
Received 13 January 2023, accepted 6 February 2023, date of publication 13 February 2023, date of current version 9 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244556

Multi-Hop Genetic-Algorithm-Optimized
Routing Technique in Diffusion-Based
Molecular Communication
SAM ANSARI AND KHAWLA A. ALNAJJAR , (Member, IEEE)
Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates

Corresponding author: Khawla A. Alnajjar (kalnajjar@sharjah.ac.ae)

ABSTRACT Molecular communication (MC) is a modern communication paradigm inspired by biological
mechanisms and systems. Due to the short range of molecular diffusion, MC systems necessitate a multi-
hop diffusion-based network to transmit information. Finding the optimal routing path is one of the most
critical challenges in MC. The main goal is to transfer information through the diffusion of molecules within
an optimal state by detecting the shortest route and the proper relays. In this paper, finding the optimal
routing path using a genetic algorithm (GA) is investigated in order to find the shortest and the most energy-
efficient path. Our model intelligently plans the optimum trajectory between the transmitter (TX) and the
receiver (RX) by identifying the appropriate relays both locally and globally. Our GA implementation uses a
variable-length chromosome encoding to obtain the optimal path by selecting an appropriate fitness function.
We also examine and compare the performance of the proposed algorithm with Dijkstra’s algorithm (DA),
which is one of the deterministic algorithms. Finally, various simulations for different sizes of MC networks
are performed to verify the accuracy of the proposed method. Our simulation results demonstrate that the
presented GA offers an accurate routing path within an excellent time, even in large-sized environments.

INDEX TERMS Diffusion, Dijkstra’s algorithm, genetic algorithm, information molecules, molecular
communication, optimization, routing.

I. INTRODUCTION
Molecular communication (MC) is considered a novel
bio-inspired communication paradigm introduced recently
in which information is sent and received through the
release of molecules at the transmitter (TX) and their
absorption at the receiver (RX) [1], [2]. MC occurs within
the extracellular spaces (ECS) of organisms, which are
composed of extracellular fluid (ECF), extracellular matrix
(ECM), proteins, etc. Cell-to-cell communication is one of
the responsibilities of the ECM [3], [4].

Several features empower MC to outperform tradi-
tional wireless communication and make it more suitable
for specific applications. These features include bio-
compatibility, low energy consumption, and small scale.
Eventually, these properties make MC also a potent tool
for nanonetworks [5], [6]. Various types of MC systems
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are known today, including bacteria- and microtubule-based
communication [7], [8], calcium and pheromone signaling
[9], [10], and MC via diffusion (MCvD) [2], [11]. Quorum
sensing (QS) is known as one of the essential and prim-
itive techniques for cell signaling or cell communication.
QS enables biological cells such as bacteria to monitor
their population by generating and identifying distinct
molecules [12], [13], [14].

Diffusion fundamentally refers to the random movement
of particles as they get closer and finally collide with each
other [15]. Afterward, the information-carrying particles
can effortlessly propagate and bounce from a TX to
an RX using the environment’s energy owing to these
collisions. Several diffusion techniques exist, including flow-
based/assisted propagation, motor-based protein movement
over microtubule tracks, kinesin motility over microtubule
and filament, and gap junction propagation.

The MCvD has transpired as the technology of choice
owing to its applicability and versatility to numerous
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environments. Diffusion-basedMC (DMC) encodes informa-
tion by means of discharging some molecules that eventually
propagate by following diffusion laws [15]. It is worth
mentioning that in order to attain a solid and reliable MC,
all the information particles should be chemically stable
and robust against possible environmental threats; otherwise,
the consequence will be degradation or damage of the
information particles.

As with other types of communication, MC necessitates
an energy source for the TX, the RX, along with the
whole propagation process itself. There are many ways
to provide the required energy. Occasionally, this energy
is present in the environment; otherwise, it is captured
from the outside environment through chemical processes.
MC systems require energy at all stages, from the production
and diffusion/distribution of themolecules in the environment
to their reception. Due to the small sizes of nanosystems,
the batteries in these systems cannot store much energy.
Therefore, the TX is expected to be able to generate and store
energy. Part of the energy generated by the TX is utilized in
the regular operation of the system, and the rest is stored. The
energy consumed in these systems should not be more than
the energy produced by them, so the discussion of energy
constraints in these systems is critical.

Nanomachines (NMs), due to their sizes and function-
alities, are only able to perform simple tasks at nano-
scales. These NMs only allow information exchange within a
short-range MC (nm-Bµm) [16]. Therefore, it is impractical
to exchange and transfer information on a larger scale
outside the range of a NM without a relay, TX, RX, and
coordination protocols. In MC, the molecules are dispersed
in the environment once released, and after a certain distance
and time due to their low concentration, it is difficult and
unlikely for the RX to detect them. Hence, a swarm of NMs
within multi-hop nanonetworks should coordinate in order
to perform an enormous scale task. Similar to computer
networks, relays are placed to convey the message from the
TX to the RX. Routing is the main issue to be considered in
the network layer of multi-hop nanonetworks.

Addressing NMs and opportunistic routing (OR) are two
main routing techniques in nanonetworks [2], [17], [18], [19].
In the former technique, a TX chooses a RX NM using a
preset type of molecules, including different kinds of peptide,
ion, or specific Deoxyribonucleic acid (DNA) sequence/tags
and beacon particles [2], [18]. The addressing-based routing
could be impractical due to the simplicity of the NMs and
the lack of routing state information (due to high memory
requirements). The state is a routing table, i.e., routing
protocol, comprising the best paths that initially have been
calculated and constructed by each node in the form of a map
or a graph [20].

