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ABSTRACT This paper introduces the Improved Iterated Extended Kalman Filter (IIEKF) for estimating
the rotational speed, rotor resistance, and stator resistance of three-phase induction motors (IMs). Two state-
spacemodels for estimating the variables are presented. An optimal estimation of rotational speed is obtained
by introducing a data fusion approach. The effectiveness of the IIEKF in comparison with the Extended
Kalman Filter (EKF), using experimental data and in a wide range of operating conditions, is shown.

INDEX TERMS Induction motor, rotational speed, rotor and stator resistances, parameter estimation,
extended Kalman filter.

I. INTRODUCTION
The induction motor (IM) parameters may change due to
the winding temperature fluctuations, flux saturation, and
skin effect [1]. Temperature variation can affect the rotor
and stator resistances, while it has no remarkable effect on
inductances. Conversely, high current values cause saturation
of inductances [2].

Many control strategies of IMs, like Field Oriented Control
(FOC), require accurate values of IM parameters, therefore,
several methodologies have been presented to estimate the
IM parameters [3], [4]. In recent years, sensorless estimation
of rotational speed and rotor flux has attracted consider-
able attention in the introduced control strategies [5], [6].
In addition to the control strategies, the estimation of IM
parameters is one of the conventional methods for fault detec-
tion [7], [8], [9], [10].

Generally, there are a large number of studies on estimating
IM parameters. These studies can be categorized into three
main groups: (i) model reference adaptive system methods,
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(ii) observer-based methods, and (iii) artificial intelligence
techniques [11], [12], [13], [14], [15].

In [16], an artificial neural network has been designed
to speed estimated through the estimation of stator current
with the purpose of direct torque control of three-phase IM.
It is worth noting that such data-driven methods require a
considerable volume of data at different operating conditions
of the motor. This volume of data not only requires strong
processors but also analyzing this data is a time-consuming
process.

In [11], a Model Reference Adaptive System (MRAS) for
online rotor time constant estimation has been introduced.
In [17], a comprehensive review of speed estimation based
onMRAS techniques has been conducted. This study showed
that MRAS technique has not appropriate accuracy in the
presence of measurement noise and uncertainties.

A wide range of literature has been published regarding
parameter estimation of IMs based on observers [18], [19],
[20], [21], [22], [23], [24], [25], [26]. Among methods in this
category, the Kalman Filters (KFs) family uses information
on both dynamical and statistical model parameters of IM
to estimate optimal values [27]. Hence, unlike deterministic
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TABLE 1. A brief review of various parameter estimation methods using the KF family.

observers, the stochastic nature of the KF addresses the issues
regarding the model uncertainties and measurement noise of
IM [23].

In recent studies on the estimation and identification of IM
parameters using KF and its extensions, speed estimation of
IM for employing speed sensorless control has been consid-
erable [23], [28], [29], [30], [31], [32], [33]. Table 1 presents
a brief review of some studies of various types of KFs used to
estimate IM parameters. According to Table 1, Extended KF
(EKF) and Unscented KF (UKF) are two successful methods
in the sensorless control strategy.

In [28], adaptive observers along with second-order KF
were suggested to estimate flux and rotational speed. In [29],
[34], and [35], the flux and speed were estimated using EKF.
In [31], a braided EKF has been applied for sensorless control
of IM under speed and load variations in the presence of
measurement noise. Although EKF is employed for nonlinear
processes, it basically uses a linearization approach to deter-
mine the current and covariance of the state [19]. Despite the
wide use of this application, it has an obvious disadvantage
in the case of filter instability due to the linearization, when
sample time is not proper, affecting the Jacobian matrix
and estimation results [19], [31]. It should be noted that
in [29], [34], [35], [36], and [37], the speed is assumed as
a constant parameter, affecting the estimation of transient
speed. None of these studies estimate rotor resistance, chang-
ing during operation conditions, thereby affecting the esti-
mation of parameters. However, in the case of [16] and [36]
the effects of rotor resistance variation have been reflected.
In [38], a single EKF using two extended IMmodels has been
introduced as a BI-EKF algorithm to estimate load torque,
rotor, and stator resistances.

In some studies about the controller design of IM,
the estimation of rotor resistance has been consid-
ered [39], [41], [42]. In [39], using the direct FOC scheme,
besides rotor flux and speed, rotor resistance was estimated
using EKF. In [40] and [41], the authors estimated rotor
resistance, speed, and rotor flux using the DTC scheme.
In [42], a modified EKF has been used to decrease execution
time for estimating the parameters of six-phase IM controlled
by DTC.

