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ABSTRACT As-built Building Information Models (BIM) are increasingly used to facilitate the management
of all aspects of built infrastructure’s life cycle. Existing studies mainly focus on automating as-built BIM
development for surface elements but often ignore embedded elements such as rebar due to the inaccessibility
with typical sensing devices, such as image-based or time-of-flight-based methods. To tackle the issue, this
research utilizes Ground Penetrating Radar (GPR) together with the photogrammetry method to generate
BIMs for in-service buildings considering both surface elements (e.g., column, slab, wall, etc.) and rebar.
As the first step, as-built BIM for surface elements is generated and then existing rebar is identified by using
GPR. A calibration label is designed and attached to elements which are scanned by GPR device, and a series
of images are captured from those elements and then used with other images to generate point clouds. Faster
RCNN is then utilized to recognize labels among all images. Next, an inverse photogrammetry approach
is deployed to identify the scanned elements in BIM. By matching the recorded timestamps of GPR data
and labeled images, links between the rebar in GPR data and elements in BIMs are successfully established.
Finally, IFC (Industry Foundation Classes) is developed to generate as-built BIM models. Six case studies
demonstrate that the system is capable of automatically developing as-built BIM, while embedded rebar
could be efficiently localized and projected into corresponding elements in BIM.

INDEX TERMS As-built building information model, deep learning, GPR, industry foundation classes,
inverse photogrammetry, point cloud, rebar placement.

I. INTRODUCTION

As a revolutionary and fast-growing technique in the
last two decades, Building Information Modeling (BIM)
is the process to generate 3D models with proprietary
information for supporting decision-making within the
architecture/engineering/construction/facility management
(AEC/FM) industry and has been widely used to improve the
levels of automation, efficiency, and productivity for various
types of projects [1], [2]. The BIM-relevant investments are
continuously increasing, and the global market is anticipated
to reach USD 16.35 billion in 2025 [3]. The great demand
for applications has promoted the research on BIM solutions,
some of which have been designed as commercial programs,

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan

such as Autodesk Revit, MicroStation, and ArchiCAD. How-
ever, operations of these tools are highly dependent on human
intervention and cannot be used as a tool to generate BIM
automatically. Therefore, researchers in the AEC industry
are still working on innovative techniques to establish fully
automated procedures for BIM development.

Currently, a large number of studies have been reported
with various algorithms that are mainly focused on as-built
BIM development for surface elements, such as shear walls,
columns, slabs, and beams [4], [5], [6] from existing build-
ings. The automation issue has been successfully solved
by existing studies. However, rebar, as an important rein-
forcement component for structural health monitoring and
other applications, has always been ignored during the BIM
development for in-service buildings, caused by the inac-
cessibility of current devices (i.e., camera or laser scanner)
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for the embedded rebar. For as-plan buildings, this issue
can be solved as the spatial information of rebar can be
directly extracted from drawings and converted to BIMs, but
for in-service buildings, especially for those buildings with
inadequate drawings, the issue turns to be significant and has
no solutions in the AEC industry. Although some existing
studies [7], [8], [9] have been conducted on this topic, most
of them focus on exposed rather than embedded rebar.

To generate an as-built BIM with surface elements and
rebar for in-service buildings, the following objectives should
be achieved simultaneously: (1) a robust procedure of BIM
development for surface elements (i.e., shear walls, columns,
slabs, etc.), (2) an accurate algorithm of rebar identification
identifying rebar’s quantities, layouts, and depths from con-
crete elements, and (3) an automated pipeline of integrating
rebar and as-built BIMs. Ground penetrating radar (GPR)
provides the potential to accomplish these objectives as it
can obtain rebar’s spatial information by scanning concrete
elements and has the possibility to build the link between
rebar and scanned elements. A number of solutions have been
suggested to address the first two objectives [10], [11], [12]
and research in the third objective is still ongoing. Thus, to fill
the gap, this paper proposes an innovative procedure to com-
bine the as-built BIM development and rebar identification.
The following sections will elaborate on the state-of-the-art
research and practices in the related areas.

A. STATE-OF-THE-ART RESEARCH ON BIM DEVELOPMENT
To develop as-built BIM for surface elements, there are
usually three steps: (1) data acquisition, which generates
point clouds by acquiring spatial information of targets,
(2) point cloud segmentation, which organizes unstructured
point clouds for further processing by grouping similar
points, and (3) BIM development from point clouds, which
converts structured point clouds into BIM by recognizing
element categories.

