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ABSTRACT Retinal Fluids (fluid collections) develop because of the accumulation of fluid in the retina,
which may be caused by several retinal disorders, and can lead to loss of vision. Optical coherence
tomography (OCT) provides non-invasive cross-sectional images of the retina and enables the visualization
of different retinal abnormalities. The identification and segmentation of retinal cysts from OCT scans
is gaining immense attention since the manual analysis of OCT data is time consuming and requires an
experienced ophthalmologist. Identification and categorization of the retinal cysts aids in establishing the
pathophysiology of various retinal diseases, such as macular edema, diabetic macular edema, and age-related
macular degeneration. Hence, an automatic algorithm for the segmentation and detection of retinal cysts
would be of great value to the ophthalmologists. In this study, we have proposed a convolutional neural
network-based deep ensemble architecture that can segment the three different types of retinal cysts from
the retinal OCT images. The quantitative and qualitative performance of the model was evaluated using
the publicly available RETOUCH challenge dataset. The proposed model outperformed the state-of-the-art
methods, with an overall improvement of 1.8%.

INDEX TERMS Optical coherence tomography, retinal cysts, intra retinal fluid, sub retinal fluid, pigment

epithelial detachment, ensemble-approach, deep learning, medical image segmentation.

I. INTRODUCTION
The human eye is a complex sensory organ that enables us

several pathologies. One such pathology is the presence of
fluid-filled regions in the retina, which are called retinal

to see and interpret the scenes around us. The eye receives
the reflected light from the different objects in a scene and
converts them into electrochemical signals that are further
processed by the visual cortex of the human brain. The retina
is a thin layered tissue in the eye, which is responsible for
converting the optical signals to electrochemical signals that
are fed to the visual cortex via the optic fiber nerves [1].
Retinal abnormalities can cause visual impairment due to
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cysts [2], [3], [4], [5]. These cysts are formed due to under-
lying conditions such as macular edema, diabetic retinopa-
thy, age-related macular degeneration (AMD), central serous
chorioretinopathy, and retinal vein occlusion. The patho-
physological categorization of the retinal cysts can aid in the
diagnosis of the aforementioned ocular disorders. The retinal
cysts can be classified into three types based on their location

in the retina:
« Intra-retinal fluid (IRF): It is present between the nerve

fiber layer and the outer plexiform layer of the retina [4],
[5], [6], [7]. The presence of IRF has a pathological
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significance in the diagnosis of diabetic macular edema
and diabetic retinopathy.

o Sub-retinal fluid (SRF): It appears between the pho-
toreceptor layer and the retinal pigment epithelium
(RPE) [7], [8], [9], [10], [11]. SRF is a collec-
tion of lipid-rich exudate (serous liquid) that enters
the area from the choroid through the damaged pig-
ment epithelium due to inflammation or tumor. SRF
appears owing to the breakdown of the normal anatom-
ical course of action of the retina and its supporting
tissues. The condition has significance in the diag-
nosis of AMD and central serous chorioretinopathy.
Features of the SRF fluid are the moving of this liquid
with postural changes and the smooth arc-like appear-
ance of the detached retina lacking layering or fixed
folds.

« Pigment epithelial detachment (PED): It occurs due to
the detachment or elevation of the RPE layer from the
Bruch’s membrane. A PED can be found in certain
choroidal diseases, just as in some fundamental condi-
tions [9], [12]. The two roots of PED are ARMD and
its variations, such as polypoidal choroidal vasculopathy
and retinal angiomatous expansion, and central serous
chorioretinopathy. In any case, regardless of whether
less as often as possible, PEDs can be found in a few
foundational issues of provocative, irresistible, neoplas-
tic, and iatrogenic nature.

Optical coherence tomography (OCT) is a non-invasive
technique used to image the retina [13], [14]. OCT
employs low coherence light waves to produce different
cross-sectional views of the retina using the interferometry
technique. OCT scans acquired are 3D images [15], com-
monly called volumes or C-scans. Each OCT volume consists
of B-scans which are 2D images taken at the different cross-
sectional locations. OCT aids in imaging different patholo-
gies (like cysts) of the retina by providing cross-sectional
views. Commonly called volumes or C-scans. Each OCT
volume consists of B-scans that are 2D images taken at vari-
ous cross-sectional locations. OCT aids in imaging different
pathologies (such as cysts) of the retina by providing cross-
sectional views.

