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ABSTRACT This paper focuses on the stabilization problem of Takagi-Sugeno fuzzy systems via a
sampled-data controller using a fuzzy dependent functional. By employing a property of convex combination,
a new approach to deal with the time derivatives of the fuzzy membership functions (FMFs) in the
stabilization conditions is proposed, and less conservative conditions are derived in the form of linear matrix
inequalities (LMIs). Moreover, the proposed approach introduces a switching function which opens up
possibilities to use a switched controller and take advantage of its benefits well known in the literature.
Therefore, two sampled-data control strategies are proposed, where the first one is a fuzzy controller and the
second is a robust switched controller, that does not require the expressions of the FMFs to implement the
control law, which guarantees the robustness of the controlled system in cases where the FMFs depend on
uncertain parameters. Finally, the effectiveness of the proposed strategies is verified by two examples.

INDEX TERMS Takagi-sugeno (T-S) fuzzy systems, fuzzy dependent Lyapunov–Krasovskii functional,
switched sampled-data control, linear matrix inequalities (LMIs).

I. INTRODUCTION
Since their introduction in [1], Takagi-Sugeno (T-S) fuzzy
systems have been extensively studied over the past few
decades, owing to these systems can exactly represent in a
local sector, a nonlinear dynamics of complex systems by
using a quantity of IF-THEN rules with fuzzy sets, result-
ing in a convex combination between linear systems and
FMFs. In the extensive literature related to the control of T-S
fuzzy systems, several strategies have been applied, including
fuzzy control [2], [3], [4], [5], switched control [6], [7], [8],
[9], [10], sliding mode control [11], etc. Moreover, in these
methods, the stabilization problem has been addressed
in different contexts, such as systems without full-state
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measurements [3], presence of uncertainties and distur-
bances [12], sampled-data control [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], etc.

On the other hand, with the increasing development of
digital technologies and communication networks, digital
controllers play an important role in the design of new control
strategies. The sampled-data control is a type of digital con-
trol which feedback the state variables obtained from the sys-
tem at its sampling instants to the controller during a certain
sampling interval, generating a control signal by a zero-order-
hold (ZOH) function. In fact, sampled-data systems are a type
of hybrid system, where the plant is a continuous-time system
while the controller is discrete-time system. The main goal
of the sampled-data controller design criterion is to obtain
the maximum permissible sampling interval to keep the
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sampled-data system stable. This fact follows due to at higher
sampled intervals, the efficiency in the system is increased,
as for example, bandwidth resources are economised and
relaxed the communication capacity between the controller
and the system.

Three main approaches have been used to obtain the design
criteria for sampled-data controllers: a discrete-time, a input
delay, and an impulsive system approach, among which
input delay approach [17], is usually employed due to it
can be used in systems with nonuniform sampling intervals.
Based on the input-delay approach, many strategies have
been proposed in the literature in order to reduce the con-
servatism of the design conditions, as in [16] where was pro-
posed a time-dependent Lyapunov functional, later based on
Wirtinger’s inequality a discontinuous term in the Lyapunov
functional was introduced in [18] considerably improving
the results achieved until then. Another strategy is the use
of looped-functional-based method [19], [20], which has the
benefit of not needing the Lyapunov functional to be positive
within the sampling intervals and can be improved by taking
into account entire information of the intervals x(tk ) to x(t)
and x(t) to x(tk+1), [21], [22], [23], [24], [25]. To further
obtain improved stability conditions of sampled-data control
systems, in [26] was introduced a free-matrix-based time-
dependent discontinuous Lyapunov functional which is based
on free-matrix-approach in time delay systems [27], but mod-
ifies the term

∫ β
α
x(s) ds instead of 1

β−α

∫ β
α
x(s) ds, applying

to to sampled data systems by the convex combination tech-
nique. Among other recent approaches to address the design
of sampled-data systems include, by transforming them into
discrete-time switched polytopic system [28], by use the
triple integral terms in the Lyapunov functional [29], or by
include a delay term in the signal successfully transmitted
from the sampler to the controller and to the ZOH, obtaining
a memory sampled-data controller [30].

From the above techniques, the Lyapunov functional was
derived from constant symmetric matrices, which can be
improved using fuzzy dependent matrices instead of constant
symmetric matrices. However, the main difficulty of using
a fuzzy dependent Lyapunov functional is to deal with the
combination of the time derivative of FMFs with the sym-
metric matrices, which can not be introduced directly in the
conditions given in the LMIs. Focused on that issue, in [39],
was proposed a new method, by using the information of the
time derivative of FMFs at each instant of time, a switching
ideawas applied to ensure the time derivative of the Lyapunov
functional is negative. Therefore, based on [39], a fuzzy
dependent Lyapunov functional was used in other recent
works [21], [23], [31], [32], [33], [34], obtaining less con-
servative conditions. However, three principal disadvantages
of this method can be mentioned; it is necessary to assume
that the derivative of FMFs can be measured, which in some
systems can be complicated; the number of possible switch-
ing cases increase exponentially with respect to the rules
obtained, which can be large for systems with many rules;
and the method requires that all the terms of the combination

of the time derivatives of FMFs with symmetric matrices be
negative, which leads to conservatism in the LMIs.

On the other hand, switched control based on T-S fuzzy
model is another research field, which involves a state depen-
dent switching function leading the switching of controllers.
As for example, in [6] was introduce a type of switched
control which focused on T-S fuzzy systems with parametric
uncertainties in FMFs, which achieves the stabilisation of
the system without the need to measure the FMFs in the
controller. Furthermore, in [8] and [10], was included the
minimization of theH∞ norm in the stability conditions, and
in [7] was addressed the problem of chattering and sliding
mode in the switching of the controllers.

Motivated by the above discussions, in this paper,
we consider the stabilization problem with sampled-
data control for fuzzy systems, using a fuzzy dependent
Lyapunov-Krasovskii functional and a switching function
proposed in [6]. Briefly, the main contributions of this work
are summarized as follows:

• In order to use a fuzzy Lyapunov functional in the con-
troller design conditions, a newmethod to deal with time
derivatives of FMFs is proposed.

• The proposed method does not need to obtain the deriva-
tive of FMFs in each instant of time and only requires to
know its maximum value.

• Based on a switching function, a switched sampled-data
controller is proposed, which does not require to obtain
the membership functions, being suitable for systems
with parametric uncertainties.