This paper introduces an Improved Iterared EKF (IIEKF)
to estimate rotor rotational speed, rotor, and stator resistances
based on two extracted state-space models. Due to the nonlin-
ear behavior of IM, IIEKF as a modified version of EKF has
been introduced. The performance of IIEKF is studied under
various machine operating conditions and load variations in
a wide range of the rotational speed of IM. Also, the experi-
mental results of employing IIEKF have been compared with
the estimation results of EKF.

The organization of this paper is as follows: Section II
presents the mathematical model of IM. After reviewing EKF
and Iterated EKF (IEKF), IIEKF is introduced in section III.
Section IV introduces the estimation method to estimate
the rotational speed, rotor, and stator resistances of IM.
In section V, the experimental results and discussion are
presented. The conclusion is presented in section VI.

II. MATHEMATICAL MODEL OF INDUCTION MOTOR
The discrete-time dynamic equations of three-phase IM in a
stationary frame, based on the stator currents and rotor fluxes
can be written as [22]:

ids(k) =

(
−

Ts
σLs

Rs −
L2mTs
σLsL2r

Rr + 1
)
ids(k − 1)
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+

(
LmTs
σLsL2r

Rr

)
λ′
dr (k − 1) +

Ts
σLs

vds(k − 1)

+

(
LmTs
σLsLr

np

)
ωr (k − 1)λ′

qr (k − 1) (1a)

iqs(k) =

(
−

Ts
σLs

Rs −
L2mTs
σLsL2r

Rr + 1
)
iqs(k − 1)

+

(
LmTs
σLsL2r

Rr

)
λ′
qr (k − 1) +

Ts
σLs

vqs(k − 1)

−

(
LmTs
σLsLr

np

)
ωr (k − 1)λ′

dr (k − 1) (1b)

λ′
dr (k) =

LmTs
Lr

Rr ids(k − 1) − npTsωr (k − 1)λ′
qr (k − 1)

+

(
−
Ts
Lr
Rr + 1

)
λ′
dr (k − 1) (1c)

λ′
qr (k) =

LmTs
Lr

Rr iqs(k − 1) + npTsωr (k − 1)λ′
dr (k − 1)

+

(
−
Ts
Lr
Rr + 1

)
λ′
qr (k − 1) (1d)

ωr (k) = npωr (k − 1) −
Tl
J

+
3npLmTs
2JLr

(
ids(k − 1)λ′

qr (k − 1)

−iqs(k − 1)λ′
dr (k − 1)

)
(1e)

where, ids(k) and iqs(k) are the stator current elements,
vds(k) and vqs(k) are the stator voltage elements, λ′

dr (k)
and λ′

qr (k) are rotor flux linkage elements in dq reference
frame. ωr (k) is the rotor rotational speed. Lm,Lr , and Ls
are the mutual inductance, rotor and stator self-inductances,
respectively. Rr and Rs are the rotor and stator resistances,
respectively. np is the number of poles of IM. J is the total
inertia of the IM, Tl is the load torque and σ is the total
leakage coefficient that it can be defined as follows [45]:

σ = 1 −

(
L2m
LrLs

)
(2)

III. IMPROVED ITERATED EXTENDED KALMAN FILTER
EKF is an extension of KF for nonlinear dynamics sys-
tems. EKF approximates the nonlinearities using lineariza-
tion around the last estimated value of the state variables. The
general framework for EKF was introduced in [46]. IEKF
and UKF, as modified versions of EKF, are two alternative
filters for linearization first-order approximation errors of the
EKF [47]. The estimation performances of UKF and EKF
are similar by using the same covariance matrices [44] and
greatly degraded in the presence of observation outliers due
to their lack of robustness [48], similar to [49] employing a
version of IEKF (IIEKF) has been suggested in this study.
Although IEKF requires relatively more computational time
compared to EKF, implementation of this filter results in the
desired estimation by decreasing estimation error [49]. IEKF
equations are presented as follows.