However, identifying the retinal cysts and categorizing
them based on OCT scans requires immense expertise and
is a time-consuming task. Hence, in this work, we have
proposed an automatic convolutional neural network (CNN)-
based model to segment the three different retinal cysts (IRF,
SRF, and PED).

Prior to the RETOUCH challenge [16], we could not
find a single work addressing the segmentation of all types
of retinal cysts, which is mainly due to the unavailability
of benchmark dataset. This challenge focused on creating a
benchmark dataset by considering all the three types of retinal
cysts, and the scans were acquired using three different OCT
instruments. Eight global teams participated in this endeavor,
namely Helios [17], MABIC [18], NJUST [19], RetinAI [20],
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RMIT [21], SFU [22], UCF [23], and UMN [24]. Bogunovic
et al. [16] have reported the outcome of this chal-
lenge, and almost all the teams used CNN-based solu-
tions for retinal cyst segmentation. The team SFU won the
challenge.

A patch-wise approach for image processing has been
proposed [25]. This approach involves breaking the original
images into small patches or images of small dimensions.
It has been proven in the past that training a model with small
patches gives better results in segmentation than training it
with a huge complex image. Once the images are broken
into small dimensions, the patch models are able to learn
complex functions easily. It means that in patch-wise learn-
ing, at a time the model is learning a part of the image
only and not the whole image. The other factors that are
involved while discussing the patch-wise learning approach
is the amount of overlap each patch has over the others and
its dimensions. Both these factors play key roles in deciding
the final Dice score of the model. Both act as hyperparam-
eters of the model, if they are set correctly, and provide
the best results. An ensemble-based segmentation approach
was proposed in [26]. The optimal model selection was a
drawback of the method proposed in [26]. Also, in [27] a
multi-resolution based CNN architecture called RF Net is
proposed for the segmentation of retinal cysts from OCT
images. Other approaches include the dual attention based
CNN [28], annotation efficient joint segmentation [29], and
dense atrous convolution & special pyramidal pooling based
deep joint segmentation [30].

In this study, we also considered some of the recently
published CNN models in the field of medical image segmen-
tation, such as Double UNET [31], Bidirectional UNET [32],
KI-UNET [33], DC-UNET [34], attention UNET [35], and
Multi-guided UNET [36]. Double UNET [31] is a kind
of extension of simple UNET and has two UNET present
in it. It has two encoders and two decoders. For the first
encoder, we employed a VGG19 architecture, while the sec-
ond decoder was similar to the UNET encoder. Double UNET
performed exceptionally well on the CVC-ClinicalDB [37]
and ETIS-Laraib datasets and yielded state-of-the-art-results.
We also trained Bidirectional UNET [32], which is a combi-
nation of UNET, convolution LSTM, and dense convolution.
Apart from UNET, it possesses the advantages of LSTM and
dense layer. During our data analysis, we found the presence
of cysts of different scales. Since UNET provided only high-
level information, we might have missed out on low-level
information, such as small cyst regions. Hence, we also tried
KI-UNET [33]. which is a combination of UNET and Reverse
UNET. We used DC-UNET [34], too, which is based on the
concept of multi-resolution layers that help in the segmen-
tation of cysts of different shapes and scales. Furthermore,
we attempted to add attention modules to UNET [35] based
on the belief that they might be helpful in increasing the
Dice score. Moreover, using UNET, we tested the patched
approaches [25] and the multi-guided attention modules in
multi-guided architecture [36].
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The key contributions in this paper are as follows-

« Proposed an one-to-one fluid segmentation architecture
with a base CNN for the multi-class retinal cyst segmen-
tation.

o Performed 28 different experiments with the existing
CNN based segmentation architectures for finalizing the
optimal fluid segmentation network.

o Experimentally showed that, an ensemble approach is an
efficient technique for the retinal cyst segmentation.

The rest of the paper is structured as follows, Section II
describes the proposed method which includes the data set,
pre-processing, and model architecture. Section III discusses
the results and comparative analysis with existing methods.
Finally, conclusions and remarks are drawn in section I'V.