Finally, the mentioned contributions are verified in two sim-
ulation examples.
Notations: The notation used throughout is standard. Rn is

the n-dimensional Euclidean space andRn×m denotes the sets
of real matrices with n× m dimension. Kr represents the set
{1, 2, . . . , r}, ∀r ∈ N. For a matrix X ∈ Rm×n, XT means
its transpose. The identity and zero matrices are represented
by I and 0 with appropriate dimensions, respectively. For
any symmetric matrix, X > 0(X ≥ 0) denotes a positive
(semi) definite matrix, (∗) represents the elements below the
main diagonal, and Sym{X} is defined as X + XT . diag{B7
B7 B7} denotes block diagonal matrix. Finally, 3r ∈ Rr

is considered as a general convex set with dimension r , i.e.
3r = {α ∈ Rr/αi ≥ 0, i ∈ Kr ,

∑r
i=1 αi = 1}.

II. PRELIMINARIES AND PROBLEM STATEMENT
Consider the following Takagi-Sugeno fuzzy model:

Rule i: IF z1(t) is M i
1, z2(t) is M

i
2, . . . , and zp(t) is M

i
p,

THEN

ẋ(t) = Aix(t) + Biu(t), (1)

where M i
1,M

i
2, . . . ,M

i
p are the fuzzy sets of the rule i, i ∈

Kr ; x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the
control input vector; Ai ∈ Rn×n and Bi ∈ Rn×m are known
constant matrices; z1(t), z2(t) , . . . , zp(t) are called premise
variables, that are smooth nonlinear functions available in
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real time, whose values are used to determine which Rule
i is active at time t . By construction, zp(t) can depend on
state variables, external disturbances, and/or time [2]. Hence,
applying the center average defuzzifier, product interferences
and singleton fuzzifier, the form of T-S fuzzy model is given
below, more details can be found in [1].

ẋ(t) =

r∑
i=1

αi(z(t))[Aix(t) + Biu(t)], (2)

where αi(z(t)) are the weights of each local model i defined
as

αi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

, wi(z(t)) =

p∏
j=1

M i
j (z(t)), (3)

and satisfies
r∑
i=1

αi(z(t)) = 1 αi(z(t)) ≥ 0, ∀t ≥ 0. (4)

Similar to the fuzzy model (1), the fuzzy sampled-data
controller is designed as follows:

Rule j: IF z1(t) is M i
1, z2(t) is M

i
2 , . . . , and zp(t) is M

i
p,

THEN

u(t) = Kjx(tk ), tk ≤ t < tk+1, j ∈ Kr , (5)

where Kj ∈ Rm×n is the control gain matrix to be determined
and the state vector x(t) is assumed to be generated by a ZOH
function at the sampling instant tk , satisfying:

0 = t0 < t1 < · · · < tk < · · · < lim
k→∞

tk = +∞. (6)

In order to work with the time delay approach [17], we con-
sider the function τ (t) = t − tk , such that from (5) satisfies:

0 < τ (t) ≤ τk = tk+1 − tk ≤ τ, k = 0, 1, 2, . . . ,∞, (7)

where τ denotes the upper bound of the time interval length
between any two sampling instants. Thus, the fuzzy sampled
data controller is inferred by

u(t) =

r∑
j=1

αj(z(tk ))Kjx(t − τ (t)), t ∈ [tk , tk+1), (8)

and the closed-loop system T-S fuzzy sampled-data system is
obtained

ẋ(t) =

r∑
i=1

αi(z(t))αj(z(tk ))[Aix(t) + BiKjx(t − τ (t))],

t ∈ [tk , tk+1). (9)

A. SWITCHED SAMPLED-DATA CONTROLLER
In the sampled-data control, the states x(t) are feedback only
at sampling instants tk , hence, we have only the information
of membership functions αj(z(tk )) for the controller design.
A important disadvantage occurs when the premise vari-

ables z(tk ) include complex nonlinear terms or paramet-
ric uncertainties that are difficult to know. Since αj(z(tk ))
depends on the z(tk ), it leads to complexity in obtaining the

membership functions and then increases the difficulty in the
implementation of the controller. Focused on that problem,
in [6] was proposed a switched controller that is designed
for T-S fuzzy systems, and does not require the computation
of membership functions, by using the switched controller
defined as follows:

u(t) = Kσ x(t), (10)

σ (t) = argmin
j∈Kr

{xT (t)Q̄jx(t)}, (11)

where Q̄j ∈ Rn×n is a symmetric matrix and is designed
to obtain the index σ (t) ∈ Kr and argminj∈Kr {x

T (t)Qjx(t)}
returns the index j at which the function xT (t)Qjx(t) assumes
its minimum value at instant t . The control gain Kσ ∈ Rm×n

belongs to a set of linear controllers {K1, . . . ,Kr }, which are
switching leaded by the function σ (t), and are obtained by
solving optimisation problems formulated by LMIs. Substi-
tuting (10) in (2), gives the following closed-loop system:

ẋ(t) =

r∑
i=1

αi(z(t))[Aix(t) + BiKσ x(t)], t ≥ 0. (12)

Therefore, in order to obtain the LMIs that guarantee the
stability of the system using the switching function (11), the
following property of convex combination is used:

min
j∈Kr

{xT (t)Q̄jx(t)} ≤

r∑
i=1

αi(t)xT (t)Q̄ix(t), (13)

where αi(t) ∈ 3r is the membership function and i, j ∈ Kr .
In the literature of switched control, the function σ (t) is

designed to lead the switching of a set of gains. However,
the approach proposed in this paper uses the definition (11)
to deal with the time derivative of FMFs in the Lyapunov
functional candidate, independently of the controller cho-
sen. Thus, in the case where a switched controller is not
used (Example 1), inequality (13) will be satisfied ∀t ≥ 0,
but when the sampled-data controller (10) is implemented
(Example 2) we will only have the information of the states
at sampling instants tk , and the state dependent switching
function will be:

σ (tk ) = argmin
j∈Kr

{xT (tk )Q̄jx(tk )}, (14)

as shown in Figure 1. Therefore, (13) will be satisfied only
at the time instants tk .
Remark 1: Different from the Lyapunov functions

for systems without sampled-data control discussed
in [6], the Lyapunov-Krasovskii functionals include several
state-dependent vectors such as: x(t), ẋ(t), x(tk ), etc. For each
of them, a different switching function can be obtained, so it
is important to guarantee a unique function σ (t) that satisfies
(13) for all vectors.