Consider the nonlinear state-space model of a system in the
discrete-time domain as (3).

x(k) = f (x(k − 1),u(k − 1)) + w(k − 1) (3a)

z(k) = h (x(k)) + v(k) (3b)

In these equations, w(k) and v(k) are denoted as process
noise and measurement noise with covariance matrix Q(k)
and R(k), respectively. f(.) and h(.) are nonlinear continu-
ous functions. To linearize nonlinear functions, f(.) and h(.),
equations (4) to (6) are represented as follows, where F(.),
0(.) and H(.) are the Jacobian matrices.

F(x̂(k − 1),u(k − 1)) =
∂f
∂x

∣∣∣(x̂(k−1),u(k−1)) (4)

0(x̂(k − 1),u(k − 1)) =
∂f
∂u

∣∣∣(x̂(k−1),u(k−1)) (5)

H(x̂−(k)) =
∂h
∂x

∣∣
x̂−(k) (6)

Generally, by determining the initial values as (7), IEKF
equations are presented as (8), which can be separated into
two parts (measurement update and time update).

x̂−(0) = E [x(0)] (7a)

P−(0) = E
[(
x(0)x̂−(0)

) (
x(0)x̂−(0)

)T ]
(7b)

Measurement update:

x̂+(k, 0) = x̂−(k) (8a)

P+(k, 0) = P−(k) (8b)

K(k) = P+(k, i)HT (x̂+(k, i))

×

(
H(x̂+(k, i))P+(k, i)HT (x̂+(k, i))

+R(k))−1 (8c)

x̂+(k, i+ 1) = x̂+(k, i) + K(k)
(
z(k) − h

(
x+(k, i)

))
(8d)

P+(k, i+ 1) =
(
I − K(k)H(x̂+(k, i))

)
P+(k, i) (8e)

i = N (8f)

Time update:

P(k) = P+(k,N + 1) (8g)

x̂(k) = x̂−(k,N + 1) (8h)

P−(k + 1) = F(x̂(k),u(k))P(k)FT (x̂(k),u(k)) + Q(k) (8i)

x̂−(k + 1) = f
(
x̂(k),u(k)

)
(8j)

where,P−(k) and x̂−(k) are the a priori estimation ofP(k) and
x̂(k) using Z−

=
{
z(1) . . . z(k − 1)

}
, respectively. Since

the linearized system may become unobservable in some
operating points, it is suggested to check observability before
the time update part. If the states are unobservable, the states
do not update. In other words, in IIEKF, (8h) is substituted
by (18).

ϕ =

[
HT (x̂−(k))

(
H(x̂−(k))F(x̂(k − 1),u(k − 1))

)T
. . .(

H(x̂−(k))Fn−1(x̂(k − 1),u(k − 1))
)T]T

(9a)
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FIGURE 1. Flow chart of the introduced IIEKF.

{
m1 = σmin (ϕ)

m2 = σmax (ϕ)
→ m =

m1

m2
(9b){

m ≥ ε ⇒ x̂(k) = x̂−(k,N + 1)
m < ε ⇒ x̂(k) = x̂(k − 1)

(9c)

In (9), σmin (ϕ) and σmax (ϕ) are the minimum and maximum
singular values of ϕ, respectively. ε, as a threshold, can be
determined using (9b) when the system is completely observ-
able. It is suggested that ε = 10−5.
Besides, in the case of the covariance matrix P+(k, i),

implementing a forgetting factor, α which modifies the
covariance matrix resulting in accurate and fast estimation.
P+(k, i) is substituted by (1/α)P+(k, i) in (8c) and (8e) that
0 < α < 1. In other words, (8c) and (8e) are substituted
by (19).

K(k) = (1/α)P+(k, i)HT (x̂+(k, i))

×

(
(1/α)H(x̂+(k, i))P+(k, i)HT (x̂+(k, i))

+R(k))−1 (10a)

P+(k, i+ 1) =
(
I − K(k)H(x̂+(k, i))

)
(1/α)P+(k, i) (10b)

The flow chart of the introduced IIEKF is shown in
Figure 1. In Figure 1, by defining x̂−(k) =

[
x̂−

i (k)
]
n×1,

εx̃i(k); i = 1, . . . , n are determined using the convergence of
states. εx̃i(k) is suggested that, if

∣∣x̂−

i (k)
∣∣ < 1, then εx̃i(k) =

0.01x̂−

i (k); otherwise, εx̃i(k) = 0.01.

IV. ESTIMATION OF ωr (k), Rr , AND Rs
In order to estimate ωr (k),Rr , and Rs using IIEKF a discrete-
time state-space model should be presented to introduce the
dynamic behavior of ωr (k),Rr , and Rs.

