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ABSTRACT A service subgraph helps Internet-of-Things devices access resources in a dynamic Internet-
of-Things device network. We propose a service subgraph generation method for Internet-of-Things device
networks. Service subgraph generation aims to findmore capable neighboring Internet-of-Things devices for
service provisioning. We apply a line graph structure for an adequate representation of device resources. The
line graph structure effectively represents the resources in the generated service subgraph. A general node
classification problem constituting the generated service subgraph identifies the appropriate resource binding
for service provisioning. A node in the service subgraph corresponds to a unique relationship between
devices. Service provisioning is guaranteed by reinforcement learning based on the resource binding iden-
tified by node classification. The proposed line graph structure and resource binding significantly enhance
the traditional intelligent resource allocation method. In addition, the proposed scheme can effectively attain
service subgraphs with very low computational complexity. The proposed generative service provisioning
generally has a significantly lower occupation probability than the swarm intelligence-based algorithm. The
average value of the occupation probability is 0.49 with the proposed method. It is 0.12 lower than that of
swarm intelligence-based algorithm.

INDEX TERMS Internet of Things, line graph, reinforcement learning, service provisioning, subgraph.

I. INTRODUCTION
In the Internet of Things (IoT) environment, a large pool of
devices cooperates. Sensors and actuators in an IoT envi-
ronment activate several IoT-based services. For example,
a smart building collects data from thousands of sensors,
and actuators, such as air conditioners, respond accordingly
to sustain an appropriate environment. Another example of
an IoT-based service is self-driving cars, which use various
sensor data sources to make driving decisions. Conventional
IoT services must cooperate with other services. A resource
can be forwarded to the neighboring devices to satisfy the
service requirements of a service requester. Resources from
multiple devices can be combined in a small area. The devices
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in the IoT network can function as service requesters and
resource providers simultaneously.

The network typically consists of many requesters and
a relatively small number of providers. Service provision-
ing binds various primitive resources to meet the require-
ments of requesters [1], [2]. Service provisioning enhances
resource utilization in various fields. In industry, predic-
tions on services can be made to reserve resources [3].
The network slicing becomes gains efficiency by mapping
resource status [4]. The quality of services (QoS) provided
by primitive resources must be well coordinated in a single
service provisioning to satisfy the service requests. A service
requester typically has a list of desired services with differ-
ent requirements. For each requester, service provisioning
presents a pool of resource providers that can offer sufficient
resources.

15496 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4512-5275
https://orcid.org/0000-0003-3181-4480


J. Kim, J.-H. Kim: Generative Service Provisioning for IoT Devices Using Line Graph Structure

Requesters prefer providers that offer higher QoS. A graph
is an appropriate representation of the provider pool [5]. Con-
sidering that all devices are connected in an IoT environment,
the service-provisioning problem is equivalent to finding the
best subgraph from an overall device network. A subgraph
is a subset of the nodes and links selected from the original
graph. Graph-based learning techniques are advantageous
in complex applications. Recently, graph-based learning has
focused on relational features between nodes or between
links [5], [6], [7], [8]. Compared with the feature aggregation
or concatenation of traditional graph-based learning, rela-
tional features increase data informativeness. Graph-based
techniques have been applied to subgraph detection or sub-
graph generation.

In prior studies, the objective of subgraph detection or
generation was to find a subgraph that could delegate the
original graph. A frequently detected subgraph exhibits recur-
ring or common features in the original graph. For example,
a common connection between molecules can represent a
specific chemical characteristic in the molecular structure.
In IoT environments, subgraph detection is used to detect
malware or botnets in an IoT network [8].

A provider pool for the service requester can be represented
as a subgraph of the IoT network. A well-constructed service
subgraph includes the most capable candidate providers for
the requesters. Moreover, the subgraph enhances its usability
by including the next candidate provider in the subgraph. The
information required to construct a subgraph is the provider’s
resource status. A line-graph structure is useful for construct-
ing a subgraph. A line graph converts node features into link
features or vice versa. The link feature of the original graph
contains the relational information (i.e., connectivity) of the
two nodes. By applying a line graph, the node features in the
line graph correspond to the relational information in the orig-
inal graph. The line graph has the advantage of representing
both the device’s resources (i.e., CPU, storage, or sensors)
and the relational information (i.e., connectivity between two
devices). In [9], the link prediction problem was changed into
a classification task by applying a line graph. The line graph
generally has a smaller number of training parameters, which
increases the learning efficiency and convergence speed of
the problem.