B. DISCUSSION OF THE TIME DERIVATIVE OF
MEMBERSHIP FUNCTIONS
The use of FMFs in the Lyapunov function can consider-
ably reduces the conservatism of the LMIs, due to FMFs

15392 VOLUME 11, 2023



D. J. S. Oncoy et al.: New Stabilization Conditions for Fuzzy-Based Sampled-Data Control Systems

FIGURE 1. Schematic diagram of the proposed switched controller.

includes membership informations on the Lyapunov function
candidate which reduces the conservatism of the stability
conditions in comparison to quadratic Lyapunov functions.
However, it generates the difficulty of introducing the time
derivative of the FMFs in the stability conditions. For
instance, let the Lyapunov function as follows:

V (t) = xT (t)
r∑
i=1

αi(t)Pix(t), (15)

where, for i ∈ Kr , Pi is a positive definite matrix and αi(t)
are the FMFs. Considering the following notation Pα =∑r

i=1 αi(t)Pi for the remainder of the paper, the time deriva-
tive of (15) will be:

V̇ (t) = 2xT (t)Pα ẋ(t) + xT (t)Ṗαx(t), (16)

where Ṗα =
∑r

i=1 α̇i(t)Pi.
In the recent literature on sampled-data control [21], [23],

[31], [32], [33], [34], switched rules have been introduced
to guarantee that Ṗα ≤ 0 hold. Due the property of the
membership functions,

∑r
i=1 α̇i(t) = 0, it yields that:

Ṗα =

r∑
i=1

α̇i(t)Pi =

r−1∑
l=1

α̇l(t)(Pl − Pr ). (17)

Then by [39], it is proposed an IF-THEN approach to guar-
antee Ṗα ≤ 0:{

If α̇l(t) < 0, then Pl − Pr > 0,
If α̇l(t) ≥ 0, then Pl − Pr ≤ 0.

(18)

From (18), the number of possible cases are 2r−1. Denoteψ ∈

R = {1, 2, . . . , 2r−1
} and

Uψ = {ψ : The possible permutations of α̇l(t) for ψ ∈ R},

Gψ = {ψ : The possible constraints of Pi}. (19)

Thus, the IF-THEN rules in (18) can be rewritten in a more
compact form as follows:

if Uψ , then Gψ . (20)

Based on the above discussions, some remarks are important
to mention.

If is required to satisfy additional conditions as Q̇α ≤ 0,
the number of rules remains 2r−1 but is necessary to include
the conditions Ql − Qr > 0 or Ql − Qr ≤ 0, in each IF-
THEN rule. Moreover, in order to satisfied Ṗα ≤ 0, all the
terms α̇1(t)(P1 − Pr ), α̇2(t)(P2 − Pr ), α̇3(t)(P3 − Pr ), . . . ,
are required to be negative which leads to a conservatism in
conditions.

In addition, the above procedure can requires assuming that
the continuous time derivative of αi(t) can be measured for
t ∈ [tk , tk+1). However, when the system present complex
nonlinearities, the time derivative can be difficult to obtain or
could present some parametric uncertainties in αi(t), it leads
to increased difficulty in implementation.

III. PRELIMINARY RESULTS
In this section, we present a method, which assists in includ-
ing the term Ṗα in the LMIs. Before proceeding further,
is necessary to introduce the following assumption to derive
the preliminaries results.
Assumption 1: [37] It is assumed that the continuous

first-order derivative of αi(t) exist for t ∈ [tk , tk+1), and there
are known scalars ρi, that satisfies |α̇i(t)| ≤ ρi, i ∈ Kr .
For the system (2), based on (4) follows:

r∑
i=1

α̇i(t) = 0, ∀t ≥ 0. (21)

Let the set

ϒr =

{(
α̇i(t)
rρ

+
1
r

)
∈ R/

r∑
i=1

α̇i(t) = 0, i ∈ Kr

}
, (22)

which contains r elements, and ρ = maxi∈Kr {ρi}. It is easy
to verify that due to Assumption 1 and (21), ϒr satisfy (4).
Therefore, we can apply the property (13) on the set ϒr ,
obtaining

min
j∈Kr

{ςT (t)Xjς (t)} ≤ X ≤ max
j∈Kr

{ςT (t)Xjς (t)}, (23)

where Xj ∈ Rn×n is a symmetric matrix, ς (t) ∈ Rn is any
time dependent continuous vector, and

X = ςT (t)
[ r∑
i=1

α̇i(t)
Xi
rρ

+

r∑
i=1

Xi
r

]
ς (t), i ∈ Kr . (24)

We define the following switching functions:

σ (t) = argmax
j∈Kr

{ςT (t)Xjς (t)}, (25)

σ (t) = argmin
j∈Kr

{ςT (t)Xjς (t)}. (26)

Thus, since σ and σ are independent of i, multiplying (23) by
αi(t) and adding for all i ∈ Kr , gives

r∑
i=1

αi(t)ςT (t)Xσς (t) ≤ X ≤

r∑
i=1

αi(t)ςT (t)Xσς (t), (27)
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substituting (24) in (27), we obtain

r∑
i=1

αi(t)ςT (t)

(
rρXσ − ρ

r∑
i=1

Xi

)
ς (t)

≤

r∑
i=1

α̇i(t)ςT (t)Xiς (t)

≤

r∑
i=1

αi(t)ςT (t)

(
rρXσ − ρ

r∑
i=1

Xi

)
ς (t). (28)

Therefore, in order to guarantee V̇ (t) < 0, for
x(t) ̸= 0, it will be possible to replace the expression
±ςT (t)

∑r
i=1 α̇i(t)Xiς (t) by the right or left hand side of

(28), according to required in the inequalities. The above
discussion was developed for a single matrix Xi but can be
extended for more matrices. Therefore, the following Lemma
is proposed:
Lemma 1: Let any s ∈ N and the scalar ρ that satisfies

|α̇i(t)| ≤ ρ, ∀i ∈ Kr . Thus, for any symmetric matrices Xmj ∈

Rn×n, j ∈ Kr , m ∈ Ks, and functions αi(t) ∈ R that satisfies
(4), the following inequality is satisfied:

s∑
m=1

r∑
i=1

ςTm (t)α̇i(t)X
m
i ςm(t)