As opposed to the scenario where the system depends on
a single next-hop node to transfer the information signal,
OR pre-designates a collection of candidate relays with
related priorities. The pre-determination of the forwarders

set occurs via different sorts of data exchange. Depending
on the instantaneous conditions of the channel, the node
having the highest priority is elected to forward the message.
OR guarantees the exclusive selection of relays by utilizing a
specific coordination scheme [19]. The work in [19] and [21]
have proven that OR is a reliable and executable option that
can improve and enhance the traditional routing paradigms.
The routing protocols in MC systems should be stateless, and
simple addressing features should be utilized to achieve a
robust DMC. Accordingly, OR outperforms other techniques
for routing in nanonetworks.

Hitherto, several research work have considered relaying
and routing for MC systems [19], [22], [23], [24], [25], [26],
[27]. The authors in [23] introduce the sense-and-forward
relaying method in which the relays sense the concentration
of diffused information particles and simply forward them
to the RX (through single-type molecule and multi-type
molecules). The work in [24] investigates the decode-and-
forward relaying technique for M-ary signaling in DMC. The
relay node assists the RX node to decode the transmitted
information by establishing a new route to the RX. The relay
node decodes and forwards the received information symbols
that the TX broadcasts.

Amplify-and-forward relaying in mobile multi-hopMCvD
is proposed and investigated in [28], [29]. The relay
nano-machine amplifies the received signal by a constant
or variable amplification factor in the amplify-and-forward
relaying technique. The study in [30] exploits the estimate-
and-forward (EF) relaying scheme in two-hop DMC net-
works. By deriving the maximum likelihood principle, the
presented relaying model of [30] conveys an estimate of
the transmitted number of molecules. Eventually, the RX
receives the information from both the TX and the relay
nodes. An acknowledgment-based OR model is explored for
DMC in [19].

The authors in [25] propose a novel routing mechanism
based on concentration gradient for molecular nanonetworks.
Ghasvarian et al. [26] investigate a two-phase relay elec-
tion and routing approach in a multi-hop diffusion-based
nanonetwork. The network consists of a TX, an RX, and
several nanorelay nodes. It is aimed to improve the energy
consumption in multi-hop routing by using a fix and an
adaptive number of released molecules. The study in [27]
utilizes density routing and ant colony optimization (ACO)
for routing in MC. The former uses the concentration of the
molecules within a spherical area surrounding the destination
to establish a route. In the latter, the ACO is employed to
find the shortest path by considering both the force and
acceleration of molecules near the destination.

All existing mechanisms contain complex algorithms
encountering implementation complexity. Therefore, consid-
ering the nature and ability of each biological cell, it is
challenging and unlikely that the system will perform the
routing operation properly. In addition, none of the existing
work consider the presence of objectionable cells or barriers
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in their proposed networks. Also, none of the presented
studies provided an optimal global view and approach to MC
in a multi-hop network through the shortest path.

This study obtains the optimal multi-hop DMC path
between TX and RX for information-carrying molecules
by using a genetic algorithm (GA). GA is one of the
most fundamental optimization techniques introduced by
Holland in the early 1970s [31]. GAs are the most
well-known type of evolutionary algorithms. GAs possess
iterative processes and function with one or more differ-
ent solutions in each iteration. These models create an
effective search method in vast spaces, which ultimately
leads to the orientation toward finding the optimal solution.
Crossover and mutation operators are added to the model
to prevent the algorithm from getting trapped in the local
optimum.

The significant characteristic of the proposed GA is that
the chromosomes are set to possess variable lengths in
order to represent different paths. The TX, RX, relays, and
obstacles are included to acquire an optimal route for MC
in an ECS discretized into a grid net. Each cell in this grid
represents a chromosome gene. The obtained path is optimal
in the sense of the best relays and the shortest distance. The
proposed model determines and employs the most efficient
relays for optimal routing in a multi-hop DMC network.
In this regard, the proposed model with a global view
calculates and selects the shortest path by determining the
most useful relays. Choosing the best relays and the shortest
route always minimizes energy consumption, contributing to
a controlled molecular diffusion. The sense-and-forward [23]
and decode-and-forward [24] relaying are considered in this
paper. An important point to note is that, unlike previous
studies, this work simultaneously obtains the shortest path
and the best relays using a GA. The routing and relaying
processes are optimized and accomplished both locally and
globally. Furthermore, Dijkstra’s algorithm (DA) is exploited
to compare and verify the accuracy of the proposedGA.DA is
one of the well-known algorithms of the shortest path finding
introduced in 1959 [32]. In the case of DA, the entire space
and the relays and obstacles distributions are available with a
fixed global view.

In light of the above, the contribution of this paper can be
summarized as follows.

• We formulate the routing in the multi-hop DMC
networks as an optimization problem considering com-
putation complexity, diffusion range constraints, and
obstacle existence.

• We propose a heuristic optimization method to find
the optimal routing path by detecting and employing
the most efficient relays and avoiding the existing
obstacles.

• We perform accurate and authentic simulations by
implementing an environment that mimics an ECS.
In addition to RX, TX, and relays, this work considers
barriers or destructive cells that are inspired by living
organisms.

• We leverage both the GA and DA for routing in the
multi-hop DMC networks to attain the optimal/shortest
path.

• We investigate the accuracy of the proposed model by
making a comprehensive comparison between the pre-
sented heuristic algorithm and a deterministic method
as the benchmark for our analytical results.

The remainder of the paper is organized as follows.
Section II gives an insightful overview of various MC
contexts. Section III describes the multi-hop diffusion-based
nanonetwork model. Section IV introduces the proposed
algorithmic approach and the details of the algorithm. The
details of DA are discussed in Section V. The simulation and
evaluation of the proposed model are presented in Section VI.
Finally, Section VII provides a summary, conclusion, and
avenues for future work.