Deep reinforcement learning (RL) implements a practi-
cal RL scheme for various problems. The cost-minimization
problem with multistep decision-making is a typical deep
RL problem. A recent study [10] used deep RL for network
planning. Deep RL effectively prunes the search space to
increase solution exploitation speed. A well-designed state
representation is a critical factor for guaranteeing the perfor-
mance of deep RL. Many previous studies have adopted a
new state-representation framework [11], [12], [13]. In the
literature, exploitation of the Markov decision process in
graph representation outperformed matrix representation.

In this study, we proposed a generative service provision-
ing method, which uses deep RL and a line graph structure
to address service provisioning in IoT networks. An IoT

network comprises devices with different resources. These
devices can be service requesters, resource providers, or both.
Deep RL determines a specific subgraph from the origi-
nal graph. We compared the proposed generative service
provisioning with ant colony optimization (ACO), a swarm
intelligence-based algorithm [14]. The ACO algorithm can
identify a service subgraph. However, the proposed scheme
exhibits faster convergence.

The remainder of this paper is organized as follows. The
system model and problem formulation are presented in
Sections II and III, respectively. Then, the proposed scheme
is described in Section IV. In Section V, the results of the sim-
ulation and a discussion of the results are presented. Finally,
the conclusions of this study are presented in Section VI.

II. SYSTEM MODEL
Consider an IoT network with N devices, M services, and Z
resource types: the total set of devicesDtotal = {dr }∪Dwhere
dr denotes a service requester andD is a set of N −1 devices.
A service subgraph is the feature graph of a requester. When
we designate dr as d1 and let D = {d2, d3, · · · , dN }, the
proposed model aims to find a service subgraph of a requester
device d1. The total set of services Stotal = {s0} ∪ S
where S = {s1, s2, · · · , sM } and s0 defines ‘‘no service,’’
which requires no resources. Each device can function as
a requester, a provider, or both. We assume that Z fixed
resource types exist in each IoT environment. A resource
can be either a value-described resource (e.g., CPU, storage,
RAM) or an existence-described resource (e.g., sensors and
actuators).

A requester (dr ) requests service j with probability prj.
We assume that all the services in Stotal have an equal prob-
ability of occurrence. A requester has an individual list of
preferred services (i.e., services can be classified as ‘‘pre-
ferred’’ or ‘‘not-preferred’’ by the requesters). Let arj be 1 if
the service j is the preferred service of the requester (dr ),
and 0 otherwise. The probability αr , where the requester (dr )
requests any service, is as follows:

αr =

∑
j arj

M + 1
(1)

where r = 1, 2, · · · ,N and j = 0, 1, · · · ,M . We divide by
M + 1, which denotes the total number of M services and a
‘‘no-service.’’

At each time step t (i.e., iteration), the requester attempts
to request a service. The system model assumes that a ser-
vice forms a one-to-one or one-to-many relationship between
a requesting device and a providing device. Similar to
service preference in requesters, providers can ‘‘offer’’ or
‘‘refuse’’ services. The term ‘‘offer’’ refers to services that
require fewer resources than the resources possessed by the
devices.

Let bpj be 1 if service j is offered by the provider (dp),
and 0 if it is refused. Under this assumption, let βpj be the
probability of service j being provided by the provider (dp)
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FIGURE 1. (a) A generated service subgraph in the Original Network, (b) A service subgraph of device A, (c) Process of resource-binding in the
service subgraph using devices A, B, and F.

in the IoT environment. The probability βpj is as follows:

βpj =
1∑
j bpj

∑
p apj

M + 1
(2)

where p = 1, 2, · · · ,N and j = 0, 1, · · · ,M .
To model device occupation in the IoT environment,

we adopted a probability distribution to predict the ‘‘unoccu-
pied’’ devices. The term ‘‘unoccupied’’ refers to a device that
does not operate any service and can provide future requested
service. Let a random variable Xpj denote the service j offered
by the provider (dp). At each iteration, Xpj follows a binomial
distribution with probability βpj. As n → ∞, the binomial
distribution approximates a Poisson distribution. Let the ran-
dom variable Yp denote the occupation of the provider (dp).
Then, the random variable Yp =

∑
j Xpj follows a Poisson

distribution.
Note that a device node acts as either a requester or

provider. Whenever a service request is generated in the
network, we identify the service requester (dr ) and search
for resource providers (dp). The device node resets whenever
a service request is generated. A resource provider for a
previous service request can be a service requester and vice
versa.