The objective of data acquisition is mainly to generate
point clouds, and the approaches can be classified into
two categories: image-based method and time-of-flight-based
method. For the image-based method, targets are scanned by
cameras at different angles and positions to capture a set of
successive images or video frames, which are then processed
to build 3D models [13], [14], [15], [16]. The process involves
several advanced methods, such as camera calibration, fea-
ture extraction and matching, and multi-view triangulation.
As a well-developed technology, the current research focus
is mainly on improving the quality of generated point clouds
[17], [18]. According to the selected devices, the image-based
method can be divided as photogrammetry (using images
to generate point clouds) and videogrammetry (using video
frames to generate point clouds) [19], [20]. The time-of-flight
(ToF)-based method directly obtains the spatial information
of targets by recording the two-way travel time of a laser
beam [21]. Compared with the image-based method, the
ToF-based method is straightforward as point clouds can be
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generated without any further processing. However, this tech-
nique is limited by the high cost of devices and the require-
ments of sophisticated techniques for operators.

Segmenting point clouds is to organize unstructured data
in a more structured format for further processing. Current
solutions of point cloud segmentation involve two major cate-
gories: (1) spatial relationship-based method and (2) machine
learning-based method. For the spatial relationship-based
method, the point distribution is used as the feature to seg-
ment point clouds by considering the orientation, curvature,
distance, and so on. The representative methods are region
growing plane segmentation algorithm [22], which uses the
smoothness factor to extract surfaces, M-estimator Sample
and Consensus [23], which repeatedly fits planes with ran-
domly selected points until generating a proper surface, ele-
ment shape detection [24], which segments points based on
element shape (i.e., walls are vertical surfaces), the fusion of
color and spatial data [25], which combines the color features
and spatial features together, etc. For the machine learning-
based method, there are two popular algorithms: k-means
clustering [26], [27], which initially defines a set of center
points and then updates the centers based on point distribu-
tions, and Hierarchical clustering [28], [29], which initializes
each point as a group and then hierarchically increases the
groups according to the distances between points.

Converting point clouds into BIM is the process of iden-
tifying element categories from point clouds with an effi-
cient and automated approach. Current practice in the AEC
industry focused on manually identifying elements from
a point cloud with the help of a commercial application
(i.e., Autodesk Revit), but this process is time-consuming,
labor-intensive, and error-prone. Thus, the exploration in the
academic area is still ongoing to establish a highly automated
procedure for as-built BIM development. The existing solu-
tions are mainly rule-based and can be classified into two
categories based on the adopted rules: (1) using the element
attributes and (2) using the spatial relationships between ele-
ments. For the first category, the element attributes (i.e., walls
are vertical [30], [31], columns are vertical [32], and floor and
ceilings are horizontal [33], [34], [35]) are identified from
the segmented point clouds and used to recognize element
types. For the second category, typical buildings are con-
structed with elements that commonly have spatial relation-
ships (i.e., windows and doors are openings in walls [31], the
top and bottom constraints of walls are floors and ceilings
[4], [36], floors are lower than ceilings [33], and slabs, piers,
and girders in bridges are from top to down [37]), which are
always used as another popular approach to convert point
clouds into BIM.

B. STATE-OF-THE-ART TECHNIQUES IN REBAR
IDENTIFICATION USING GPR DATA

Rebar identification is a procedure to extract the spatial infor-
mation of embedded rebar from concrete elements, such as
walls, columns, and slabs. GPR is a common tool used to
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FIGURE 1. Object detection using GPR data.

handle this task due to its portable size, high reliability, and
ease of use [38]. An electromagnetic (EM) wave is generated
by GPR and sent into the concrete element. It is reflected
when reaching the surface of targets and then received by the
GPR device. By recording the two-way travel time of the EM
wave, rebar signals are reflected as hyperbolas in GPR data.
Based on the geometrical features of the hyperbolas, we can
calculate rebar’s depths and sizes [39], [40]. Furthermore,
a three-dimensional rebar arrangement can be determined by
scanning both directions of an element. Figure 1 presents
the principle of generating rebar signals in GPR data [10].
Thus, identifying rebar from GPR data is synonymous with
processing hyperbolic patterns. Herein, two tasks should be
addressed successively: rebar recognition which means iden-
tifying rebar signals in GPR data, and rebar localization
which means determining the depths and sizes of rebar.