≤ ρ

s∑
m=1

r∑
i=1

αi(t)ςTm (t)(rX
m
σ −

r∑
i=1

Xmi )ςm(t), (29)

where σ ∈ Kr represents the switching function:

σ (t) = argmax
j∈Kr

{ςT (t)diag{X1
j ,X

2
j , . . . ,X

s
j }ς (t)}, (30)

and ς (t) = [ςT1 (t), ς
T
2 (t), . . . , ς

T
s (t)]

T , ςm(t) ∈ Rn.
Proof: Since matrices Xmj are symmetric, we define

diagonal block matrices Xi =diag{X1
i ,X

2
i , . . . ,X

s
i }. There-

fore, by the right hand side of the inequality (28) and the
switching function (30), it follows:

r∑
i=1

α̇i(t)ςT (t)Xiς (t)

≤ ρ

r∑
i=1

αi(t)ςT (t)

(
rXσ −

r∑
i=1

Xi

)
ς (t). (31)

Substituting ς (t) = [ςT1 (t), ς
T
2 (t), . . . , ς

T
s (t)]

T , and
Xi =diag{X1

i ,X
2
i , . . . ,X

s
i } in (31), as shown in the equation

at the bottom of the page.
In Lemma 1, is generalised the previous result, for the sum

of several fuzzy dependent matrices, which is usually found
in the design conditions of the sampled-data controller using
the input delay approach. In addition, the switching function
(30) is unique for all matrices X si .
Remark 2: Since the matrices Xmj only require to be sym-

metric, if there is an term −ςTm (t)Ẋ
m
α ςm(t) on the left side of

r∑
i=1

α̇i(t)ςT (t)Xiς (t)

=

r∑
i=1

α̇i(t)


ς1(t)
ς2(t)
...

ςs(t)


T

X1
i 0 . . . 0
0 X2

i . . . 0
...

...
. . .

...

0 0
... X si



ς1(t)
ς2(t)
...

ςs(t)


=

s∑
m=1

r∑
i=1

ςTm (t)α̇i(t)X
m
i ςm(t)

≤ ρ

r∑
i=1

αi(t)


ς1(t)
ς2(t)
...

ςs(t)


T

×


rX1
σ −

∑r
i=1 X

1
i 0 . . . 0

0 rX2
σ −

∑r
i=1 X

2
i . . . 0

...
...

. . .
...

0 0
... rX sσ −

∑r
i=1 X

s
i



ς1(t)
ς2(t)
...

ςs(t)


= ρ

s∑
m=1

r∑
i=1

αi(t)ςTm (t)(rX
m
σ −

r∑
i=1

Xmi )ςm(t)
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(29), from the left side to (28) follows:

−

r∑
i=1

α̇i(t)ςTm (t)X
m
i ςm(t)

≤

s∑
m=1

r∑
i=1

αi(t)ςTm (t)(ρ
r∑
i=1

Xmi − rρXmσ )ςm(t). (32)

As is known that

argmax
j∈Kr

{ςTm (t)X
m
j ςm(t)} = argmin

j∈Kr

{−ςTm (t)X
m
j ς

T
m (t)},

(33)

just replace with (ρXmi − rρXmσ ) a m-term on the right-hand
side of (29) and change the sign of Xmj in the diagonal block
matrix Xj.
Remark 3: In Lemma 1, the conditions does not focus on

ensuring
∑s

m=1 ς
T
m (t)Ṗ

m
α ςm(t) ≤ 0 or Ṗmα ≤ 0, which can be

a restrictive condition. In fact, the expression of the right side
of (29) is always positive, for example due to the property
(13), yields:

rςTm (t)X
m
σ ςm(t) ≥ ςTm (t)

r∑
i=1

Xmi ςm(t),∀m ∈ Ks. (34)

Therefore, Lemma 1 introduces a positive term in the condi-
tions, which is increased proportionally to the value of ρ as a
consequence of using a fuzzy depended Lyapunov functional.
However, this restriction does not require to know the time
derivative of FMFs in order to lead with fuzzy depended
matrices, and is less conservative than used in [21], [22], [23],
[32], [33], and [34], as will be seen later.

IV. MAIN RESULTS
In this section we present the design conditions, first for
the closed loop system (9) and then using the controller
(10). For the sake of simplicity, let us define εℓ =

[0n,(ℓ−1)n In 0n,(6−ℓ)n], (ℓ = 1, 2, . . . , 6) as block entry
matrices, and vectors:

η1(t) =

[
xT (t) − xT (tk )

∫ t

tk
xT (s)ds

]T
,

η2(t) =

[
xT (tk+1) − xT (t)

∫ tk+1

t
xT (s)ds

]T
,

η3(t) =

[
xT (t) xT (tk ) xT (tk+1)

]T
,

η4(t) =

[
xT (t) xT (tk )

∫ t

tk
xT (s)ds

]T
,

ς1(t) =

[
xT (t) ηT1

]T
,

ς2(t) =

[
xT (t) ηT2

]T
,

ξ (t) =

[
xT (t) ẋT (t) xT (tk ) xT (tk+1)

∫ t

tk
xT (s)ds∫ tk+1

t
xT (s)ds

]T
.

Theorem 1: Let scalars τ > 0, ρ > 0 that satisfies
|α̇i(t)| ≤ ρ, ∀i ∈ Kr , and gain matrices Kj. The T-S fuzzy
system (9) is asymptotically stable, ∀τk ∈ (0, τ ], if there
exist positive definite matrices Pi ∈ Rn×n, Q11 ∈ Rn×n,
M ∈ Rn×n, symmetric matrices

Q =

[
Q11 Q12
∗ Q22

]
∈ R2n×2n, Si ∈ R2n×2n,

Ri ∈ R2n×2n,F =

F11 F12 F13
∗ F22 F23
∗ ∗ F33

 ∈ R3n×3n,

and any matrices J ,G1,G2,G3 with appropriate dimensions,
such that the following inequalities hold, ∀i, j, l1, l2 ∈ Kr :9(τk ,0)

τk
2 F1

∗ −M

 < 0, (35)


9(τk ,τk )

√
τkJ T τk

2 F1

∗ −Q11 0

∗ ∗ −M

 < 0, (36)

where

9(τk ,τ (t)) = Sym{ε1PiεT2 − [ε1 − ε3]Q12ε
T
3 + J T (εT1

− εT3 ) + (τk − τ (t))([ε1 − ε3 ε5]Ri[ε2 ε1]T )