II. MOLECULAR COMMUNICATION
The communication methods in MC systems are broadly
classified into two main categories: passive transport-based
MC and active transport-based MC. In the former, the
communication is based on passive transfer, in which
molecules are spontaneously released (diffused) into the
environment. However, in the latter, molecules are directed
and emitted by employing chemical energywith a high degree
of reliability and fewer required molecules [1], [33].

Passive MC offers a simple way to propagate signal
molecules inside and between cells. In this method, signal
molecules are randomly diffused in all directions. Therefore,
this method of transmission is appropriate in highly dynamic
and unpredictable environments, as well as in situations
where the necessary infrastructure for communication is not
possible. But the active transmission is a communication
mechanism that allows directional transmission of signal
molecules to specific points.

Active transmission can propagate signal molecules over
longer distances compared to passive transmission. It should
also be noted that the transmission of large-signal molecules
in the passive transmission is very weak due to their sizes.
In the active transmission using chemical energy, enough
force is produced to transmit large-signal molecules. Two
examples ofMC based on active transport-based in biological
systems are molecular and bacterial motors-based [34]. Fig. 1
illustrates a MC network consisting of a TX, a RX, and a
relay. The communication through direct and indirect links
using a relay is depicted.

To date, the uses and applications that have been spotted
from MC technology still are just in the early stages.
Indeed, this can trigger many possibilities and enable more
and more bio-nanotechnology applications [2], [35], [36],
[37]. The control and detection of chemical reactions, better
understanding of biology, environmental management and
preservation, computational biology, etc., could bementioned
as other applications of MC. As mentioned before, the MC
has a wide variety of uses in the medical field. The most
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FIGURE 1. Diffusion-based molecular communication network.

researched so far is about the artificial immune system (AIS),
which works by injecting super tiny artificial devices into
the body [38], [39], [40]. These machines work as small
robots that analyze the inner parts of the body.Moreover, they
could be designated to find pathogens and eventually destroy
them, so these little devices act as our immune system does
[2], [5], [36].

Some microscale features of MC, including drug delivery
and health monitoring, have already been investigated and
discussed [6]. On the other hand, several macroscale applica-
tions such as underwater communication can be stated [41].
The macroscale MC mainly focuses on radio communication
or sending information/materials through several ways like
oil or gas in the industrial field. In addition, animals employ
this principle, and they converse and communicate with one
another via pheromones which are used as chemical signals.
Macroscale MC mainly utilizes diffusion and flow-based
propagation, which means that instead of using a single
information particle, a larger quantity of particles is used to
transfer the information [5].

Various research work have been done in different
fields related to MC, including signal detection [42],
modulation [43], [44], channel estimation [45], oscillation/
synchronization [46], [47], etc. The study in [48] utilizes
energy detection and amplitude detection methods for a
proposed pulse-based modulation technique. Chang et al.
in [49] investigate two adaptive detection approaches,
namely peak-time-based adaptive detection (PAD) and
concentration-based adaptive threshold detection (CATD),
to mitigate the effect of intersymbol interference (ISI) for
mobile MC.

Literature has investigated various schemes of signal
modulations, which is a physical layer concern in MC. A bio-
NM RX in MC is able to discriminate various types of
molecules, e.g., calcium and a specific sequence of DNA.
Therefore, various molecules representing distinct signals

FIGURE 2. Schematic of multi-hop DMC inside an ECS of arbitrary
geometries.

can be employed, which refers to type-basedmodulation, e.g.,
molecular shift keying (MoSK) [44], [50]. Concentration-
based modulation accomplishes by relying on the number
of molecules released from the Tx, e.g., concentration shift
keying (CSK) [50]. Some MC systems utilize the releasing
time of the molecules within a specific time slot, which refers
to time-based modulation, e.g., pulse position modulation
(PPM) [51]. In the spatial-based modulation technique, the
information is conveyed utilizing the spatial location, espe-
cially in multiple-input multiple-output (MIMO) systems,
e.g., molecular space shift keying (MSSK) [52]. In some
cases, the system benefits from a set of mentioned features
as a hybrid modulation scheme (HMS) [18], [43], [53].

The studies in [54] and [55] investigate pilot-based channel
estimators employing least squares (LS) and maximum
likelihood (ML) benchmarks for the cases of single-input
single-output (SISO) and MIMO MC channels, respectively.
In addition, the authors in [45] propose semi-blind expecta-
tion maximization (EM), semi-blind decision-directed (DD)-
LS, and semi-blind DD-ML estimator schemes.

III. SYSTEM MODEL
We consider an ECS in a specific part of the living
organism. This environment contains components such as
TX, RX, various relay nodesR1,R2, . . . ,Ri, several obstacles
O1,O2, . . . ,Oj, etc. Fig. 2 depicts the schematic of an
ECS encompassing TX, RX, multiple relays, and obstacles
of arbitrary geometries while diffusing various molecules
and particles. The system exchanges the data through a
multi-hop DMC network. We assume that all the components
involved in establishing MC, including the TX, RX, relays,
and obstacles, are all spherical, capable of scattering and
absorbing molecules in all directions and angles. The nodes
are placed completely randomly in the environment. Each
node possesses a communication range, the maximum radius
at which the receiving nodes in that area can reliably detect
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the diffused molecules. The receptor nodes by specific
chemical reactions attract the stray molecules which are
within their affinity radius [56]. The effective radius of the
nodes is expressed by [57]

reffective = rcell + raffinity. (1)

Due to the molecular nature of the MC systems, it is
known that the communication range of the nodes is small
compared to the distance between TX and RX. Therefore,
we need a multi-hop network consisting of relays to transmit
information. The RX, relays, and obstacles secrete biomark-
ers within a certain radius through which they are identified
and positioned. Several types of information molecules
participate in the entire diffusion process. The molecular
concentration at different times and spaces employing Fick’s
law is calculated as [58]

C(r, t) =
Q

(4πDt)
3
2

· e−
r2
4Dt , (2)

where Q indicates the number of released molecules, D
represents the diffusion coefficient of the medium, and r is
the distance from the center of the relay or the TX.