For rebar recognition, since rebar signals in GPR data
are identical and have distinguishable characteristics com-
pared with other signals (i.e., strong noise, cross rebar signal,
and direct wave [10]), researchers have proposed a num-
ber of methods to recognize rebar according to this prop-
erty, and existing studies can be classified as (1) machine
learning-based method and (2) pattern-based method. For the
machine learning-based method, the features of rebar signals
are learned automatically from training datasets by algo-
rithms and then used to recognize rebar from testing datasets.
Some of the most popular methods, such as faster RCNN [41],
[42], Naive Bayes [43], and Support Vector Machine [44],
are always adopted to recognize rebar in GPR data. However,
this method is suffering a practical challenge in that a large
amount of training and testing datasets are needed but are
difficult to be collected. For the pattern-based method, rebar
signals are directly analyzed to summarize a uniform rule that
can be used for recognizing rebar from other GPR data. For
example, Dou et al. [45] proposed a column-connection clus-
tering (C3) algorithm to recognize rebar signals by decom-
posing hyperbolas vertically and clustering them based on the
connections. There are some other similar studies, such as
Zhou et al. [46] and Lei et al. [41]. However, the application
of the pattern-based method is limited by the quality of GPR
data as these methods are sensitive to the noise level.
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For rebar localization, Bungey and H. [47] has stated that
rebar depth and size determination is not a reliable application
of GPR due to the inevitable noise, which blurs rebar signals
dramatically. Nonetheless, researchers have already proposed
some approaches, which can be classified as (1) software
method that develops algorithms to directly derive rebar depth
and size from GPR data [10], [48], and (2) hardware method
that modifies the GPR device itself or integrates GPR device
with other tools [46], [49]. However, both methods have
significant limitations: the former is sensitive to noise, and
the latter s high cost.

C. STATE-OF-THE-ART TECHNIQUES IN INTEGRATING
REBAR AND BIM

After generating as-built BIM for surface elements and iden-
tifying the spatial information of rebars, another critical step
is to translate rebars into corresponding elements in BIM,
which means building 3D rebar with accurate coordinates.
Vendors have launched some GPR devices equipped with 3D
visualization software, such as Conquest 100 (Sensors and
Software) and StructureScan (GSSI), but these devices have
two major limitations: (1) pre-calibration patterns are needed
to guild the scanning tasks [38]; and (2) manual processing
is needed to integrate 3D rebars with BIM models as these
tools are not compatible with BIM software. To solve the
problems, researchers have been exploring a method that
can automatically place rebar into corresponding elements in
BIM [50], but it was focused on as-plan buildings as rebar
information is extracted from 2D drawings. Thus, Xiang et al.
[51] utilized GPR to detect concrete elements and converted
the rebar information into corresponding elements in BIMs,
which, however, were manually created in a commercial
program.

D. GAPS AND RESEARCH OBJECTIVES

Summarizing the efforts contributed by researchers and prac-
titioners, significant improvements in developing as-built
BIMs with surface elements and rebar are still demanded to
produce high fidelity industrial standard BIMs for as-built
buildings. Existing studies on developing BIM models with
rebar are mainly focused on three aspects: (1) generating
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rebar models during the construction phase [7], [8], which
is not feasible for in-service buildings, (2) detecting exposed
rebar [9], which ignores the embedded rebar, and (3) convert-
ing rebar from drawings into BIM models [52], which has
the limitation of being applied in buildings without adequate
drawings. To the best of our knowledge, there have been
no prior works to automatically translate embedded rebar
into corresponding elements in BIMs for in-service buildings.
Integrating rebar and as-built BIMs is an active and ongoing
research area.

Hence, this research will propose an automated solution to
fill the gap. It will not only tackle the issue of embedding
rebar in BIM but also enhance the automation level of BIM
development with surface elements and rebar. To achieve the
goals, the authors design the following three steps: (1) an
algorithm consisting of an inverse photogrammetry approach
and a deep learning method is proposed to develop as-built
BIMs for surface elements; (2) a frequency filter-based
method and a depth determination method are adopted to
identify rebar’s quantities, layouts, and depths from exist-
ing concrete buildings using GPR; and (3) a procedure for
integrating rebar and as-built BIMs is creatively formulated
by utilizing timestamps to connect rebar in GPR data and
concrete elements with the help of a deep learning method,
Faster RCNN. Additionally, this research introduces the IFC
(Industry Foundation Classes) schema to generate models
that are readable for various BIM platforms.