− τ (t)([ε4 − ε1 ε6]Si[ε2 ε1]T )}

+ (τk − τ (t))
(
[ε1 ε3 ε4]F[ε1 ε3 ε4]T

+ ε1Pl1ε
T
1

+ [ε1 − ε3 ε5]Rl1 [ε1 − ε3 ε5]T

+ [ε2 ε3]Q[ε2 ε3]T
)

− τ (t)
(
ε3Q22ε

T
3

+ ε1Pl2ε
T
1 +[ε4 − ε1 ε6]Sl2 [ε4−ε1ε6]

T

+ [ε1 ε3 ε4]F[ε1 ε3 ε4]T
)

− [ε1 − ε3 ε5]Ri[ε1 − ε3 ε5]T

+ [ε4 − ε1 ε6]Si[ε4 − ε1 ε6]T

+Sym{(ε1G1 + ε2G2 + ε3G3)[AiεT1

+BiKjεT3 − εT2 ]} +
τ 2k

4
ε2MεT2 ,

with

F1 = [F11 0 F12 F13 0 0]T ,

P(l1,l2) = rρP(l1,l2) − ρ

r∑
i=1

Pi,

Rl1 = rρRl1 − ρ

r∑
i=1

Ri,

Sl2 = rρSl2 − ρ

r∑
i=1

Si.
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Proof: Consider the following Lyapunov-Krasovskii
functional:

V (t) =

4∑
ℓ=1

Vℓ(t), t ∈ [tk , tk+1), (37)

where

V1(t) = xT (t)Pαx(t),

V2(t) = (τk − τ (t))
∫ t

tk

[
ẋ(s)
x(tk )

]T
Q
[
ẋ(s)
x(tk )

]
ds,

V3(t) = (τk − τ (t))ηT1 (t)Rαη1(t) + τ (t)ηT2 (t)Sαη2(t),

V4(t) = (τk − τ (t))τ (t)ηT3 (t)Fη3(t)

Since

lim
t→ t−k

Vℓ(t) = lim
t→ t+k

Vℓ(t) = 0, ℓ = 2, 3, 4;

and limt→ tk V (t) = V1(tk ). Thus, the Lyapunov-Krasovskii
functional V (t) is continuous.
Taking the first time derivative of V (t), along the trajectory

of the system (9) yields:

V̇1(t) = 2xT (t)Pα ẋ(t) + xT (t)Ṗαx(t), (38)

V̇2(t) = −

∫ t

tk

[
ẋ(s)
x(tk )

]T
Q
[
ẋ(s)
x(tk )

]
ds

+ (τk − τ (t))
[
ẋ(t)
x(tk )

]T
Q
[
ẋ(t)
x(tk )

]
= −

∫ t

tk
ẋT (s)Q11ẋ(s) ds− τ (t)xT (tk )Q22x(tk )

− 2(x(t) − x(tk ))TQ12x(tk )

+ (τk − τ (t))
[
ẋ(t)
x(tk )

]T
Q
[
ẋ(t)
x(tk )

]
. (39)

Since Q11 > 0, by Schur complement is obtained[
Q11 I
I Q−1

11

]
≥ 0,

which mean that for any matrix J ∈ Rn×6n, is obtained∫ t

tk

[
ẋ(s)
J ξ (t)

]T [Q11 I
I Q−1

11

] [
ẋ(s)
J ξ (t)

]
ds ≥ 0.

Thus, we obtain

−

∫ t

tk
ẋT (s)Q11ẋ(s) ds ≤ τ (t)ξ (t)J TQ−1

11 J ξ (t)

+ 2ξT (t)J T (x(t) − x(tk )). (40)

V̇3(t) = −ηT1 (t)Rαη1(t) + ηT2 (t)Sαη2(t)

+ 2[(τk − τ (t))ηT1 (t)Rα − τ (t)ηT2 (t)Sα]
[
ẋ(t)
x(t)

]
+ (τk − τ (t))ηT1 (t)Ṙαη1(t) + τ (t)ηT2 (t)Ṡαη2(t).

(41)

V̇4(t) = −τ (t)ηT3 (t)Fη3(t) + (τk − τ (t))ηT3 (t)Fη3(t)

+ 2(τk − τ (t))τ (t)ηT3 (t)F
T
1 ẋ(t), (42)

where F1 = [F11,F12,F13]. Therefore, for any matrixM >

0, based on Schur complement, we have[
M I
I M−1

]
≥ 0,

which means that for a matrix F1, is satisfied[
ẋ(t)

−F1η3(t)

]T [M I
I M−1

] [
ẋ(t)

−F1η3(t)

]
≥ 0.

Thus, is obtained

2(τk − τ (t))τ (t)η3(t)TFT
1 ẋ(t)

≤
τ 2k

4
(ηT3 (t)F1M−1F1η3(t) + ẋT (t)Mẋ(t)). (43)

Now, we discuss about fuzzy dependent matrix Pα,Rα and
Sα . By summing the fuzzy dependent terms in (38) and (41)
yields:(

τk − τ (t)
τk

)
(xT (t)Ṗαx(t) + ηT1 (t)Ṙαη1(t))

+

(
τ (t)
τk

)
(xT (t)Ṗαx(t) + ηT2 (t)Ṡαη2(t)). (44)

Therefore, applying the Lemma 1 is obtained

xT (t)Ṗαx(t) + ηT1 (t)Ṙαη1(t)

≤ xT (t)

(
rρPσ1 − ρ

r∑
i=1

Pi

)
x(t)

+ ηT1 (t)

(
rρRσ1 − ρ

r∑
i=1

Ri

)
η1(t), (45)

xT (t)Ṗαx(t) + ηT2 (t)Ṡαη2(t)

≤ xT (t)

(
rρPσ2 − ρ

r∑
i=1

Pi

)
x(t)

+ ηT2 (t)

(
rρSσ2 − ρ

r∑
i=1

Si

)
η2(t), (46)

where the functions σ1(t) and σ2(t) are defined by

σ1(t) = argmax
l1∈Kr

{ςT1 (t)diag{Pl1 ,Rl1}ς1(t)},

σ2(t) = argmax
l2∈Kr

{ςT2 (t)diag{Pl2 , Sl2}ς2(t)},

where the switching functions σ1(t), σ2(t) ∈ {1, 2, . . . , r}.
Then, from the system (9), we have

