

The proposed techniques are characterized by their high per-
formance in terms of accuracy, robustness, and ability to
detect incipient/drift faults and their severity in WES.

This paper is organized as follows: Section III presents
the proposed techniques while the description of the studied
WES is presented in Section III. Then, Section IV presents
the results and the performance evaluation. Finally, Section V
concludes the paper.

II. INTERVAL ENHANCED PSO-BASED NN FOR
FAULT DETECTION
A. PROPOSED DIAGNOSIS PARADIGM
In this paper, the aim is to detect incipient faults while taking
into consideration the WES uncertainties. The developed
interval enhanced PSO based NN technique exploits the ben-
efits of features selection based on PSO, datasize reduction
using ED, interval-valued representation of raw data, and
NN for classification. Firstly, the proposed algorithms will
use PSO method for features selection and neural networks
classifier for classification to improve the diagnosis of WES.
PSO is a very effective global search technique based on
the movement and intelligence of swarms (number of sam-
ples). An Euclidean distance (ED)-based reduced PSO-NN
(RPSO-NN) algorithm is proposed (higher accuracy, lower

Algorithm 1 IRPSO-Based NN Algorithm
Input N × m data matrix X .
1. Normalize the data set,
2. Determine the new interval data matrix (XUL ,XCR),
3. Compute the reduced matrix using the euclidean dis-
tancemetric by conserving only one observation in the case
of redundancy,
4. Select features using PSO model,
5. Use the selected features as input to the NN classifier for
the training phase,
6. The NN classifier is evaluated using testing features,
7. Classifying the different operating modes (healthy and
faulty).

FIGURE 1. Schematic diagram of the interval reduced PSO-NN techniques.

complexity, and reduced storage cost) to overcome the prema-
ture convergence and local sub-optimum limitations of clas-
sical PSO optimization algorithms. The proposed technique
is extended to interval-valued data to deal with model uncer-
tainties such as noise, measurement errors, and variability.
The developed approaches for interval-valued data are IPSO-
NNCR, IPSO-NNUL , IRPSO-NNCR, and IRPSO-NNUL . The
selected features are then fed to the NN classifier.

The main steps of the proposed IRPSO-NN technique are
summarized in algorithm 1 and schematic diagram 1.

B. TECHNIQUES
In this section, a brief description of the proposed methods is
presented.

1) ENHANCED PARTICLE SWARM OPTIMIZATION (PSO)
Particle Swarm Optimization (PSO) is considered as a
stochastic optimization technique based on the intelligence
and movement of swarms [28], [29]. PSO is a very effi-
cient global search algorithm that needs very few algorithm
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parameters compared to other optimization algorithms like
genetic algorithms which require setting different evolution-
ary operators such as crossover and mutation [29].

To overcome the limitation of premature convergence (due
to the lack of diversity) which limits the effectiveness of PSO
algorithms, an ED-based data reduction tool is proposed. The
main objective of the ED method is to extract only a single
sample in case of redundancy to construct the reduced data.
This, in turn, plays a pivotal role to increase the diversity
between data samples and then solving the problem of prema-
ture convergence and local sub-optimal area. Let’s consider
a data matrix X with N samples and m process variables,
the ED between the rows Xi and Xj of the data matrix X is
computed by:

dij =

√√√√ m∑
k=1

(X (i, k) − X (j, k))2 (1)

The dissimilarity matrix D representing the dissimilarity
between all samples’ pairs for a datamatrixX is computed by:

D =


d11 d12 . . . d1N
d21 d22 . . . d2N
. . . .

dN1 dN2 . . . pNN

 (2)

Thus, we obtain a reduced data matrix X ′ with N ′ samples
and m process variables where N ′ < N . Then we apply the
PSO algorithm for selecting the more pertinent features from
the reduced data.