This study utilizes a simple pulse-based modulation
technique to convey the information among the nodes. In the
desired modulation technique, the transmitting node exudes a
pulse of molecules to forward the data. The proposed model
employs energy detection and amplitude detection techniques
of [48] to detect molecular pulses. The RX node measures
the energy of the molecular pulse in the energy detection
method. In this case, the energy is computed by integrating
the molecular concentration over time as follows [48]

Ep =

Tp∫
0

C(r, t)dt =

Tp∫
0

Q

(4πDt)
3
2

· e−
r2
4Dt dt, (3)

where Tp denotes the pulse duration. Finally, the system
decodes and extracts the received information by comparing
the calculated energy with the considered threshold value.

According to the amplitude detection approach, the RX
nodes first need to measure the fluctuation of the local
concentration of the emitted molecules calculated by (2) over
time. The maximum concentration value is then compared
to the preset threshold value to decode the received signal.
The pulse amplitude or the maximum concentration of the
molecules is expressed by [48]

Cmax = C(r, t)
∣∣t=td =

Q
r3

·

(
3

2πe

)3/2
, (4)

where td represents the pulse delay, the time at which the
pulse reaches its maximum, and it is derived as [48]

d
dt
C(r, t) =

d
dt

Qe−
r2
4Dt

(4πDt)
3
2

= 0, (5a)

td =
r2

6D
. (5b)

IV. PROPOSED GENETIC ALGORITHM
Presently, optimization is deployed widely in our lives,
playing a critical role in engineering and industrial
fields. Evolutionary and population-based optimization
algorithms are prevalent and well-known [59]. The exist-
ing optimization methods aim to provide the optimum
solution to the problems intelligently. Due to their high
computational power and easy transformations, intelli-
gent optimization and search algorithms are impressively
employed in numerous applications [60]. Various artificial
intelligence optimization algorithms are presented and
categorized into different groups, including physics-based,
chemical-based, mathematics-based, biology-based, music-
based, social-based, sports-based, swarm-based, water-
based, light-based, plant-based, and hybrid-based techniques
[59], [61].

The proposed design aims to find the optimal routing path
in DMC. This study tries to perform optimal MC in an ECS
amid different particles, molecules, and biological cells from
TX to RX by selecting appropriate relays, the shortest path,
and avoiding obstacles. First, we construct the chromosomes
of different lengths encoding a path, unlike many existing
algorithms in which the size of these chromosomes is fixed.
The fitness function (objective function) is defined so that the
algorithm finds the cells with the most weight and selects
the appropriate relays to determine the shortest path for
exchanging information from TX to RX.

In this multi-hop MC network, cells are divided into relays
and obstacles according to their ability. Relays help transfer
data in the MC by receiving molecules and forwarding
them. On the other hand, obstacles either absorb or block
information particles, which interrupts communication and
disrupts systems and information exchange. Theweight given
to each cell is the amount that each cell receives according to
the specified objective function, proximity to relays, distance
from obstacles, and proximity to the straight line connecting
the TX to the RX.

Optimal selection of MC paths and relays minimizes
energy consumption [62], [63]. In addition, reducing the loss
of diffused molecules plays an essential role in increasing
system efficiency. The MC system loses fewer molecules or
information particles, which means the system consumes less
energy on creating and dispersing molecules. On the other
hand, by selecting the shortest path, fewer relays are required
to receive and forward data. The flowchart related to the
proposed GA is illustrated in Fig. 3. In the following, the GA
is examined in the stated problem.

A. ENVIRONMENT REPRESENTATION
The first and most crucial step in GA is to provide proper
coding. The cell decomposition method [64] is employed to
describe the environment. Partitioning the environment into
disjoint sets is known as the cell decomposition technique.
Fig. 4 depicts an example of a 10×10 sequentially numbered
environment. We assume a two-dimensional environment
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FIGURE 3. Process flow diagram of GA.

FIGURE 4. Orderly numbered hypothetical 10 × 10 environment.

consisting of cells which can be considered as a grid/cellular
network [62], [63]. Fig. 4 illustrates the desired cell
numbering based on orderly numbered grids [65] for the
proposed coding. This type of coding makes the calculations
and applications of GA operators easier and requires less
memory [66], [67].

It is worth mentioning that the start/end point in this
cellular environment can be any of the cells. As an example
in Fig. 5, a source, destination, and an optimum path are
shown. It should be noted that increasing the number of cells
in the grid network improves the proposed system’s accuracy.
However, increasing the number of cells in this network
increases the length of the chromosomes, which results in
higher computational complexity.

FIGURE 5. Illustration of a grid and a route connecting the starting point
(cell 0) to the end point (cell 99).

FIGURE 6. Individual chromosome identifying a path from origin to
destination.

B. REPRESENTATION OF CHROMOSOMES
There is a relationship between the coding space and the
response space in GA coding. The characteristics of the
problem lie in the genes. Various methods can be used
to display and form chromosomes in GA. The defined
chromosome used in the proposed algorithm has a variable
length and expresses a continuous path from the starting
point to the end point. As depicted in Fig. 6, each gene
on this chromosome belongs to a cell along the pathway,
representing the cell number through which the transmission
pathway occurs. The genes forming each chromosome are
made up of cell numbers from the defined grid. In the given
chromosome, C1 represents the source cell, and Cn denotes
the destination cell. In GA coding, the start and end points
are considered as fixed genes in the path chromosomes.
Therefore, none of the GA operators are applied to these two
genes/cells.