Il. METHODOLOGY

The proposed CNN model is an ensemble learning-based
approach and contains three different base models for the
three kinds of cysts, followed by a predictor block. Ensemble
learning is a machine learning technique adopted for bet-
ter prediction accuracy for multiclass segmentation. Here,
by training, multiple deep learning models and outcomes are
generated with the help of majority voting. We built three
separate models for the segmentation of the retinal cysts—
IRF, SRF, and PED. With rigorous experiments, we found that
a single model is not sufficient to obtain a good performance.
The pictorial representation of the proposed segmentation
pipeline is given in figure 1. Each model was trained sepa-
rately with its corresponding data. The training of the models
was performed using the same input OCT images and by
changing the corresponding ground truth image. In the fol-
lowing sections, we have elaborated on the different models
used for the proposed ensemble-based segmentation architec-
ture.

A. PROPOSED IRF MODEL ARCHITECTURE

For the segmentation of the IRF, we used the well-known
UNET model with a combination of the relative layer dis-
tance [16]. Furthermore, we employed the data augmentation
technique for IRF segmentation. The results revealed that data
augmentation does not contribute much to the accuracy of
the IRF segmentation. In data augmentation, we performed
some basic augmentations such as horizontal flip, vertical
flip, rotation, and zooming.

Relative distance is an algorithm that has been used to
obtain additional information on the retinal layers to enhance
the segmentation of the retinal cysts. This algorithm calcu-
lates the distance of each pixel in an image with regard to the
internal limiting membrane (ILM ) and the RPE. ILM is the
topmost retinal layer, and RPE is the bottommost layer. The
use of this relative layer distance map as a second channel
aided the proper segmentation of the retinal cysts. Based on
literature analysis, it was found that the location of the cyst
depends on the retinal layer in which it is present. For a
pixel (m, n), the relative distance can be calculated using the
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TABLE 1. Layers information for the three different models.

Models IRF SRF PED
Relative info v v
data augmentation

E-Block(16X16) v
E-Block(32X32) v
E-Block(64X64) v
E-Block(128X128) B-block
E-Block(256X256)
E-Block(512X512)
E-Block(1024X1024)
D-Block(512X512)
D-Block(256X256)
D-Block(128X128)
D-Block(64X64)
D-Block(32X32)
D-Block(16X16)
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following formula (Equation 1):
_ n—Ml(m)
T M1(m) — M2(m)

where f(m, n) is a specific pixel in a B-scan, m and n are
the coordinates of that pixel, M1(m) is the y coordinate of
ILM, and M2(m) is the y coordinate of RPE. Using the above
formula, the relative layer information map was created for
every B-scan. Figure 2 represents the architecture utilized for
our IRF model. In figure 2, it can be seen that two channels
are fed as the input to the model and one channel is obtained
as the output, which is the IRF segmented image. The UNET
is an encoder (E-Block) and decoder (D-Block) architecture.
The depth of UNET is 4. Each block in the encoder contains
two simultaneous layers of convolution, with a filter size
of 3 x 3. To accelerate the learning process and to reduce
the overfitting of the data, data normalization was performed
after two layers of convolution. Subsequently, downsampling
of the image was done with the help of the max pool layer with
a pool size of 2 x 2. The number of neurons was increased in
power by 2 in each block, such as 64, 128, 256, and 512, and
the bottom layer (B-Block) had 1024 neurons in it.

To preserve the spatial information, we utilized skip con-
nections. To restore the images to their original dimensions,
we used the transpose convolution in the decoder blocks. The
number of neurons in each decoder block was reduced to 512,
256, 128, and 64, which is exactly the opposite to that of the
encoder block. Finally, we had a 1 x 1 convolution layer with
one neuron in it and the sigmoid as the activation function.
We employed the Binary Cross Entropy as a loss function in
our model. The learning rate of our model was 3e—4. We ran
this model for 200 epochs and saved the best weights.

f(m,n) €]

B. PROPOSED SRF MODEL ARCHITECTURE
In the extended UNET, we used the structured dropout blocks.
One of the characteristics of SRF is its larger volume when
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FIGURE 1. Segmentation Pipeline.
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FIGURE 2. Base architecture of the proposed model.

compared with IRF and PED. SRFs are mostly present in
the central retinal layers. Hence, we need a less complex
model to segment SRF. To avoid model overfitting, we tried
various data augmentation techniques; however, the results
were inappropriate. To reduce the complexity, we constructed
amodel with fewer layers and fewer model parameters. Addi-
tionally, we included drop blocks to avoid overfitting. The
main difference between dropout and drop blocks is that the
former removes the random units from the layers while the
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(4 @0

Conv 1X1,Sigmoid

latter removes the contiguous areas of the feature maps from
the layers.