2) INTERVAL REDUCED PSO (IRPSO)
The uncertainties in the collected data present the interval-
valued data (IVD). IVD methodology is very important to
preserve variable information. In this step, four techniques
IPSOCR, IPSOUL , IRPSOCR, and IRPSOUL are used. The
main idea behind these proposals is to use a specific interval-
valued data matrix instead of the single-valued data matrix.
The interval data matrices are XCR and XUL . XCR constructed
by the concatenation of center and range matrices and XUL
constructed by the lower and upper bounds of interval values
of variables.

Let’s consider xij, where i = 1, ..,N and j = 1, . . . ,m,
is the i−th sample of the j−th observation, the interval repre-
sentation of the data observation xij is defined using the lower
bound x ij and the upper bound x ij as follows,

[xij] = [x ij, x ij] (3)

The interval data matrix [X ] is constructed using the
interval-valued samples for the different description variables
as follows:

[X ] =


[
x11, x11

]
. .

[
x1m, x1m

]
. . .

. . .[
xN1, xN1

]
. .

[
xNm, xNm

]


= ([x1], . . . , [xN ])T (4)

For the interval XUL technique, an upper-lower technique
is presented to define the new data. The lower and upper
bounds matrices XL and XU are computed as,

XL =


x11 . . x1m
. . .

. . .

xN1 . . xNm

 (5)

XU =


x11 . . x1m
. . .

. . .

xN1 . . xNm

 (6)

The interval matrix XUL is constructed using the upper and
lower matrices can at the same time as,

xULij = θx ij + (1 − θ )x ij (7)

where, θ ∈ [0, 1], θ represents the regulation weight of
interval-valued data unit. The new constructed upper and
lower matrix is computed by:

XUL =


xUL11 . . xUL1m
. . .

. . .

xULN1 . . xULNm

 (8)

It is worth mentioning that θ = 1 represents a lower scheme
with one feature while θ = 0, represents an upper bound
including the size information of x.

The interval [xjk ] can be also represented as a couple
{xcjk , x

r
jk}. The center xcjk and the range xrj (k) of the interval

are computed respectively as,

xcj (k) =
1
2
(x jk + x jk ) (9)

xrjk =
1
2
(x jk − x jk ) (10)

The center and range matrices from interval-valued data
matrix are computed as,

X c =
1
2


x11 + x11 . . x1m + x1m

. . .

. . .

xN1 + xN1 . . xNm + xNm

 (11)

X r =
1
2


x11 − x11 . . x1m − x1m

. . .

. . .

xN1 − xN1 . . xNm − xNm

 (12)

Then, we concatenate the computed center and rangematrices
into one matrix XCR as,

XCR =
[
X c X r

]
∈ RN×2m (13)

3) ARTIFICIAL NEURAL NETWORK
Neural network techniques have been widely used for FD
in various applications [30], [31]. Neural networks (NNs)
contain different layers, including an input layer, one or
more hidden layers, and an output layer [31]. Neurons and
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FIGURE 2. Synoptic of the WES under study.

weighted connections between neurons are the main compo-
nents of neural networks [31]. The weights and the input-
output function are the main evaluation criteria of the NN
performance [31]. The main known Network architectures
are feedforward and recurrent architecture. The main dif-
ference between the two architectures types present in the
feedback between networks which is present when using
recursive architecture by taking the correct prediction during
backpropagation. In this paper, multilayer artificial neural
networks (ANN) with Levenberg-Marquardt Backpropaga-
tion (LMBP) training method is adopted [32]. The developed
ANN is constructed with 10 hidden layers and 50 hidden
neurons in the hidden layer.

III. SYSTEM DESCRIPTION
TheWES under study is presented in Figure 2, while Figure 3
illustrates the topology of the used back-to-back converter.
The detailed description of the WES under study was pre-
sented in [1].