A. STATE-SPACE MODEL FOR ESTIMATING Rr AND ωr (k)
In order to estimate ωr (k) and Rr , the state vector, xr(k), and
input vector, u(k), are defined as (11).

xr(k) =
[
xri (k)

]
6×1

=
[
ids(k) iqs(k) λ′

dr (k) λ′
qr (k) ωr (k) Rr

]T
(11a)

u(k) = [ui(k)]2×1 =
[
vds(k) vqs(k)

]T
(11b)

Therefore, the augmented discrete-time state-space model
is expressed as follows:

xr(k) = fr (xr (k − 1),u(k − 1)) (12a)

yr(k) = hr(xr (k)) (12b)

where,

fr (xr (k − 1),u(k − 1))

=
[
fri (xr (k − 1),u(k − 1))

]
6×1 (13a)

fr1 (xr (k),u(k))

=

(
LmTs
σLsLr

np

)
xr5 (k)xr4 (k)

+

(
−

Ts
σLs

Rs −
L2mTs
σLsL2r

xr6 (k) + 1
)
xr1 (k)

+

(
LmTs
σLsL2r

xr6 (k)
)
xr3 (k) +

Ts
σLs

u1(k) (13b)

fr2 (xr (k),u(k))

= −

(
LmTs
σLsLr

np

)
xr5 (k)xr3 (k)

+

(
−

Ts
σLs

Rs −
L2mTs
σLsL2r

xr6 (k) + 1
)
xr2 (k)

+

(
LmTs
σLsL2r

xr6 (k)
)
xr4 (k) +

Ts
σLs

u2(k) (13c)

fr3 (xr (k),u(k))

= −npTsxr5 (k)xr4 (k)

+
LmTs
Lr

xr6 (k)xr1 (k) +

(
−
Ts
Lr
xr6 (k) + 1

)
xr3 (k) (13d)

fr4 (xr (k),u(k))

= −npTsxr5 (k)xr3 (k)

+
LmTs
Lr

xr6 (k)xr2 (k) +

(
−
Ts
Lr
xr6 (k) + 1

)
xr4 (k) (13e)

fr5 (xr (k),u(k))

= npxr5 (k)
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−
Tl
J

+
3npLmTs
2JLr

(
xr1 (k)xr4 (k) − xr2 (k)xr3 (k)

)
(13f)

fr6 (xr (k − 1)

= xr6 (k) (13g)

hr(xr (k))

=
[
xr1 (k) xr2 (k)

]T (14)

Consequently, Fr(xr(k − 1),u(k − 1)), 0r(xr(k − 1),
u(k − 1)), and Hr(xr(k)) as the Jacobian matrices in (4)-(7)
are obtained as (15)-(17) for employing IIEKF.

Fr(xr (k − 1),u(k − 1))

= I6×6

+Ts


−

(
Rs
σLs

+
xr6 (k − 1)L2m

L2r σLs

)
I2×2 F1 02×2

xr6 (k − 1)
Lm
Lr

I2×2 F2 02×2

−
3np
2Jl

Lm
Lr
xr4 (k − 1)I1 02×2 02×2


(15)

0r(xr(k − 1),u(k − 1))

=

[
T
Lσ

I2×2 02×4

]T
(16)

Hr(xr(k))

=
[
I2×2 02×4

]
(17)

where,

I1 =

[
1 1
0 0

]
(18a)

F1 =


RrLm
L2r σLs

Lmnpωm
LrσLs

−
Lmnpωm
LrσLs

−
RrLm
L2r σLs

 (18b)

F2 =

 −
Rr
Lr

−npωm

−npωm −
Rr
Lr

 (18c)

B. STATE-SPACE MODEL FOR ESTIMATING Rs AND ωr (k)
In this case, to estimate Rs andωr (k), the state vector, xs(k) =[
xsi (k)

]
6×1, is defined as (29).

xs(k) =
[
ids(k) iqs(k) λ′

dr (k) λ′
qr (k) ωr (k) Rs

]T
(19)

Same as the previous subsection, (22)-(28), the space-state
model is defined as follows:

xs(k) = fs(xs(k − 1),u(k − 1)) (20a)

ys(k) = hs(xs(k)) (20b)

where,

fs(xs(k − 1),u(k − 1))

=
[
fsi (xs(k − 1),u(k − 1))

]
6×1

= fr(xr(k − 1),u(k − 1))

∣∣∣∣∣∣∣∣∣∣∣
xri (k) = xsi (k); i = 1, . . . , 5
xr6 (k) = Rr
Rs = xs6 (k)

(21)

hs(xs(k))

=
[
xs1 (k) xs2 (k)

]T (22)

Then, for employing IIEKF according to (4)-(6), Fs
(xs(k − 1),u(k − 1)), 0s(xs(k − 1),u(k − 1)), and Hs(xs(k))
as the Jacobian matrices are obtained as (23)-(25).