In this model, every convolution layer is followed by a
Dropblock layer, a batch normalization layer to regularize the
model, and an ReLU activation layer. Subsequently, maxpool
layer is applied in the encoding path to downsample the image
with a pool size of 2 x 2. In the decoding path, transpose
convolution layer is applied with a filter size of 2 x 2 to
upsample the image. The skip connections aid in concate-
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TABLE 2. Dataset brief description.

TABLE 3. Vendor-wise analysis of OCT B-scans.

DATASET CIRRUS SPECTRALIS TOPCORN Vendor IRF Non-IRF SRF Non-SRF PED Non-PED
No of B-scans 3072 1176 2688 Cirrus 523 1269 293 1499 2916 1496
No of volumes 24 24 22 Spectralis 329 337 118 568 135 551
No of B-scans/volume 128 49 128 Topcorn 447 1217 783 3377 822 3320
Dimensions of B-scans 512 X 1024 512 X 496 512 X 885

nating the feature maps from the encoding blocks to their
corresponding decoding blocks.

Finally, we obtained a convolution layer of filter size
1 x 1 with a sigmoid function, yielding a segmentation map
of SRF. Similar to the IRF model, we used a relative distance
algorithm for the second channel to provide the input. The
loss function used in this model was binary cross entropy.
We trained the model for 200 epochs and empirically set the
learning rate as 3e—4.

C. PROPOSED PED MODEL ARCHITECTURE

The PED model is similar to the model proposed for IRF seg-
mentation but with differences. First, we removed the relative
distance channel and used only the OCT images for training.
PED is not a retinal layer but a detachment of the retina [38],
[39], [40], [41]. Hence, the relative layer information did not
contribute much to predicting PED. The second difference is
that we used data augmentation in the case of PED. During the
course of our experiments, we found that data augmentation
helped in PED segmentation. The rest of the aspects were the
same as those in the IRF model. Table 1 provides architectural
level information on the three different models used in this
study concerning the base model.

D. PREDICTION MODEL

The inputs were given in the form of OCT images, and a
three-channel output was obtained in which each channel
represented the respective segmented cysts. Since we had
three different models, we had three different output chan-
nels, one from each model. We finally concatenated all three
outputs to obtain a single output with three channels in it. The
dimensions of this output were the same as those of any other
output produced by a single model.

E. DATA SET

We used the RETOUCH challenge dataset in our experi-
ments. This challenge included 112 OCT volumes, of which
70 were given for training and 42 were used for testing.
Only 70 OCT volumes were present in the public domain
with labels. Hence, we used only these in our experiments and
divided them into training, validation, and testing volumes.
Out of these 70 OCT volumes, 24 were acquired using a
Zeiss Cirrus OCT scanner, 24 using a Heidelberg Spectralis
OCT scanner, and 22 using a Topcon OCT scanner. Different
vendors have different dimensions and numbers of B-scans
in each volume. Table 2 provides a detailed description of the
dataset.
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The volume-wise data do not provide insights into the
dataset because a volume may contain B-scans ranging
from 49 to 128. What is important is the number of B-scans
in these volumes that are positive or negative for IRF, SRF,
and PED. Table 3 gives the framewise analysis for different
vendors. From the table, it is evident that there is a huge
gap between the positive number of frames and the negative
number of frames for all the three cysts.

We have split those 70 volumes of the data into train, test
and validation sets. In medical image processing, 70 volumes
is an extensive dataset considering the manual annotation
labour.

F. PREPROCESSING

The preprocessing stage focuses on removing the irrelevent
and confusing features from the image. Noise is one of the
negative features that affects the performance of the segmen-
tation network. Our preprocessing stage included three parts.
First, we cropped the images and resized them into 256 x
512. Second, we denoised the images and used an Unbiased
Fast Non Local Means filter to denoise the scans. Third,
we performed contrast enhancement and employed CLAHE
to distinguish between the fluid and non-fluid regions. For
visual understanding, we took one raw frame from the Zeiss
Cirrus vendor. The preprocessing stage is demonstrated in
Figure 3.

G. MODEL PERFORMANCE ANALYSIS

The performance of the model was evaluated with the help
of well-known quality evaluation metrics such as Precision,
Recall, and Dice score [42], [43]. The mathematical relations
for calculating Precision, Recall, and Dice are provided in
equations 2, 3 and 4 respectively.