WTC includes two main parts. The first one is the model of
the turbine and the squirrel cage induction machine (SCIG).
In this case, the stator side AC/DC Converter is used for the
control. The second one is the grid-side DC/AC converter
sub-system. This configuration allows unlimited variable
speed operation. The generated voltage is rectified and trans-
formed into direct current and voltage whatever the rotation
speed of the machine. A detailed description of the turbine
is presented in [1]. In the wind chain, the power converters
topology is on two levels (Figure 3). Each converter consists
of three arms. Each arm contains high and low IGBTs.
Failures in WEC systems are mainly caused by variations in
weather conditions and faults in power converters. Recent
studies have shown that more than 21% of the failures in
WEC systems are caused by faults in the power conversion
stage [33], though the WT and the gearbox failures cause
the longest downtime [34]. Many elements might cause the
fatigue of the switching devices. The fatigue impacts in par-
ticular the dynamics of the component and consequently may
result in extra switching losses and even system failure. The
fatigue is usually modeled by increasing the internal resis-
tance of the component. In this work, it is assumed that the
internal resistance is equal to zero during normal operating
conditions. Then, the resistance increases to reflect fatigue.

FIGURE 3. Back-to-back converter topology.

TABLE 1. Emulated faults.

FIGURE 4. Mechanical torque under dissimilar conditions [1].

Therefore, it is necessary to detect the onset of fatigue to
prevent the overall failure of the converter. Several electrical
and mechanical variables need to be analyzed in detail to
narrow down the failed parts. For instance, the collector-
emitter voltage of an IGBT rises sharply just before the
failure occurs. This can be used as an excellent indicator
for preventive maintenance purposes in wind systems [35].
For the sake of simplicity, only IGBT11 (rectifier stage) and
IGBT21 (inverter stage) are encompassed in the FD study.
Three types of faults are considered (open-circuit, wear-out,
and short-circuit) (Table 1). It is worth noting that the wear-
out fault is modeled by an internal resistance of 2 �.

The behavior of some electrical and mechanical variables
for different fault scenarios are is presented in Figures 4 to 8.
In this study, 12 variables have been generated for model-

ing and fault classification as listed in Table 2 [36]. To demon-
strate the effectiveness of the developed methodologies, real
bearing vibration data are used as an example [1].

IV. RESULTS AND DISCUSSIONS
Seven working modes (1 healthy and 6 faulty modes) are
evaluated as illustrated in Table 3. Each operating mode is
adequately qualified over 2000 10-time-lagged observations
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FIGURE 5. Generator speed under dissimilar conditions [1].

FIGURE 6. Generator current under dissimilar conditions [1].

FIGURE 7. Grid current under dissimilar conditions [1].

during a second time period with 20 KHz as sampling
frequency.

The swarm size, max iteration, cognition coefficient, and
social coefficient of the PSO algorithm are equal to 20, 100,
2, and 2, respectively. The number of hidden layers of the NN
structure was set to 10 while the number of hidden neurons is
equal to 50 in the hidden layer.

In the multi-class classification stage, one healthy case
(C0) and 6 faulty cases ( C1-C6) are considered (Table 3).
Table 4 shows that the proposed algorithms outperform the
NN algorithm in terms of accuracy in the training and testing
phases. Besides, The PSO-based NN provides the best results

FIGURE 8. Bus voltage under dissimilar conditions [1].

TABLE 2. Variables description.

TABLE 3. Construction of database.

compared to other optimization techniques like genetic algo-
rithm (GA), differential evolution (DE), ant Colony opti-
mization (ACO), simulated annealing (SA) and gravitational
search algorithm (GSA) based methods. In addition, the
presented results demonstrate that the proposed reduced
PSO-based NN (RPSO-based NN) (19.87/1.19) provides an
important reduction in terms of computation time compared
to PSO-based NN (36.14/2.47) technique.