C. RELAYS AND OBSTACLES
As mentioned, ECS includes different components, each
of which has different responsibilities. Depending on the
function of ECM, the characteristics and performance of each
element or cell may vary, operating as a relay or an obstacle in
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FIGURE 7. Exploration of relays and obstacles.

FIGURE 8. Hypothetical environment and distribution concerning positive
and negative distribution, i.e., relays and obstacles.

multi-hop DMC networks. Figs. 7 and 8 illustrate the relays
and obstacles. Pale green squares highlight the relay nodes,
and the obstacles are distinguished by yellow. The cells can be
either biological or artificial cells, i.e., synthetic biology. This
study assumes that relays scatter positive molecules (positive
distribution) and the obstacles scatter harmful molecules
(negative distribution).

It should be noted that the existence and distribution of
molecules within the cells is done by utilizing the diffusion
process and the score that each cell obtains. This diffusion
is important in finding the optimal path and fitness function
values in the later stages. For example, in Fig. 7, the
cell numbering from 0 to 35 in a 6 × 6 environment is
provided. This environment contains several simple cells,
relays, and obstacles. Each cell can emit a biomarker that
helps identify its presence and location. This work assumes a
three-dimensional diffusion within a specific range holding a
positive amplitude, i.e., the concentration of the molecules,
for the relays and a negative one for the obstacles. This

distribution with positive and negative amplitudes helps
to identify and separate relays and obstacles. Cells emit
biomarkers in a circular diffusion of radius 5. As a result, each
of the numbered cells is later divided into a 5×5 environment.
This redistribution gives us a 30×30 cell environment. Fig. 8
depicts the variation of distribution with positive and negative
amplitudes indicating the relays and obstacles.

The proposed coding considers coefficients for each relay
and obstacle in their centers and surroundings, i.e., positive
Gaussian distribution for relays and a negative Gaussian
distribution for obstacles. The phenomenon mentioned above
can be represented by a matrix. Each of the matrix elements,
or cells, has weight

w(xs + u, ys + v) = w(xs + u, ys + v) + h(u, v) ,

− R ≤ u, v ≤ +R, (6)

h(u, v) = αe
−(u2+v2)

2σ2 , (7)

α =

{
+ve, for the relays (8a)
−ve, for the obstacles (8b)

where w(x, y) represents the weight of each cell, x and y
denote the distance to the center of the cell in the Gaussian
distribution, and s indicates the index associated with an
arbitrary element on the plane (location of relays/obstacles).
Moreover, R is the radius associated with the distribution
of molecules around a node, h(u, v) represents the Gaussian
function, u and v are the variables required for Gaussian
distribution, and σ is the Gaussian coefficient of propagation
or radius of propagation. It is assumed that α > 1 for the relay
nodes and α < 1 for the obstacle nodes (α values can vary
depending on the data).

As can be seen, hills and valleys emerge, and these values
are stored in a two-dimensional matrix. The main goal is
to find the shortest trajectory from a specific origin to a
particular destination amid the unevenness by maximizing
a fitness function (or minimizing the inverse of a fitness
value) in the GA. The origin location, e.g., the injection site,
is known. It is assumed that cells, including relays and the RX
node, emit biomarkers within a spherical range. Therefore,
to find the target /RX node, the proposed model calculates
the scores or weights for all the cells. These scores are
the concentration of diffused molecules computed using (2)
around the node. The highest scored node is determined using
the maximum operator in the GA coding to be the destination
point. The maximum value is evident in Fig. 8.

D. THE GENERATION OF THE INITIAL POPULATION
Once the genes are put together on one chromosome, several
chromosomes are produced, and this set of chromosomes
forms the first generation. In the proposed algorithm, GA has
the ability to move in all directions, as shown in Fig. 9. It is
worth mentioning that moving downwards or towards the
opposite direction of the main goal is possible only when it
reduces costs, which is observed in the algorithm.
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FIGURE 9. Directions in which it is possible to move in the proposed GA.

A randomized (stochastic) approach has been employed
in the production of the initial population. In the proposed
method, an R-directional vector with eight elements is
defined. A straight line is drawn from the starting point (TX)
to the end point (RX) at the beginning of the process. Each
of the three directions shown in Fig. 9 that are closest to
this line gets the highest probability. Furthermore, the lowest
probabilities are assigned to the other directions. The roulette
wheel method is adopted in each step of the movement to
select the next cell. In the move toward the destination point,
the adjacent cell with the higher probability value is more
likely to be chosen as the next cell.

The selection of primary pathways is not random in
order to avoid placing inappropriate pathways in the initial
population. Consequently, the proposed GA has a faster
convergence rate. In the GA, the start and end points are
considered as fixed genes in the path chromosomes. In this
population production method, unfitting paths such as loops
may be created. The redundant routes are eliminated using
the loop removal operator that is studied in the next section.

E. EVOLUTIONARY OPERATORS
In the proposed method, the chromosomes of the GA repre-
sent different routes to reach the receptor. By applying the
defined operators of GA appropriate to these chromosomes
and considering a target function according to the user’s
needs, the GA intends to improve the primary paths over
several generations. The main idea of GA is to transfer
inherited traits by genes. Changes always accompany gene
transfer from one generation to the next, and in this transfer,
two natural occurrences happen for the chromosomes. The
first event is the crossover (combination) of chromosomes,
and the second is the mutation operator in which some
genes are altered randomly [68], [69], [70]. The output
of the algorithm converges towards the optimal answer to
the user’s needs while guaranteeing the global optimum.
Proposed operators must operate so that the continuity of the
route is maintained from the beginning to the end. Writing
an appropriate code and setting constraints and conditions
guarantee the continuity of the path.