- TP o)
Fe = -
precision TP+ FP

TP

recall = ——— 3)

TP +~ FN
dicted N dtruth
dice — 2 5 | predicted N groundtruth | @

| predicted U groundtruth |

IIl. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section provides details of the experiments conducted
to evaluate the proposed method and the strategies used to
validate its overall robustness and adaptability. Out of the
70 training OCT volumes available in the RETOUCH dataset,
41 were used for training, 6 for validation, and 23 for test-
ing. Hence, the training set consists of 4142 B-scans (49704
Patches), a test set having 610 B-scans (7320 Patches), and
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RAW IMAGE of CIRRUS- 1024x512

CONTRAST ENHANCEMENT and FINAL INPUT

FIGURE 3. Preprocessing stages with one sample.

CROPPED TO 256x512

DENOISED

FIGURE 4. The qualitative evaluation over cirrus data: (a) IRF input, (b) IRF ground truth, (c) SFU IRF result, (d) Deeplab IRF result, (¢) Ensemble IRF
result, (f) SRF input, (g) SRF ground truth, (h) SFU SRF result, (i) Deeplab SRF result, (j) Ensemble SRF result, (k) PED input, (I) PED ground truth, (m) SFU
PED result, (n) Deeplab PED result, (0) Ensemble PED result.

the remaining 2312 B scans (27744 Patches) have been
employed for testing the model. Also, we have considered
the overlapped patches to increase the dataset further. Table 4
provides an overview of the performed experiments and their
results. We considered 27 different segmentation networks.
The thorough evaluation and its inferences helped us in
modeling a novel approach for retinal image segmentation.
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To prove the generalizability of the proposed model, we cre-
ated different data splits for training, validation, and testing.
All models were tested with and without a relative layer.
Table 4 depicts the use of a relative layer in the model. The
very first model tested was the SFU [16] and the results
were taken as the benchmark. The second model was FCN
(fully convolutional neural network), which is the same as
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TABLE 4. Models results on RETOUCH dataset.

S.No Models IRF (Dice) SRF (Dice) PED (Dice) Average (Dice)
1 UNETH+rel (sfu) 0.71 0.70 0.78 0.74
2 FCN 0.73 0.68 0.74 0.74
3 Deeplab (patched) 0.58 0.66 0.73 0.64
4 Double Unet (cascaded unet) 0.70 0.67 0.74 0.70
5 Bidirectional Unet (LSTM and Dense) 0.73 0.73 0.74 0.74
6 Bidirectional Unet+rel 0.70 0.72 0.78 0.74
7 Bidirectional Unet (only LSTM) 0.70 0.71 0.75 0.70
8 SD-Unet 0.71 0.74 0.74 0.72
9 SA-Unet (with spatial layer) 0.66 0.71 0.73 0.69
10 KI-Unet (Unet & Reverse unet) 0.63 0.58 0.53 0.60
11 DC-Unet 0.70 0.70 0.76 0.70
12 DC-Unet+rel 0.72 0.71 0.78 0.74
13 Unet+aug (flip,rotate,zoom) 0.70 0.71 0.76 0.72
14 Unet+aug (flip,rotate,zoom)-+rel 0.71 0.70 0.77 0.73
15 Double-Unet+rel 0.67 0.65 0.70 0.69
16 Multi-guided 0.69 0.70 0.75 0.73
17 Multi-guided+rel 0.67 0.72 0.73 0.70
18 Ensemble-sfu 0.72 0.74 0.78 0.74
19 Attention-Unet3 0.68 0.69 0.75 0.69
20 Attention-Unet4 0.71 0.59 0.70 0.73
21 Attention-Unet5 0.68 0.61 0.70 0.70
22 Attention-Unet4-+rel 0.68 0.68 0.76 0.70
23 Attention-Unet5+rel 0.67 0.68 0.73 0.69
24 Patched SFU (128,128,0.72) 0.68 0.70 0.76 0.71
25 Patched SFU-+rel (128,128,0.65) 0.66 0.68 0.75 0.68
26 sfu-attention 0.67 0.67 0.75 0.69
27 sfu-dense 0.70 0.72 0.77 0.71
28 Proposed model 0.728 0.75 0.79 0.76