2
r∑
i=1

r∑
j=1

αi(t)αj(tk )[xT (t)G1 + ẋT (t)G2 + x(tk )TG3]

× [−ẋ(t) + Aix(t) + BiKjx(tk )] = 0 (47)

Then, from (38)-(47), and replacing σ1(t) and σ2(t) by l1
and l2 respectively, it obtains

V̇ (t) ≤

r∑
i=1

r∑
j=1

αi(t)αj(tk )ξT (t)4(τk ,τ (t))ξ (t)
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=

r∑
i=1

r∑
j=1

αi(t)αj(tk )ξT (t)
[
τk − τ (t)
τk

4(τk ,0)

+
τ (t)
τtk

4(τk ,τk )

]
ξ (t),

(48)

where

4(τk ,τ (t)) = 9(τk ,τ (t)) + τ (t)J TQ−1
11 J +

τ 2k

4
F1M−1FT

1 .

Finally, according to the convex combination technique,
4(τk ,τ (t)) < 0, t ∈ [tk , tk+1) is equivalent to 4(τk ,0) < 0 and
4(τk ,τk ) < 0. Thus, by Schur complement, one has from (35)
and (36) that

V̇ (t) < 0, t ∈ [tk , tk+1). (49)

In order to prove that V (t) > 0, from limt→ t−k
Vℓ(t) =

limt→ t+k
Vℓ(t) = 0, ℓ = (2, 3, 4) and Pi > 0, follows:

V (t) > V (tk+1) > 0, t ∈ [tk , tk+1), k = 0, 1, 2, . . . (50)

which means that Vℓ(t), ℓ = (2, 3, 4) are not be positive
definite on the sampling intervals, and V (t) is only required
to be positive definite at sampling times.

Finally, from (49) and (50), the system (9) is asymptotically
stable.
Remark 4: In Theorem 1, a Lyapunov functional depen-

dent on the FMFs was constructed. In contrast to most of the
existing work on the sampled-data control [21], [23], [31],
[32], [33], [34], [40], in this case only the Assumption 1 is
required, and it is not necessary to obtain the time derivatives
of the FMFs at each instant time.
Remark 5: Moreover, the functions σ1(t) and σ2(t) do not

need to be considered as switching functions. In fact, since
σ1(t), σ1(t) ∈ Kr , just by replacing by index terms l1 and l2
respectively is obtain stability conditions of the system.

Based on Theorem 1, the sampled-data controllers design
method for system (9) is provided by Theorem 2.
Theorem 2: Let scalars τ > 0, υ1 > 0, υ2 > 0, ρ > 0 that

satisfies |α̇i(t)| ≤ ρ, ∀i ∈ Kr . The T-S fuzzy system (9) is
asymptotically stabilized by the controller (8), ∀τk ∈ (0, τ ],
if there exist positive definite matrices Pi ∈ Rn×n, Q11 ∈

Rn×n,M ∈ Rn×n, symmetric matrices

Q =

[
Q11 Q12
∗ Q22

]
∈ R2n×2n, S i ∈ R2n×2n

Ri ∈ R2n×2n,F =

F11 F12 F13

∗ F22 F23

∗ ∗ F33

 ∈ R3n×3n,

and anymatricesJ ,G with appropriate dimensions, such that
the following inequalities hold, ∀i, j, l1, l2 ∈ Kr9(τk ,0)

τk
2 F1

∗ −M

 < 0, (51)


9(τk ,τk )

√
τkJ

T τk
2 F1

∗ −Q11 0

∗ ∗ −M

 < 0, (52)

where the controller gain matrix Kj = K jG−1, and

9(τk ,τ (t)) = Sym{ε1PiεT2 − [ε1 − ε3]Q12ε
T
3 + J T

(εT1
− εT3 ) + (τk − τ (t))([ε1 − ε3 ε5]Ri[ε2 ε1]T )

− τ (t)([ε4 − ε1 ε6]S i[ε2 ε1]T )}

+ (τk − τ (t))
(
[ε1 ε3 ε4]F[ε1 ε3 ε4]T

+ ε1P l1ε
T
1

+[ε1 − ε3 ε5]Rl1 [ε1−ε3ε5]
T

+ [ε2 ε3]Q[ε2 ε3]T
)

− τ (t)
(
ε3Q22ε

T
3 + ε1P l2ε

T
1

+ [ε4 − ε1 ε6]S l2 [ε4 − ε1 ε6]T

+ [ε1 ε3 ε4]F[ε1 ε3 ε4]T
)

− [ε1 − ε3 ε5]Ri[ε1 − ε3 ε5]T

+ [ε4 − ε1 ε6]S i[ε4 − ε1 ε6]T

+Sym{(ε1 + υ1ε2 + υ2ε3)[AiGεT1

+BiK jε
T
3 − GεT2 ]} +

τ 2k

4
ε2MεT2 ,

with

F1 = [GTF11G 0 GTF12G GTF13G 0 0]T ,

P (l1,l2) = rρP(l1,l2) − ρ

r∑
i=1

Pi,

Rl1 = rρRl1 − ρ

r∑
i=1

Ri,

S l2 = 2rρS l2 − ρ

r∑
i=1

S i.

Proof: Define

G1 = G−1,G2 = υ1G−1,G3 = υ2G−1,M = GTMG,
Pi = GTPiG,Ri = diag{GT ,GT }Ridiag{G,G},

S i = diag{GT ,GT }Sidiag{G,G},

Q = diag{GT ,GT }Qdiag{G,G},

F = diag{GT ,GT ,GT }Fdiag{G,G,G},

J = GTJ diag{G,G,G,G,G,G}.

Therefore, multiplying on the left and right side of (49)
by diag{GT ,GT ,GT ,GT ,GT ,GT ,GT } and diag{G,G,G,G,
G,G,G} respectivly, and similar to the prove of Theorem 1,
applying the Schur complement we obtain (51) and (52).
Remark 6: In Theorem 2 the scalars υ1 and υ2 are intro-

duced to conditions to providemore degrees of freedom in the
LMIs. For every value of υ1 and υ2 we can obtain a different
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maximum value of τ . Focus on this discussion, a grid search
Algorithm [21], [32], [33], [40], is used to obtain the highest
value of τ in a bounded interval. Therefore, for each value of
υ1, υ2, and τ , (51) and (52) become LMIs, that are easy to
solve with any LMIs toolbox.