FIGURE 10. Applying crossover operator on two distinct parent
chromosomes. a) Execution of the crossover operator on two parents.
b) First offspring obtained from the crossover operator. c) Second
offspring obtained from the crossover operator.

FIGURE 11. Illustration of different modes of the mutation operator.

1) CROSSOVER OPERATION
As mentioned earlier, the crossover is one of the most
critical GA operators and leads to reproduction (production
of offspring) [68]. In practice, some of the genes are shared
between two chromosomes. First, two chromosomes are
chosen using selection methods. Next, some common points
of these two chromosome strings, excluding the first and
last common points, are elected. One or more points are
randomly selected from the genes, depending on the type of
combination operator. Afterward, the crossover operator is
performed on the specified gene of the chromosome. Fig. 10
illustrates an example of how a single point crossover is
executed.

2) MUTATION OPERATION
The mutation is another important operator in the GA in
which one or more genes in the chromosomes produced by
parents are randomly changed [69]. In the proposed method,
the mutation operator is applied to path cells and therefore
faces many limitations. Due to the necessity of having
continuous paths created by the algorithm and maintaining
them, and also with the existing limitations in routing and
using a non-fixed configuration, i.e., chromosomes with
variable length, the mutation operator must be applied
carefully, assuring the continuity of the route. Besides,
it must be ensured that no unjustified routes are generated.
Implementation of mutation operators on the routes is
depicted in Fig. 11.

3) LOOP REMOVAL AND SHORTCUT OPERATOR
The loop removal operator does not exist in the actual GA.
Like many other applications, the loop removal operator has
been added to the model as required by the operator. This
technique is utilized to remove extra genes. The loop removal
is mainly used to shorten the path. Loop removal is applied
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FIGURE 12. Various instances of created redundant loops.

to the initial population, the population created after the
crossover, and the mutation. Fig. 12 shows the redundant
loops that the loop removal operator eliminates.

4) SELECTION OPERATION
The selection operator aims to choose two chromosomes
that must be utilized to produce the next generation. There
are different methods for selection, namely random, roulette
wheels, tournaments, etc [70]. This work is implemented
based on the random, roulette wheel and the tournament
selection strategies. The reason for these selection methods is
that the combination of the two top chromosomesmay always
cause the algorithm to get stuck in the local optimum instead
of finding the optimal path.

F. EVALUATION (FITNESS FUNCTION)
Fitness function evaluates and determines the fitness value
of each chromosome [68], [69]. Achieving the shortest and
best route and choosing the most efficient relays are essential
factors in the operation of the DMC network. Selection of
the route with maximum weight is always one of the main
concerns and goals of the operator. Moreover, reducing the
path length is always one of the primary concerns taken into
account in various models. In this study, the fitness functions
are defined as follows:

F1 =

(
N∑
i=1

(wi)

)−1

, (9)

F2 = β ×

N−1∑
i=1

d(ci, ci+1) , (10a)

d(ci, ci+1) =
2

√((
xci − xci+1

)2
+
(
yci − yci+1

)2)
, (10b)

F = F1 + F2, (11)

where wi represents the weight of each cell, N indicates
the number of genes on the target chromosome, ci indicates
the number associated with the genes, d(·) is the distance
between two cells to be calculated, xci and yci denote the
spatial positions of the genes in the environment, and β is a
coefficient that prevents the fitness function from becoming

FIGURE 13. Demonstration of the shortest distance calculation.

too large (the goal is to minimize the F function). The
preference of this algorithm is to select the d21 + d22 path
instead of the d11 + d12 path, as illustrated in Fig. 13.
Indeed, it should be noted that any other criterion can be

added to the algorithm and used as a parameter to acquire the
optimal path.

G. NEW GENERATION
In order to consistently improve the value of the objective
function in successive generations, a percentage of the best
chromosomes in each generation are selected for transfer to
the next stage or generation [68]. This approach ensures the
improvement of the objective function and moves towards
the optimal solution. Replacement strategies refer to methods
in which children derived from GA operators replace their
parents. As shown in Fig. 14, 20% of the best parents in
each generation are selected initially. The chosen parents are
passed on to the next generation without applying any GA
operator. Next, the crossover, mutation, and loop removal
operators are performed on the entire population. Fig. 14
provides a demonstration of the desired process.

Finally, in the following, the pseudo-code related to the
proposed algorithm is given. The code consists of three main
parts, namely population selection, crossover, and mutation.

V. DIJKSTRA’s ALGORITHM
The presented DA finds the shortest route between two
points of a weighted graph. DA begins from the initial
node, finds the weight of the paths from node to node, and
finally places the least weight on the destination path. The
algorithm acquires the distance from the starting point to
all other nodes [71]. According to the intended purposes
of the problem, in most of the presented approaches, the
equation that DA utilizes to define the edge coefficients is
as follows [71]

F = a1 × B1 + a2 × B2 + a3 × B3, (12)

where Bi indicates the criterion of the problem, and ai is
the corresponding coefficient of this criterion. It is worth
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FIGURE 14. Flowchart of the GA operators used to generate new
generations in the proposed algorithm.

Algorithm 1 Pseudo-Code of the Proposed Algorithm
Begin
Initialize population;
Path maker;

Evaluate each candidate;
Repeat-Until the termination condition is satisfied
Do

1: Select parents;
2: Recombine to produce offspring (crossover);
3: Mutate offspring;
4: Evaluate offspring;
5: Select individual for next generation;

End-Until
End

noting that the cell-by-cell search nature of DA elevates the
computational time complexity of themodel for a large search
space, which in turn reduces the model’s efficiency.