Fs(xs(k − 1),u(k − 1))

= I6×6

+Ts


−

(
xs6 (k − 1)

σLs
+

RrL2m
L2r σLs

)
I2×2 F1 02×2

Rr
Lm
Lr

I2×2 F2 02×2

−
3np
2Jl

Lm
Lr
xs4 (k − 1)I1 02×2 02×2


(23)

0s(xs(k − 1),u(k − 1))

=

[
T
Lσ

I2×2 02×4

]T
(24)

Hs(xs(k))

=
[
I2×2 02×4

]
(25)

It should be noted that in (15) and (23) the variations of Rr
and Rs with time are assumed to be really too small which can
be considered constant parameters.

By considering the state-space models of the IM for esti-
mating ωr (k),Rr , and Rs in (12) and (20), two IIEKFs, which
are presented in section III, Figure 1, are used simultaneously
to estimate the state variables. In the first IIEKF, Rr andωr (k)
will be estimated, where x(k) = xr(k), x̂(k) = x̂r(k), f(.) =

fr (.), and h(.) = hr(.). Therefore, according to (11), the
estimations of Rr and ωr (k) are obtained as follows :

R̂r = x̂r6 (k) (26a)

ω̂r (k) = x̂r5 (k) (26b)

In the second IIEKF, by defining x(k) = xs(k), x̂(k) =

x̂s(k), f(.) = fs(.), and h(.) = hs(.), Rs and ωr (k) will be
estimated as follows:

R̂s = x̂s6 (k) (27a)

ω̂r (k) = x̂s5 (k) (27b)

Since ωr (k) is the state variable in both (11) and (19) state
vectors, this variable is estimated twice. To achieve optimal
state estimation between (26b) and (27b), we can use the data
fusion method as follows [50]:

ω̂r (k) =

((
p55r (k)

)−1 x̂r5 (k) +
(
p55s (k)

)−1 x̂s5 (k)
)

(
p55r (k)

)−1
+

(
p55s (k)

)−1 (28)
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FIGURE 2. (a) A simplified block diagram of the experimental setup,
(b) The experimental setup and data acquisition system, (1) NI USB6009,
(2) Three-phase transformer (380/5) (3) Squirrel cage IM, (4) PMSG, (5)
Resistive Loads.

In (28), p55r (k) and p55s (k) are the 5
th diagonal element of

Pr (k) and Ps(k), respectively. The mathematical definition of
Pr (k) and Ps(k) are as follows:

Pr (k) =
[
pijr (k)

]
6×6 ; i, j = 1, . . . , 6

= P(k)in the 1stIIEKF using to estimate xr(k)
Ps(k) =

[
pijs (k)

]
6×6 ; i, j = 1, . . . , 6

= P(k)in the 2stIIEKF using to estimatexs(k)

(29)

It should be noted that Pr (k) and Ps(k) are the error covari-
ance matrices.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In order to show the effectiveness of the introduced method-
ology to estimate ωr (k),Rr , and Rs, the real input-output
data of a 1.5 Kw squirrel cage IM were used. The techni-
cal specification of the IM has been given in Table 2. The
experimental setup and data acquisition system are shown
in Figure 2. The load of the IM was a permanent magnet
synchronous generator (PMSG) and the load of the PMSG
was the resistive load. The PMSG, as a mechanical load for
IM, is used to change the load torque.

Two experiments were performed under different
load torques in the nominal rotor rotational speed

TABLE 2. Technical specifications of induction motor.

FIGURE 3. Stator elements in dq reference frame (a) stator voltage
elements (b) stator current elements.

ωr (k) = [0 ∼ 3000](RPM ), and lower than the nominal rotor
rotational speed ωr (k) = [0 ∼ 1000](RPM ). By considering
stator voltages as inputs, (11), and stator currents as outputs
variables, (12) and (20), stator voltages and currents are mea-
sured and recorded by NI USB6009. The stator voltages and
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FIGURE 4. (a) Estimated of the rotor rotational speed and (b) Estimation
error in nominal speed.