To prove the effectiveness of using interval-valued data
compared to single-valued data, the results of the pro-
posed interval techniques are compared to the proposed
single-valued techniques. One can notice from Table 4
that both the proposed techniques for interval-valued data
IPSO-based NNCR (98.59/98.50) and IPSO-based NNUL
(98.73/98.75) provide the best accuracy results compared to
PSO-based NN (98.20/98.16). Besides, a significant reduc-
tion in computation time is obtained by both IRPSO-based
NNCR (21.67/1.28) and IRPSO-based NNUL (23.17/1.35)
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TABLE 4. Performances comparison of different multi-class techniques.

compared to IPSO-based NNCR (38.86/2.68) and IPSO-
based NNUL (40.03/2.76) techniques for training and test-
ing phases. In addition, The proposed IRPSO-based NN
techniques not only decrease the computation time but also
enhance the accuracy. The obtained accuracy using both
IRPSO-based NNCR and IRPSO-based NNUL is equal to
99.18/99.15 and 99.71/99.68 for training and testing phases,
respectively. A comparison study between the proposed
methodologies and other existing methods such as recurrent
neural network (RNN), General regression neural network
(GRNN), SVM, RF, and KNN is presented. KNN and SVM
present a low accuracy and they are not able to differenti-
ate between the different operating modes. RNN classifier
presents good results in terms of accuracy, but it is suffer
from a high computation time for both the training and testing
phases.

It is clear from Table 4 that the proposed IRPSO-based
NNUL method achieves the best accuracy compared to other
techniques.

In the second stage a one-class classification is done
(Table 5). In this case, each classifier is trained to classify a
specific class with a label of 1 or −1. Table 6 summarizes
the results in terms of accuracy and mean of computation
time of the developed techniques. The presented results from
Table 6 prove that all the proposed techniques provide good
results in terms of accuracy. In addition, we can conclude
from the presented results in Table 6, that the developed
techniques based on data-size reduction tool afford a good
reduction in terms of computation time and with almost
the same accuracy. Thus, the developed techniques based

TABLE 5. Multiple one class classifier logic for fault diagnosis.

TABLE 6. Accuracy with different one class techniques.

on PSO algorithm for features selection and ED for data-
size reduction can strongly decrease the size of the dataset
while keeping the more informative features. In addition, the
presented results demonstrate that the proposed IRPSO-based
NNUL technique gives the best tread off between accuracy
(99.71/99.68) and computation time (23.17/1.35) for train-
ing and testing phases.

V. CONCLUSION
Diagnosis in WES is important to ensure reliable power pro-
duction and optimal energy harvesting because WES usually
suffer from several faults due to a difficult outdoor envi-
ronment. This work elaborates on the development of new
approaches aimed at improving the operation of WES by
developing intelligent and innovative WES fault diagnosis
frameworks. To do this, an enhanced NN-based classifier
using PSO, and data reduction are proposed. The improved
PSO algorithm is applied to enhance the classification accu-
racy by removing the irrelevant features and extracting the
most significant ones from reduced data using the Euclidean
distance method. The reduced PSO-NN (RPSO-NN) tech-
nique is characterized by higher accuracy and reduced
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computation time and storage cost. To deal with model uncer-
tainties (measurement errors, noise, variable variability, . . .)
inWES, the developed technique will be extended to interval-
valued data with the aim of achieving greater accuracy. There-
fore, based on the application of the interval-valued dataset,
four techniques were proposed to deal with uncertainties in
WES. The proposed methodologies not only improve the
diagnosis abilities but also reduce the computation time and
storage cost. The presented results demonstrate the effective-
ness of the proposed approaches for fault diagnosis of WES.
As future works, we will explore other machine learning and
deep learning algorithms through single and interval-valued
representation, allowing the comparison between the fault
diagnosis performances of each algorithm for certain and
uncertain WES systems. Finally, the developed fault diag-
nosis techniques will be utilized in practice to help improve
operations ofWEC systems. Theywill be tested and validated
using simulated and real data under extreme conditions and
using different simulation scenarios.
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