III. PROBLEM FORMULATION
All devices have different available resources, and services
have different service requirements. This heterogeneity com-
plicates the service subgraph generation. A service subgraph
is a tree of devices rooted in a requester. To find the service
subgraph (SGrj) of a requester (dr ) for service j, we make the
following assumptions on the service subgraph:

• The requester itself is the first device that can provide
service to the requester.

• A device can offer resources only once. The resources
deplete after being offered. Hence, reexploring the
device is meaningless.

A well-designed service subgraph allows a service
requester to be assigned resource providers who offer desired
services. The quality of service (QoS) for service j provided
to a requester (dr ) is defined as QSGrj . This value is deter-
mined by the product of the unoccupied probabilities of all
resource providers in the service subgraph SGrj for service
j. The service subgraph SGrj refers to the set of resource
providers that are used to provide service j to requester dr .
The occupation of each provider (dp) is represented by Yp, and
the unoccupied probability of each provider is represented
by (1 − Yp). The product of the unoccupied probabilities of
all providers in SGrj,

∏
p∈SGrj

(
1 − Yp

)
, represents the overall

unoccupied probability of the service subgraph for service j.
This unoccupied probability is directly related to the resource
availability in the service subgraph and is used as a measure
of the QoS for service j provided to requester dr .

QSGrj =

∏
p∈SGrj

(
1 − Yp

)
(3)

Note that, the average QoS achieved by the service sub-
graph for all services of requester (dr ) is calculated by
equation (4).

QSGr =
1

|Sr |

∑
j∈Sr

QSGrj (4)

where Sr is the set of services preferred by the requester (dr ).
|Sr | means the number of services in the set Sr .
We define all devices before the provider (dp) as the

predecessors of dp. Other devices located after dp are suc-
cessors. A single provider can provide a service. However,
we can assume a case in which no device can provide service
alone. The service may require extremely high computational
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power or various types of sensor data. Service provision-
ing states that multiple devices cooperate in providing the
requested service. The idea of service provisioning can help
requesters provide services faster while satisfying QoS. With
good service provision, a combination of low-performance
devices can replace a single high-performance device. High-
performance devices are more likely to be occupied by other
service requesters. The resource-binding scheme incorpo-
rates its predecessors’ available resources and is useful in
determining available resource providers. Resource-binding
scheme emulates the transpiration process in plants. Plants
transport water from the roots to the leaves, which is required
for photosynthesis. The leaf and root are the requester and
potential provider, respectively. Similar to transpiration, the
available resources are combined from the requester (root)
to the providers (leaves) in the service subgraph to offer the
service (transpiration).

Fig. 1 shows the service subgraph of a requester from the
original graph and how to bind resources through the service
subgraph. The resource provided to the device r for service j
is the sum of the resources from unoccupied predecessors.

ASGrj =

∑
p∈SGrj

(1 − Yp)Rp (5)

ASGrj represents the combined resource of all devices in
the service subgraph SGrj. Rp represents the resources owned
by each provider (dp) in SGrj, and (1 − Yp) represents the
resource availability of provider (dp) (remember that Yp is
the occupation probability of provider (dp), and (1 − Yp) is
the unoccupied probability). The product of Rp and (1 − Yp)
represents the current resource status of provider (dp). The
sum of (1 − Yp)Rp for all providers in SGrj represents the
combined resource of all devices in SGrj. In other words,
it is the total resource available for use in SGrj. The service
subgraph quality can be obtained by computing (3), where
the providers of each accepted service j are the devices that
maximize QSGrj under a resource-binding scheme.

ACO-based algorithm shows effectiveness in resource
allocation and task offloading problems. The basis for the
ACO-based algorithm is that ants travel through different
routes to accomplish certain objectives. The modification
can be made by giving different constraints on traveling or
pheromone update [15], [16].