A. DA CODING AND GRAPH CONSTRUCTION
Proper coding is necessary to perform a precise comparison
between the proposed GA and the DA approach. To convert
and map the ECS, we need an appropriate coding scheme
for DA and a suitable criterion for defining the weight of the
edges. DA places a node at each cell vertex. Assuming that n
is the number of cells in the rows of the cellular network, and
the number of cells in the grid columns is equal tom, then the
total number of nodes acquired for this environment is equal
to (n+ 1)× (m+ 1). Fig. 15 illustrates the network of nodes
positioned at the four vertices of the ECS cells.

As observed, the nodes are fully connected in DA. The
coefficients of the edges that conjoin the nodes together are
computed as follows

Ci = A× α × wi, (13)

where wi is the weight associated with each cell, α indicates
the optimization coefficient selected according to the degree
of importance, the coefficient A represents a coefficient equal
to 1 in vertical and horizontal movements and

√
2 in the

diagonal motion. In DA, like the GA, the start and end points
are given to the algorithm as input data.

FIGURE 15. Placement of the DA’s nodes on the vertices of the ECS cells.

VI. SIMULATION RESULTS AND ANALYSIS
MATLAB simulations are conducted in order to validate and
examine the proposed model. A laptop with an Intel Core i5
processor, 2.4 GHz, and 4-GB DDR3 RAM is employed for
this study. Two distinguished scenarios are considered for the
simulation studies; small complex ECS and large complex
ECS. The two differ in terms of size, i.e., the number of
cells involved for each case. The environment is transformed
into smaller sets for both simulations, and a separate GA
is implemented for each section (locally). Eventually, these
local paths connect to each other, forming a global pathway
from the source to the destination.

In implementing the proposed GA, the search for the
appropriate relay is accomplished cross-sectionally due to
the nature of routing in MCvD. First, the environment is
divided into smaller segments, and the GA selects the best
path and relay for each section separately. In order to acquire
the best path and relays with a global view, the algorithm
must follow a series of conditions and constraints at each
stage. Finally, the proposed model selects the optimal path
and relays to forward the message from TX to RX with
a sequential and ascending path. Whereas DA, which is
used to compare and verify the accuracy of the proposed
GA, assumes that the entire space and the relays and
obstacles distributions are available with a fixed global
view.

A. 6 × 6 COMPLEX EXTRACELLULAR SPACE
The first simulation comprises an ECS of a 6 × 6 in
which relays and obstacles are placed randomly. Fig. 16
shows the desired domain and distribution of the relays. The
proposed GA code includes all the substances mentioned in
the previous sections. The structure of the code is designed
in such a way that our model avoids the existing obstacles.
Table 1 summarizes all the parameter values considered in
this simulation. Fig. 17 shows the final output obtained by
the proposed model. The yellow cells are the obstacles,
pale greens indicate the relays, and red trail represents the
communication path. Therefore, the final path is determined,
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FIGURE 16. 6 × 6 orderly numbered ECS, including the relays highlighted
by pale greens and the obstacles distinguished by yellow.

TABLE 1. Parameters used in the proposed GA for the 6 × 6 ECS.

FIGURE 17. The routing path acquired by GA for a multi-hop DMC in an
30 × 30 ECS.

and the diffusion process is initiated according to the
specified cell numbers.

The above procedure results in the designation of selected
relays, revealing the final output. The above selections
cause the final route and the elected relays to be obtained,
as displayed in Fig. 18. Finally, the changes related to the

FIGURE 18. The final output of the GA with employed relays in the 6 × 6
ECS.

FIGURE 19. Display of the variation in the fitness function value.

TABLE 2. Comparison of cost and computation time of the presented GA
and DA for the 6 × 6 ECS.

values of the fitness function (costs) are shown in Fig. 19.
The presented GA, one of the heuristic methods, is compared
with DA, which is one of the deterministic methods. Fig. 20
depicts the optimal routing path determined utilizing DA for
the ECS. We investigate and compare the performance of
both algorithms. Table 2 indexes the results of the performed
comparisons based on the computation time and the cost
function value.

B. 10 × 10 COMPLEX EXTRACELLULAR SPACE
In another attempt, a large complex ECS is divided into a
10 × 10 grid for the desired simulation. As mentioned
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FIGURE 20. The routing path obtained by DA for a multi-hop DMC in an
30 × 30 ECS.

FIGURE 21. 10 × 10 orderly numbered ECS comprising of the relays and
the obstacles.

TABLE 3. Parameters used in the proposed GA for the 10 × 10 ECS.

previously, some of these cells act as relays and some as
obstacles. The overall schematic of the space for this simula-
tion, including the relays and obstacles, is depicted in Fig. 21.
The GA code similarly includes all the items expressed
previously. Table 3 provides the relevant information to be
considered in this simulation. Fig. 22 displays the final

FIGURE 22. The routing path acquired by GA for a multi-hop DMC in an
50 × 50 ECS.

FIGURE 23. The final output of the GA with employed relays in the
10 × 10 ECS.

output comprising the components. Hence, according to the
specified numbers, the communication and relaying process
is initiated, as depicted in Fig. 23. The procedure establishes
a route from the source to the destination.

The final output and the employed relays for transmission
of the information molecules are shown. In addition, Fig. 24
illustrates the variation of the fitness function values. Fig. 25
illustrates the optimal routing path achieved by employing
DA. In addition, Table 4 compares the performance of both
models in terms of cost function value and computational
time. It is worth noting that expanding the ECS size also
upsurges the computation time and necessitates more soft-
ware resources. The processing time per different numbers of
cells is illustrated in Fig. 26.