Now, in order to obtain a switched controller which does
not depend on FMFs in the controller implementation, wewill
obtain the stability conditions for the system (2) using the
controller (10) as shown in Figure 1.

In Theorem 1 and Theorem 2 the fuzzy dependent matri-
ces Pα,Rα , and Sα were considered. However, this leads
to two switching functions, which increases the number of
controllers to be switched. Therefore, in order to reduce the
number of controllers, matrices Rα and Sα will be considered
as constant matrices.

Moreover, as mentioned previously, the switching function
will be (14) and the inequality (13) will only be satisfied
at sampling instants. Therefore, the expression xT (t)Ṗαx(t)
can not be reduced by using the Lemma 1, and matrix Pα
will be considered as constant. However, will be added to the
Lyapunov functional the following expression:

V5(t) =

r∑
i=1

αi(t)xT (tk )Xix(tk ), i ∈ Kr , (53)

where Xi are positive definite matrices and the Lyapunov
functional given in (37) reduces to the following:

V (t) = V1(t) + V2(t) + V4(t) + (τk − τ (t))ηT1 (t)Rη1(t)

+ τ (t)ηT2 (t)Sη2(t) + V5(t). (54)

Corollary 1: Let scalars τ > 0, υ1 > 0, υ2 > 0, ρ >

0 that satisfies |α̇i(t)| ≤ ρ, ∀i ∈ Kr , the T-S fuzzy system
(2) is asymptotically stabilized by the switching controller
(10) and the switching function σ (t) = argmax

j∈Kr

{xT (t)Xjx(t)},

∀τk ∈ (0, τ ], if there exist positive definite matrices X j ∈

Rn×n, P ∈ Rn×n, Q11 ∈ Rn×n, M ∈ Rn×n, symmetric
matrices

Q =

[
Q11 Q12
∗ Q22

]
∈ R2n×2n,

S,R ∈ R2n×2n,F =

F11 F12 F13

∗ F22 F23

∗ ∗ F33

 ∈ R3n×3n,

and anymatricesJ ,G with appropriate dimensions, such that
the following inequalities hold, ∀i, j ∈ Kr9(τk ,0)

τk
2 F1

∗ −M

 < 0, (55)


9(τk ,τk )

√
τkJ

T τk
2 F1

∗ −Q11 0

∗ ∗ −M

 < 0, (56)

where the controller gain matrix Kj = K jG−1, and

9(τk ,τ (t)) = Sym{ε1PεT2 − [ε1 − ε3]Q12ε
T
3 + J T

(εT1
− εT3 ) + (τk − τ (t))([ε1 − ε3 ε5]R[ε2 ε1]T )

− τ (t)([ε4 − ε1 ε6]S[ε2 ε1]T )}

+ (τk − τ (t))
(
[ε1 ε3 ε4]F[ε1 ε3 ε4]T

+ [ε2 ε3]Q[ε2 ε3]T
)

− τ (t)
(
ε3Q22ε

T
3

+ [ε1 ε3 ε4]F[ε1 ε3 ε4]T
)

+ ε3X jε
T
3 − [ε1 − ε3 ε5]R[ε1 − ε3 ε5]T

+ [ε4 − ε1 ε6]S[ε4 − ε1 ε6]T

+Sym{(ε1 + υ1ε2 + υ2ε3)[AiGεT1

+BiK jε
T
3 − GεT2 ]} +

τ 2k

4
ε2MεT2 ,

with

F1 = [GTF11G 0 GTF12G GTF13G 0 0]T ,

X j = rρX j − ρ

r∑
i=1

X i.

Proof: Since (54), the values of Ṗα , Ṙα and Ṡα are null.
Then in order to lead with the fuzzy dependent matrix Xα ,
applying the Lemma 1, yields:

V̇5(t) = xT (tk )Ẋαx(tk )

≤ xT (tk )
(
rρXσ − ρ

r∑
i=1

Xi

)
x(tk ), (57)

where

σ (tk ) = argmax
j∈Kr

{xT (tk )Xjx(tk )}.

Following the same procedure as in the proof of Theorem 1,
and replacing σ by j we obtain

V̇ (t) ≤

r∑
i=1

αi(t)ξT (t)4(τk ,τ (t))ξ (t)

=

r∑
i=1

αi(t)ξT (t)
[
τk−τ (t)
τk

4(τk ,0)+
τ (t)
τtk

4(τk ,τk )

]
ξ (t),

(58)

where

4(τk ,τ (t)) = 9(τk ,τ (t)) + τ (t)J TQ−1
11 J +

τ 2k

4
F1M−1FT

1 .

Therefore, multiplying on the left and right side of (58)
by diag{GT ,GT ,GT ,GT ,GT ,GT ,GT } and diag{G,G,G,G,
G,G,G} respectively, applying the Schur complement, and
taking the same definitions of the proof of Theorem 2,
we obtain (55) and (56).
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Based on Lemma 1 a design conditions of switched
sampled-data controller was obtained, which does not require
to feedback the FMFs to implement the controller.
Remark 7: Procedures to lead with controllers (8) and (10)

are similar, due to from (4) the switched controller can also be
expressed as u(tk ) =

∑r
i=1 αi(t)Kσ x(t− τ (t)), t ∈ [tk , tk+1),

where the function σ (t) is replaced by j because not depend
of i.

V. SIMULATION EXAMPLES
In this section, two simulation examples are given to show the
effectiveness and less conservatism of our results.

A. EXAMPLE 1
In this subsection is presented the chaotic Rossler’s system
with an input signal [41]:

ẋ1 = −x2(t) − x3(t)
ẋ2 = x1(t) + ax2(t)
ẋ3 = bx1(t) − (c− x1(t))x3(t) + u(t).