The remaining problem is to determine a good service
subgraph. The service subgraph connects the devices in an
IoT environment. The heterogeneity of resources and devices
increases the complexity of connections between devices.
In the following section, we present the solution to finding
a service subgraph with the idea of a line graph and deep
reinforcement learning.

IV. GENERATIVE SERVICE PROVISIONING METHOD
The proposed generative service provisioning method
focuses on generating a service subgraph. The service sub-
graph helps the requester find a set of adequate providers for
all services. Service provisioning finds a group of devices

FIGURE 2. Transformation of original graph into a line graph form.

that offers a service in a graphical the form of a service
subgraph. Another essential part of the generative service
provisioning is resource-binding, which allows the device
to gather available resources in the service subgraph. The
proposed scheme is an iterative process consisting of two
steps: the first step involves generating a service subgraph,
and the second step involves evaluating the generated service
subgraph. Equation (4) represents an evaluationmetric for the
generated service subgraph. Table 1 is the pseudo code of the
proposed method.

In the proposed service provisioning, pairing devices
should inform the resource difference.We used a line graph of
the original graph for service subgraph generation. Every pair
of devices in the original graph creates two nodes, indicating
resource differences. For example, device pairs A and B in
Fig. 2(a) are converted to nodes AB and BA, respectively,
in Fig. 2(b). The line graph converts the link selection prob-
lem in the original graphG to a node classification problem in
the line graph L (G). If a node in the line graph is classified as
‘‘active,’’ then the corresponding two devices and the directed
link between the devices are selected for the service subgraph.

The link prediction problem requires combining the fea-
tures of individual nodes before generating a subgraph.
A common approach for this on the original graph is to use
message passing, which combines the features of neighboring
nodes to create an edge feature. However, the proposed line
graph structure simplifies this process by replacing message
passing with a simple subtraction operation. This results in
a significant reduction in computation time. In the origi-
nal graph, updating node features through message passing
requires O(n) computation for a single node (where n is
the number of nodes in the network), and O(kn) computa-
tion for k iterative updates. When applied to all nodes in
the original network, the computational complexity becomes
O(kn2). In contrast, the subtraction in the line graph only
requiresO(1) computation for a single update, andO(k) com-
putation for k iterative updates. The number of subtractions
needed for all nodes in the line graph (or edges in the original
graph) is O(km), where m is the number of nodes in the
line graph. The conversion process from an original graph
to a line graph may require additional computation, but the
most advanced conversion methods have a computational
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TABLE 1. Service subgraph generation pseudo code.

complexity ofO(n). The overall feature update complexity for
the line graph is O (n) + O(km), which can be approximated
as O (km) when m is larger than n. In the most complex
cases, m is equal to n(n − 1), but in typical communication
networks, m is significantly less than n(n − 1). Therefore,
the line graph structure can greatly reduce the amount of
computation required.

Service subgraph generation is a node-classification prob-
lem for identifying active nodes in L(G). The node features in
L (G) are the inputs for node classification and represent the
resource difference between the devices. Feature subtraction
is a simple but effective way to show the difference. However,
simple subtraction still requires serialization in the standard
form. The range and unit of each resource type are different
(i.e., value-described resource or existence-based resource).
The following insights are advantageous to operate as a prac-
tical input in a neural network for node classification:

• The providers in the service subgraph should have at
least one better providable resource than the requester
(i.e., higher-performance CPU or more storage).

• The diversity of resources must bemore recommendable
than the sufficiency of the resource.

Given these insights, we propose a representation method
applied to generate the line graph L(G). The representation of
device features in L (G) is a binary vector of size (1×Z ). The
component of the binary vector is 1 if the node has a better
providable resources and 0 otherwise. The device with a zero

TABLE 2. Deep RL model.

vector can be neglected because it has no available resources.
The proposed representation method reduces the number of
devices in L (G). Additionally, the binary vector representa-
tion eliminates the need to standardize or form resources in
advance of learning. The binary vector representation reduces
the complexity of the problem.