(m)

()

FIGURE 5. The qualitative evaluation over spectralis data: (a) IRF input, (b) IRF ground truth, (c) SFU IRF result, (d) Deeplab IRF result, (e) Ensemble IRF
result, (f) SRF input, (g) SRF ground truth, (h) SFU SRF result, (i) Deeplab SRF result, (j) Ensemble SRF result, (k) PED input, (I) PED ground truth, (m) SFU
PED result, (n) Deeplab PED result, (o) Ensemble PED result.
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(k) 0y

(n)

FIGURE 6. The qualitative evaluation over Topcorn data: (a) IRF input, (b) IRF ground truth, (c) SFU IRF result, (d) Deeplab IRF result, (e) Ensemble IRF
result, (f) SRF input, (g) SRF ground truth, (h) SFU SRF result, (i) Deeplab SRF result, (j) Ensemble SRF result, (k) PED input, () PED ground truth, (m) SFU

PED result, (n) Deeplab PED result, (o) Ensemble PED result.

FIGURE 7. Overall qualitative evaluation over spectralis data: (a) input, (b)ground truth, (c) SFU result, (d) Deeplab result, (e) Ensemble result.

the first model except that its depth is less and it does
not use relative distance as the second channel. The third
is a patch-wise DeepLab [25]. Our experiments also found
that the patch-wise approach did not work well with the
cysts dataset. The fourth model was double UNET [31] and
the fifth model was bidirectional UNET [32]. Bidirectional
UNET showed better performance in IRF and SRF when
compared with the benchmark model, but the overall aver-
age remained the same as that of the benchmark. In the
sixth experiment, we employed bidirectional UNET along
with relative information, which provided the same results
as the benchmark. In the seventh experiment, we utilized a
bidirectional model without dense layers. The eighth exper-
iment made use of structured Dropout UNET (SDUNET)
explained in section II-B which yielded the best results for
SRF. In the ninth experiment, we used SD-UNET with a
spatial attention block at the bottom of the UNET, which is
known as Spatial Attention UNET (SA-UNET). However, the
performance of SA-UNET was inferior to that of SDUNET.
In the 10™ experiment, we used KI-UNET [33]. which per-
formed poorly on the RETOUCH dataset. In the 11”* and 127
experiments, we used we have used DC-UNET [34], which
when used along a relative layer yielded the same average
results as the benchmark model. In the 137 and 14 exper-
iments, we used data augmentation with UNET and found

17248

TABLE 5. Independent models trained for IRF.

Models Dice Score(IRF)  Precision Recall
UNET-IRF+rel 0.728 0.82 0.67
UNET-IRF(no rel layer) 0.70 0.87 0.63
UNET-IRF(no rel layer)+augmentation 0.728 0.81 0.65
UNET-IRF+augmentation 0.722 0.82 0.67
UNET-IRF(depth-1) 0.728 0.83 0.67
Bidirectional Unet-IRF (LSTM and Dense) 0.71 0.84 0.65
attention-Unet4-IRF 0.30 0.26 0.26
FCN-IRF 0.65 0.60 0.53
FCN-IRF+rel 0.68 0.67 0.51

that overall augmentation was not helpful in the RETOUCH
dataset. In the 15" experiment, we used double UNET with
relative layer. In the 16” and 17" experiments, we used a
multi-guided attention network, which has been previously
explained [36]. In the 18" experiment, we attempted to
ensemble the SFU UNET model by taking the same SFU
model and training it individually over three different cysts
and finally combining the results. However, this approach
also did not improve the results. From the 197 to the 2374
experiments, we tried different depth of attention UNET [35]
models, We attempted to tune the attention model, but this
approach also did not provide acceptable results. We tested
the patched network over SFU, but all these approaches
failed to give a higher Dice score than the benchmark result.
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TABLE 6. Independent models trained for SRF.

Models Dice Score(SRF)  Precision Recall

Sfu-SRF 0.74 0.81 0.69
Sfu-SRF(depth-1) 0.69 0.80 0.65
Sfu-SRF(no rel layer) 0.71 0.74 0.71
Sfu-SRF(no rel layer)+augmentation 0.70 0.81 0.64
Sfu-SRF+augmentation 0.69 0.81 0.64
SD-unet 0.74 0.78 0.72

SD-unet+rel 0.75 0.80 0.72

TABLE 7. Independent models trained for PED.