TABLE 3. Statistical characteristics of estimation errors.

TABLE 4. Execution times for estimating the variables in 2nd experiment.

currents in the nominal speed in the dq stationary reference
frame are shown in Figure 3.
According to section IV, the estimation process has been

done. A computer with the following characteristics was
used, CPU: Intel Core i7-7700HQ CPU @2.80GHz;16GB
RAM. OS: Windows 10, 64. The results of the estimation
of ωr (k),Rr , and Rs using two experiments are presented as
follows.

FIGURE 5. (a) Estimated of the rotor resistance and (b) Estimation error
in nominal speed.

As described above, two experiments have been performed
under a diverse range of operational loads and speeds. Then,
the validation of the estimation process based on section IV,
estimation of ωr (k),Rr , and Rs, has been investigated for two
ranges of speed as follows:

A. SCENARIO 1 ωr (k) = [0 ∼ 3000](RPM)
The results of the estimation of ωr (k),Rr ,Rs and the esti-
mation errors, ω̃r (k), R̃r , and R̃s, for the 1st experiment are
shown in Figures 4 to 6. In order to analyze the ω̃r (k), R̃r ,
and R̃s, the root mean square errors and standard deviations
of ω̃r (k), R̃r , and R̃s for the 1st experiment are shown in
Table 3. Figures 4 to 6, and the related rows of 1st experi-
ments in Table 3 show the whiteness of the estimation error,
which indicate that the estimated parameters have acceptable
accuracy.

B. SCENARIO 2 ωr (k) = [0 ∼ 1000](RPM)
In this sub-section, in order to compare IIEKF and EKF, the
estimation results of these two methods by using the dataset
of 2nd experiment are shown in Figures 7 to 9. According to
Figures 7 to 9, the estimation errors, ω̃r (k), R̃r and R̃s, using
IIEKF are less than EKF.

In order to analyze the ω̃r (k), R̃r , and R̃s, the root mean
square errors and standard deviations of ω̃r (k), R̃r , and R̃s for
the 2nd experiment are shown in Table 3. Similar to the 1st

experiment, analyzing the estimation errors using IIEKF in
Figures 7 to 9, and the related rows of the 2nd experiments in
Table 3 (4th to 6th rows) show its whiteness and indicate that
the estimated parameters have acceptable accuracy. By com-
paring the estimation errors using IIEKF with the estimation
errors using EKF in Table 3 (4th to 9th rows), the estimation
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FIGURE 6. (a) Estimated of the stator resistance and (b) Estimation error
in nominal speed.

FIGURE 7. (a) Estimated of the rotor rotational speed and (b) Estimation
error in low speed.

errors using IIEKF are less and closer to whiteness than the
estimation errors using EKF.

Also, to compare the execution time of both methods,
Table 4 is presented. According to Table 4, the execution

FIGURE 8. (a) Estimated of the rotor resistance and (b) Estimation error
in low speed.

FIGURE 9. (a) Estimated of the stator resistance and (b) Estimation error
in low speed.

time for running IIEKF is more than the execution times
for running EKF. Obviously, more execution time in IIEKF
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because of the delay in obtaining the output signal owing
to iterations have occurred. By considering execution times,
IIEKF can be employed in the controllers where the execution
times for estimating processes are less than the acceptable
delay.

Therefore, according to Tables 3, 4, and Figures 4 to 9,
the advantage of IIEKF in comparison with using EKF is
its fewer estimation errors, and the disadvantage of IIEKF in
comparison with using EKF is its execution estimation time.

According to the above results for both scenarios, the
IIEKF works properly by using the extracted state-space
models of the IM in (12) and (20) for estimating ωr (k),Rr ,
and Rs.

VI. CONCLUSION
This paper introduced Improved Iterated Extended Kalman
Filter (IIEKF) to estimate the rotational speed, stator, and
rotor resistances. The performance of the IIEKF has been
verified under real conditions and using experimental data.
The results of estimation in the experimental results show that
the applied method gives a reliable and accurate estimation
for a three-phase IM under different operating conditions.
Therefore, the effectiveness of the introduced approach has
been shown.

Further research can be done by introducing a novel
methodology to estimate rotational speed, rotor, and stator
resistances in the presence of uncertainty and fault.
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