One of the candidate methods for service subgraph gener-
ation is the naïve service subgraph generation. The method
has a severe problem caused by the mutually connected
devices. The mutually connected devices generate a cyclic
service subgraph between them. Effective service provision-
ing is complex owing to the presence of cycles. Hence,
we designed a modified service subgraph generation method
that includes resource binding. Modified service subgraph
generationwas performed using deep RL. The neural network
used to classify the active nodes in the line graph should be
updated to generate an effective service subgraph. Deep RL
is a technique that updates neural networks using a reward
function. We used the average quality value of the generated
service subgraphs defined in (5), as the reward. On average,
deep RL updates the neural network to be effective for all
service requesters. The service subgraph enables all service
requesters to have a similar QoS.

Deep RL uses different service requests from all requesters
to develop a single neural network. The rewards may use
average quality value or utility-based rewards such as the
providers’ occupation. The occupations differ in each service
subgraph. Some requesters may have a service subgraph with
a high occupation but a low occupation for other requesters.
The average QoS of all generated service subgraphs deter-
mines the overall performance and develops the neural net-
work with general knowledge.

The deep RL model uses the resources of each device as
the input feature which is the state in deep RL. The action
of the deep RL agents is to activate or deactivate the node,
which is the connection between the devices. Then, the deep
RL model evaluates the overall learning through the average
QoS of the generated service subgraph (see the equation (3)
to calculate QoS). The Deep RL descriptions are represented
in Table 2.

The resources of these devices are not constant and can
vary over time. In order to take this fluctuation into account,
we apply the time variation to Rp and Yp in equation
(5). Specifically, we define Rp (t) as the resource of the
provider (dp) at iteration t , where Rp (t) represents the orig-
inal resource owned by dp in the IoT system model. The
formulation for Rp (t) can be represented as follows:

Rp (t) = (1 − Yp(t))Rp (0) (6)
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The product of the unoccupied probability, represented
as (1 − Yp(t)), and the original owned resource (Rp (0))
represents the current resource status at iteration t . The first
step in this iteration involves classifying the nodes of the line
graph generated from resource Rp (t). In the second step, the
resource is updated to Rp (t + 1). At each iteration t , each
device generates a service subgraph. It is worth noting that
the service subgraph, SGrj, can be redefined as SGrj (t) to
account for the iteration index t .
The neural network for each iteration classifies the active

nodes of the service subgraphs presented in a line graph form.
The reward is the average quality of all service subgraphs.
The neural network is updated in response to the reward.
Reinforcement learning using line-graph-based node classifi-
cation generates an actual service subgraph from the original
graph.

The objective of the proposed deep RL model is to use
fewer parameters while maintaining a good performance. It is
also important to find resource-binding to provide services in
a distributedmanner.We compared the proposedmethodwith
an ACO-based swarm intelligence-based algorithm in the
same environment model. A swarm intelligence-based algo-
rithm develops the collective behavior of life groups. Swarm
intelligence has been applied to many domains and routing
problems [14], [17], [18]. ACO (Ant Colony Optimization) is
an effective Swarm Intelligence-based algorithm that uses the
concept of ants using pheromones to guide the other ants. The
ACO-based algorithm was used to address routing problems
in wireless sensor networks [14]. In the literature, the trail-
ing ant can obtain promising perspectives from the leading
ant using pheromones. The pheromones indicate route qual-
ity. If trials with different levels of pheromones are left to
determine routes to the prey, the pheromone-based solution
addresses the presence of desired resources in the service
subgraph. We modify the method in the literature [14] for
comparison. In the proposed system model, the ant travels
through the device until sufficient resources are accumulated.
The pheromone level is the probability of selecting a device.
We define the pheromone level ρu of a link in u-th travel as
follows (see Li et al. [18] equation (9)∼(10)):

ρu+1 = γρu + (1 − γ ) x (7)

where γ is the pheromone fading rate, and γ = 0.9. The
variable x is 1 if the device is chosen for travel u. For each
travel u, the unoccupied devices are initialized following the
probability defined in Section II. The ant selects an untraveled
device with respect to ε-greedy algorithm. If the selected
device is unoccupied, the ant accumulates resources from it.
The ant repeatedly selects the next device until it accumulates
enough resources to provide all the requested services. The
pheromone level is updated according to the travel route of
the ant. Note that in u-th travel, the ant uses the most recently
updated pheromone map. The pheromone map is a service
subgraph generated by the ACO algorithm. With sufficient
travel, the tree of links with high pheromone levels can be
regarded as a service subgraph. We assume that the service

TABLE 3. Resource types in the designed environment.

subgraph consists of links with an above-average pheromone
level.