Models Dice Score(PED)  Precision Recall
Sfu-PED 0.77 0.71 0.86
UNET-PED(no rel layer) 0.77 0.73 0.84
UNET-PED(no rel layer)+augmentation 0.79 0.77 0.83
UNET-PED+rel+augmentation 0.77 0.73 0.85
Bidirectional-PED+rel 0.76 0.69 0.85
sfu-PED(depth-1) 0.75 0.74 0.79

In experiment 24, we tried patch-wise SFU architecture
with an overlapping of 0.72 %, while in the 25" experiment
we checked the same model with an overlapping of 0.65 %.
In the 26" experiment, we applied the attention technique
to the SFU model, but it did not surpass the benchmark
result. Furthermore, we applied a dense network to the bottom
layer of the SFU network in the 27" experiment. Neverthe-
less, the benchmark could not be surpassed. Finally, experi-
ment 28 yielded favorable results for our proposed ensemble
approach. The method gave better results than the benchmark
method over split one. We performed multiple experiments in
which we trained the model over a single cyst and selected the
best model that suited a specific cyst. Table 5 provides the list
of experiments performed for IRF cyst only.

From Table 5, it is evident that basic UNET along with rel-
ative layer information yielded the best results for IRF. Data
augmentation did not help in the case of IRF. Hence, in our
ensemble approach, we employed UNET along with relative
layer information as our IRF model. If trained independently,
it gave 1% more Dice score than the SFU benchmark result.

Table 6 shows the experiments performed for SRF seg-
mentation. In these experiments, the models were trained
with SRF cysts only. Spatial Dropout UNET (SD-UNET)
performed best in the case of SRF and provided 1% better
results than the individual trained SFU network and 5%
better results than the single SFU model. Hence, we chose
SD-UNET along with relative layer information as our SRF
model in the ensemble approach.

Table 7 presents the results of experiments performed for
PED cyst independently. It can be seen that data augmentation
worked for PED. Relative layer information was not quite
useful for the segmentation of PED. Hence, we used basic
UNET along with data augmentation for the segmentation
of PED in our ensemble approach. The UNET along with
data augmentation resulted in 2% improvement over the SFU
model trained individually over the PED dataset.

After choosing different models for the different cysts,
we compared the obtained results with the benchmark results.
For the comparison, we used three different splits of data
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TABLE 8. Comparison of our Proposed Ensemble approach and
Benchmark SFU model.

Models IRF SRF PED Multiclass(Average) Precision Recall
SFU (split 1) 0.71 0.70 0.78 0.74 0.79 0.73
SFU (split 2) 055 072 0.64 0.68 0.80 0.62
SFU (split 3) 0.70 0.74 0.58 0.68 0.67 0.71
Proposed-model (split 1) 0.72 0.75 0.79 0.766 0.80 0.75
Proposed-model(split2)  0.58 0.70 0.65 0.70 0.79 0.66
Proposed-model(split3)  0.71 0.74 0.52 0.74 0.74 0.68

to ensure that our approach surpassed the state-of-the-art
method. Table 8 gives the comparison of our ensemble model
with the state-of-the-art model over three different splits.

After calculating the average multiclass Dice score for the
three different splits, we got a 70% Dice score for the SFU
model, while our model yielded a score of 71.86%, which
is an improvement of 1.8% over the benchmark. Hence, it is
clear that our ensemble approach surpassed the benchmark
by 1.8%.

The qualitative evaluation of the proposed model over
different vendors (Cirrus, Spectralis and Topcon) is depicted
in Figures figure 4, figure 5, figure 6 and figure 7. From the
figures, it is clear that the proposed method yielded better
retinal cyst segmentation with fewer false positives.

IV. CONCLUSION

In conclusion, this study has proposed an automated method
for the segmentation and detection of three different retinal
cysts from OCT images using a deep ensemble learning-
based technique. To create the ensemble-based architecture,
we used three base models, which are extended versions of
UNET architecture, and a predictor block that combined the
results of all three models. The experimental results on the
RETOUCH dataset indicated that the proposed architecture
improved the segmentation and detection accuracies when
compared with the stand-alone SFU model, which is the state-
of-the-art method, by 1.8%. During our rigorous experiments,
we also found that data augmentation does not always help
in case of retinal cyst segmentation and detection although it
helps in the identification of PED cysts.
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