, (59)

where x(t) = [x1(t) x2(t) x3(t)]T is the state vector and u(t)
is the input control. In order to obtain the T-S fuzzymodel, let
|c− x1(t)| ≤ d where d is a know constant value. Therefore,
for x1(t) ∈ [c− d, c+ d] following the fuzzy rules:

Rule 1 : IF x1(t) isM1
1 , THEN ẋ(t) = A1x(t) + B1u(t),

Rule 2 : IF x1(t) isM2
1 , THEN ẋ(t) = A2x(t) + B2u(t),

where

A1 =

0 −1 −1
1 a 0
b 0 −d

 , A2 =

0 −1 −1
1 a 0
b 0 d

 ,
B1 = B2 =

00
1

 , (60)

with FMFs as α1(t) =
c+d−x1(t)

2d and α2(t) = 1 − α1(t). For
this example the parameters values will be a = 0.3, b = 0.5,
c = 5, d = 10, and the initial conditions x(0) = [−1, 2, 3].
For u(t) ≡ 0, the time derivative of x1(t) and the state

variables x(t) are shown in the Figure 2, where the lower
and upper bound of |ẋ(t)| ≤ 6. Thus, in order to satisfy the
Assumption 1, we can choose ρ = 0.3. Moreover, solving the
LMIs conditions of Theorem 2 for υ1 = 3.2 and υ2 = 21.7,
we obtain τ = 0.1412 s as the upper bound of the time
interval length, and the following gains:

K1 =
[
14.9450 4.3837 −13.5467

]
,

K2 =
[
15.3410 4.3839 −14.1431

]
.

FIGURE 2. Time derivative of x1(t) and open-loop system state response.

TABLE 1. The admissible upper bound τ of time interval sampled.

The state variables of the system and the input control
using the obtained gains are shown in the Fig. 3, where it
is verified the asymptotic stability of the system, and we
can see that the system achieves the stability in a time of
approximately 50 seconds. In addition, in the Table 1 it is
shown a comparison of the maximum sampled time obtained
with respect to [22] and [33], which use the rule (20) to deal
with the fuzzy dependent matrices.

B. EXAMPLE 2
In this case, we consider the inverted pendulum [37], [38],
which the model is shown in Fig. 4 and the dynamic model
is given by (61), as shown at the bottom of the page, where
x1(t) represent the angle of the pendulum from vertical and
x2(t) is the angular velocity. Therefore the space state model


ẋ1(t) = −x2(t)

ẋ2(t) =
g sin(x1(t)) − amlx22 (t)sin(2x1(t))/2 − a cos(x1(t))u(t)

4l/3 − aml cos2(x1(t))

(61)
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FIGURE 3. Close-loop system state response and input control of
Example 1.

FIGURE 4. Inverted pendulum control system model.

will be:

ẋ(t) =

[
0 1

f1(t) 0

]
x(t) +

[
0

f2(t)

]
u(t).

with

f1(t) =
g sin(x1(t)) − amlx22 (t) sin(2x1(t))/2

4l/3x1(t) − aml cos2(x1(t))x1(t)
, and

f2(t) =
a cos(x1(t))u(t)

aml cos2(x1(t)) − 4l/3
,

as two non linear terms. Therefore, by achieving the T-S fuzzy
model using the Taniguchi’s method [2], it could generate

FIGURE 5. Close-loop system state response and input control of
Example 2.

FMFs with complex expressions, which generate a difficulty
in the implementation of the fuzzy controller. For this reason,
in most of the literature, the system is reduced to only two
fuzzy rules considering that x1(t) is close to ±

π
2 or 0, obtain-

ing two membership functions of triangular shape. Focusing
on this issue, a switched controller that does not require to
obtain the FMFs for the implementation will be designed
using Corollary 1.

Choose M = 8 kg, m = 2 kg, l = 0.5 m, a =
1

(m+M ) , g =

9.8m/s2, and β =cos(88◦).We consider x1(t) ∈ [−π
2 ,

π
2 ] and

applying the T-S fuzzy model as [37] and [38], system (61)
can be rewritten as

Rule 1 : IF x1(t) is 0, THEN ẋ(t) = A1x(t) + B1u(t),

Rule 2 : IF x1(t) is ±
π

2
, THEN ẋ(t) = A2x(t) + B2u(t),

where

A1 =

[
0 1
g

4l/3−aml 0

]
,A2 =

[
0 1
2g

π (4l/3−amlβ2)
0

]
,

B1 =

[
0

−
a

4l/3−aml

]
,B2 =

[
0

−
aβ

4l/3−amlβ2

]
.

The FMFs are
α1(t) = 1 −

2
π
x1(t), if 0 ≤ x1(t) <

π

2
α2(t) = 1 +

2
π
x1(t), if −

π

2
≤ x1(t) < 0,

(62)
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FIGURE 6. Switching function σ (t).

and α2(t) = 1 − α1(t). As in [37] and [38], choose |x2(t)| ≤

10 rad/sec. Then, we obtain |α̇i(t)| ≤ ρ = 20/π .
Solving the LMI’s of the Corollary 1 for υ1 = 2.3 and

υ2 = 23.7, we obtain τ = 0.1445 s as the upper bound of the
time interval length, and the following gains

K1 =
[
146.1636 22.2314

]
,

K2 =
[
158.1663 24.2612

]
,

and the matrices

X1 =

[
1.0023 −0.0044

−0.0044 2.9184

]
, X2 =

[
0.9982 0.0042
0.0042 1.8281

]
.

Themaximum sampled interval obtained is greater than those
obtained in [37] and [38], which confirms the less conser-
vatism of the conditions. By use the control strategy shown
in the Fig. 1, the state variables of the system and the input
control are shown in the Fig. 5, where the system achieves
the stability in approximately 5 seconds. Moreover, in the
Fig. 6 is shown the switched index σ (t), which change the
value between 1 and 2, achieving the stability of system.

VI. CONCLUSION
Relaxed design conditions of sampled-data controller using
fuzzy dependent Lyapunov functional was proposed in this
work. By using the convex combination inequality, we derive
new stability conditions to deal with the derivatives of the
FMFs, which does not require to obtain the derivative of
the membership functions to guarantee the stability of the
system. Moreover, the convex combination property allows
us to design a switched controller, that not depend of the
FMFs for implemented the controller. The design conditions
obtained are applied to two classic examples in the literature,
verifying the improvement of the proposed strategy.

Finally, this paper introduces a switched control approach
based on state-dependent switching functions of type, argmin
and argmax functions; expanding the possibilities of taking
the benefits of switched systems that have been widely stud-
ied in the literature. Moreover, the Lemma 1 is not limited
to being applied only in sampled-data control, but in several
applications which involve Lyapunov functions dependent on
FMFs.
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