Equation (3) denotes overall quality metric of gener-
ated subgraph. The overall quality metric consists of qual-
ity achievement of individual services (equation (4)). The
constraint of service provisioning is the resource provided
by devices. Equation (5) denotes the combined resource of
devices in the generated subgraph. To calculate the resource
provided in the subgraph, we must monitor the current status
of available resource of devices. Equation (6) denotes the
resource availability according to time flow. Additionally,
equation (7) indicates the pheromone level in each iteration
for the ACO-based service provisioning.

V. EXPERIMENTAL RESULTS
The system model depicts an IoT environment consisting
of N devices, M services, and Z resources. Each service’s
parameters, N,M, and Z, for each service influence the model
complexity. We present the simulation results to demon-
strate the performance excellence of the proposed methods.
We constructed an IoT environment using devices and ser-
vices. The constructed IoT environment was randomly gen-
erated from pre-defined perspectives. We limited resource
variations by assuming the possible range of each resource.
Table 3 presents the resource types used for the proposed
model and ACO-based model. We present six resource types
in the designed IoT environment (individual resources belong
to one resource type). The resources of each device were ini-
tialized based on the resource types. Then, the actual resource
is selected with a pre-defined probability (for example, a
1.6 GHz CPU with 0.5, a 2.0 GHz CPU with 0.3, and a
2.4 GHz CPU with 0.2).

The resource difference between service providers was
used as the input of the neural network. Quantification to
form a binary representation improves the convergence speed.
The value-described resource was quantified in several steps.

VOLUME 11, 2023 15501



J. Kim, J.-H. Kim: Generative Service Provisioning for IoT Devices Using Line Graph Structure

TABLE 4. Service types in the designed environment.

It is practical to describe the actual resource of IoT devices.
Existence-described resources are naturally represented in
binary form.

The simulation testbed comprised 100 IoT devices. Each
testbed constituted randomly generated resources as defined
in Table 3. The service types are presented in Table 4.
We generated 100 service requests using randomly selected
service requesters. The learning iterations were limited to
200 iterations. At each iteration, the reinforcement learning
uses 10 random samples for the generated service requests.
Note that each device is initialized following the resource
types in Table 3.
Fig. 3 demonstrates the average size of the service sub-

graphs generated by the two methods. The size of the ser-
vice subgraph generated by the ACO-based model fluctuated
over a relatively long time (see Fig.3 (b)). The ant has less
knowledge until it converges on the pheromone map. The
ACO-based model is a random-walk model [19]. The pro-
posed generative service provisioning succeeds in determin-
ing the required resources for every graph search. Fig. 3 (a)
illustrates rapid convergence to the ideal size of the service
subgraph. The service subgraph determination accelerates as
the learning progresses. The learning speed is critical for
achieving higher RL performance. The learning speed can be
regulated to balance the subgraph finding time and size of the
subgraph.

The service subgraph generation latency is the time spent
to make the service subgraph. Shorter latency refers to the
faster service provisioning. Fig. 4 depicts the variance of
latency for each method. The average latency of the pro-
posed method is 1.70 ms, while the ACO-based service
provisioning requires 3.54ms to make the service subgraph.
The latency pattern demonstrates stepwise increment. The
proposed method needs about 2ms when the subgraph size

FIGURE 3. Average depth of the service subgraph.

FIGURE 4. Latency of the service subgraph.

reaches more than 10 nodes while the ACO needs 4ms from
16 nodes.

Fig. 5 shows the number of assigned services per resource
provider in the service subgraph. The proposed generative
service provisioning illustrates the focused device participa-
tion in service provisioning. Approximately 80% of resource
providers support less than five service requests at the same
time. In ACO-based service provisioning, 60% of service
providers support 6∼10 service requests simultaneously.
Generative service provisioning has an advantage in man-
aging relatively simplified resource-binding. The resource-
binding from the small number of service providers induces a
small number of service support of resource providers, which
leads to simple resource finding for future service requests.