The output of the simulations for the 6 × 6 ECS indicates
that the proposed GA provides the optimal routing depending
on the number of initial generations and the number of
iterations compared to that of DA. It is observed that in
environments with larger dimensions (10 × 10), the GA can
provide the optimal answer within a shorter time interval.
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FIGURE 24. Fluctuations of the fitness function value.

FIGURE 25. The routing path obtained by DA for a multi-hop DMC in an
50 × 50 ECS.

TABLE 4. Comparison of cost and computation time of the presented GA
and DA for the 10 × 10 ECS.

DA suffers from a high memory requirement in case of the
excessive increase of the ECS size. Compared to GA, the time
complexity of DA is proportional to the number of relays and
obstacles in the ECS. Another advantage that our proposed
GA comprises over DA is that if there is a memory shortage
problem, the model can work adaptively, i.e., the number of
chromosomes can be dropped, and the number of replications
can be increased.

The proposed GA also views and performs locally (local
search). The ECS is transformed into smaller environments,
and a separate GA can be implemented over each section.

FIGURE 26. Temporal changes per different number of cells.

Eventually, these local paths connect with each other, forming
a global route. Also, during the implementation phase,
if some of the obstacles move, the GA can still find the
number of justified paths that are obtained considering the
obstacles. Then, by reproducing the original population and
reaching the adequate initial population level, the algorithm
converges again by performing the appropriate number of
iterations to achieve the optimal answer. However, analytical
methods such as DA use sequential search algorithms to find
the answers; therefore, if there is a change in the environment,
these methods have to repeat all the calculations to find the
path.

C. ADAPTIVE CROSSOVER AND MUTATION OPERATORS
In order to check the accuracy and efficiency of the
model, we perform the coding in such a way that the
probabilities of the crossover and mutation operators vary.
In the presented adaptive GA (AGA), the values of pc and pm
get adjusted adaptively. The model achieves the adaptation
phase by employing the information that is obtained from the
population at each generation. This adaptation process can be
formulated as follows [72], [73]:

pc =

{
R1(f−fmin)
favg−fmin

, for f ≤ favg, (14a)

R2, for f > favg, (14b)

pm =

{
R3(f ′

−fmin)
favg−fmin

, for f ′
≤ favg, (15a)

R4, for f ′ > favg, (15b)

where favg and fmin respectively indicate the average and the
best values of the fitness function in the population, f and f ′

are the best fitness values in two consecutive crossover and
mutation individuals. The values of the coefficients R1, R2,
R3, and R4 are chosen from the interval [0, 1], to update the
two probabilities adaptively.

The convergence criterion of the model, i.e., error (E),
is defined as

E(I ) =
CI − CI−1

CI
< 10−3, (16)
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FIGURE 27. Changes in cost function values in two different algorithm
modes.

where CI and CI−1 respectively represent the best fitness
values for two consecutive I th and (I − 1)th generations.
Fig. 27 shows the course of the changes in the cost
function for a 10 × 10 ECS obtained by the two algorithm
strategies. It is observed that employing the AGA enhances
the convergence rate of our proposed model.

It is observed that the proposed GA/AGA model recog-
nizes and selects the most efficient relays accurately, and
at the same time, obstacles are identified and avoided. The
results further indicate that the proposed model provides an
optimized multi-hop routing for the MCvD. The outputs of
the simulations illustrate that the proposed GA and AGA
provide the optimal routing depending on the number of
initial generations and the number of iterations. It is observed
that the GA and AGA can provide optimal routing within a
shorter time interval in environments with larger dimensions.
It is noted that DA suffers from a highmemory requirement in
case of the excessive increase of the ECS size. Compared to
GA, the time complexity of DA is proportional to the number
of relays and obstacles in the ECS.

Another advantage that our proposed GA and AGA
comprises over DA is that if there is a memory shortage
problem, the model can work adaptively, i.e., the number of
chromosomes can be dropped, and the number of replications
can be increased. The proposed GA and AGA are capable of
viewing and performing local and global searches. The ECS
is transformed into smaller environments in the proposed
framework, and a separate GA/AGA can be implemented
over each section. Eventually, these local paths connect,
forming a global route. Also, during the implementation
phase, if some of the obstacles move, the proposed model
can still find the number of justified paths that are obtained
considering the relays and obstacles. It is observed that
by reproducing the original population and reaching the
adequate initial population level, the algorithm converges
again by performing the appropriate number of iterations to
achieve the optimal relaying. However, analytical methods,

i.e., deterministic models, such as DA, use sequential search
algorithms to find the answers; therefore, if there is a
change in the environment, these methods must repeat
all the calculations to acquire the path. In addition, the
presented GA and AGA can also be leveraged to solve
scenarios with multiple dynamic objectives or constraints.
The results further indicate that the proposed framework is
more prominent in more extensive networks and coverage
faster compared to that of other models. The proposed
GA and AGA can be considered time-efficient models,
guaranteeing optimal routing in complex environments.

VII. CONCLUSION
The main components and aspects of MC are based on
the transfer of molecules, which have been considered in
biological processes. This paper proposes and investigates a
novel routing technique in multi-hop DMC in an ECS. Our
proposed intelligent system elevates DMC by selecting the
most advantageous relays and the shortest routes. Accurate
search method based on graph coding is investigated as the
benchmark in this study. The paper further compares the per-
formance and accuracy of the presented model with the
analytical (deterministic) method. The simulations and com-
parisons confirm the significant superiority of the proposed
model. The proposed GA andAGAwith optimal routing have
a significant effect on minimizing the latency and energy
consumption of the communication system. We should bear
in mind that by increasing the number of cells, these methods
face the problem of temporal and computational complexity.
Accordingly, hybrid models employing deterministic and
heuristic techniques can be investigated in the future to
improve the accuracy and efficiency of the system.Moreover,
methods such asQ-Learning can be used as other comparative
techniques.
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