During the initial stages of learning, it is inevitable that the
unoptimized search and activation of connections, performed
by the deep RL algorithm, may result in longer paths to
reach the appropriate resource providers. The QoS, which is
the product of the unoccupied probabilities of all providers
in the service subgraph, is maximized when the path to
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FIGURE 5. Ratio of service providers in service subgraphs generated by
the generative service provisioning (red) and the ACO-based provisioning
(blue).

reach the providers is shorter. Even the addition of a single
node to the path can cause a decrement in the QoS value.
As the unoccupied probability of a node is less than one,
the multiplication value of unoccupied probabilities for QoS
calculation (i.e.,

∏
p∈SGrj

(
1 − Yp

)
in equation (3)) decreases.

However, with proper training, the deep RL algorithm ensures
the maximization of QoS values for each requester. Once
the deep RL training reaches a converged stage, search paths
are minimized then every service subgraph achieves its min-
imum size. The providers in the generated service subgraph
are classified to occupied providers. The optimized service
subgraphs for service requesters in the network ensures the
smallest number of device participation to support service
requests.

The availability of a service subgraph is related to the
occupation level of the resource providers. If the occupation
probability Yp is high for the providers in the service sub-
graph, the service subgraph is likely to fail to satisfy a service
request.

Fig. 6 shows the distribution of occupations (i.e., Yp).
Compared to ACO-based service provisioning, the proposed
generative service provisioning has a lower load for each ser-
vice provider. The average value of the occupation probability
(Yp) is 0.49 with the proposed method. It is 0.12 lower than
that of ACO-based provisioning.

The proposed generative service provisioning method
generally has a lower occupation probability compared to
the ACO-based provisioning method. We have divided the
resource providers into ten sets based on their ascending order
of occupation probability, as shown in Figure 6. The lowest
set, consisting of resource providers with the bottom 10%
of occupation probability, has a 0.2 difference in occupation
probability between the two service provisioning methods.
Although the differences become smaller as we move up the
provider sets, the differences in occupation probability are
still observed for all provider sets. The provider sets with the
top 10% of occupation probability show a difference of 0.078.

The proposed generative service provisioning uses line
graph structure to ensure the low complexity for prob-
lem resolution. The proposed method effectively makes

FIGURE 6. Distribution of occupation probability for providers in service
subgraphs generated by the generative service provisioning (red) and the
ACO-based provisioning (blue).

tree of service providers to inform the requester in finding
appropriate provider for the requested services. The gener-
ated service subgraph consists of providers that are less likely
to be occupied. The low occupation probability indicates the
chance of having sufficient resource for the service.

VI. CONCLUDING REMARKS
We introduced a service subgraph generation process using
a line-graph structure and deep RL. A service subgraph is a
tree of devices for better service offerings. Line graphs reduce
the complexity of the subgraph generation problem. The
search space to determine the available providers decreases,
and the feature representation becomes easier to learn. The
proficiency of the service subgraph increases with deep RL.
RL learns and changes the service subgraph to create addi-
tional unoccupied devices. A service subgraph is a group of
devices organized in a tree-like form for service provisioning.
A well-constructed service subgraph is effective in envi-
ronments with low-performance devices. We apply resource
binding to the generated service subgraph to combine the
resources of the low-performance devices. The proposed ser-
vice subgraph generation method was compared with the
ACO-based method. The proposed method outperformed the
ACO-based method in terms of the convergence speed and
availability of the service subgraph. An important character-
istic of an IoT environment is its scalability. The proposed
generative service provisioning should be effective in envi-
ronments with many devices. An additional characteristic to
consider is heterogeneity. The term ‘‘heterogeneity’’ can be
derived from many aspects. Diversity of services can result
in heterogeneity. The RL design implies the qualification of
the best service subgraph in a heterogeneous IoT network
environment.

Additional work is suggested. First, we used a probabilistic
model to design an IoT environment in the proposed exper-
iment. However, real-world applications have anomalies,
noise, and randomness. Using a more realistic model to cap-
ture the behaviors of real devices would make the proposed
model more applicable. Second, the proposed model can be
improved by implementing multi-agent RL. The proposed
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model predicts the service provision of other devices with
probability. By implementing multi-agent RL, the model can
learn the dynamics of co-existing devices in the environment,
which can prevent encounters with the same provider.
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