The difference of the proposed method and the existing
studies is that the proposed method focuses on automatically
integrating embedded rebar into BIM models for in-service
buildings without the help of 2D drawings, while the existing
studies focus on scanning exposed rebars [9] or generating
rebar models from drawings [52]. The advantage of the pro-
posed method is that it is highly automated and adaptive
because of the utilization of deep learning method. It has the
potential to be widely applied to the AEC industry to convert
concrete buildings into BIM models containing rebar.

One major reason for selecting photogrammetry to develop
BIM models is that a predefined label is used to mark
scanned elements and recorded as images. To enhance the
automation level, we select an image-based 3D modeling
method that can merge these label images into the pro-
cess of BIM development. In addition, photogrammetry is
a mature technology and there are several commercially
available photogrammetry-based software packages, such as
RealityCapture, 3DF Zephyr, and ContextCapture. The last
reason is that the associated costs of photogrammetry are
lower than other 3D modeling technologies such as laser
scanning [53].

The rest of this paper is organized as follows: Section II
thoroughly discusses the proposed system of BIM develop-
ment for surface elements and rebar; the experimental settings
of six cases are presented in Section III; In Section IV, the
results discussion corresponding to the six cases are illus-
trated; Section V conclude the accomplishments, limitations,
and future works.
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Il. METHODOLOGY

As shown in Figure 2, the proposed solution of developing
BIM with integrated surface elements and rebar for in-service
buildings consists of three steps: (1) BIM development,
(2) rebar identification, and (3) integration of rebar and BIM.

A. AS-BUILT BIM DEVELOPMENT FOR SURFACE
ELEMENTS

To develop an as-built BIM, an innovative procedure by using
inverse photogrammetry and a deep learning approach has
been proposed and illustrated in Figure 3 [11].

(1) Point cloud generation, which is achieved by the pho-
togrammetry method.

(2) Plane isolation, which is implemented by M-estimator
sample consensus (known as MSAC [23], [54]) to cluster all
points in the same plane.

(3) 3D to 2D projection, which utilized the inverse pho-
togrammetry between 2D images and 3D models [51].

(4) 2D image segmentation, which is conducted by a deep
learning method, DeepLab.

(5) Element identification, which is implemented based on
the highest frequency of category among all points of the
projected planes in 2D images.

B. REBAR IDENTIFICATION USING GPR DATA

Rebar identification is composed of rebar recognition in
GPR data and rebar localization. Regarding rebar recognition,
a frequency filter-based method to automatically recognize
rebar signals in GPR data (Figure 4) has been proposed [12]
based on two factors: (1) the signal directions between the
spatial domain and the frequency domain have an angle of
90-degree [55], [56]; and (2) the signal interferences (direct
wave, cross rebar signals, strong noise, and adjacent rebar
signals) have different directions compared with expected
rebar signals. According to these two factors, frequency fil-
ters can be designed to remove the signal interferences in the
frequency domain. Meanwhile, the two tails of the hyperbola
are also in two different directions, which can be used as a
feature to recognize rebar signals in the frequency domain by
using specifically designed filters.

Regarding rebar locations, two kinds of data should be
determined: rebar depth and rebar size. For rebar depth, the
negative correlation between the travel time of an EM wave
and the maximum intensity of rebar signal in GPR data is
utilized by slightly modifying the related parameters [12]).
The initial relationship between EM wave and intensity has
been widely applied to determine the deterioration conditions
of rebar in concrete bridges [44], [57], but the performance
of this application is limited due to the lack of high precision
requirement. The authors have modified the negative correla-
tion by proposing a correction intensity. For rebar size, rather
than exploring a feasible approach, this research assumes
12.7 mm is the uniform diameter for all rebar since using GPR
to determine rebar size is the least reliable application [47].
It should be noted that errors are not avoidable and always
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FIGURE 4. Rebar recognition in GPR data: (a) raw GPR data,
(b) recognized rebar.

exist in BIM models. Nevertheless, errors can still fall within
an acceptable range according to our previous studies [10].
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FIGURE 5. Images with labels to indicate elements are scanned by the
GPR device.

C. INTEGRATION OF REBAR AND AS-BUILT BIM

After acquiring as-built BIMs and spatial information of
rebar, the following procedure is developed to integrate rebar
information into as-built BIMs. To accomplish this goal, three
sub-steps are developed in this section: (1) pairing the rebar
in GPR data with their corresponding elements in BIMs,
(2) inserting rebar into elements with accurate coordinates,
and (3) generating BIM models that are compatible and read-
able with different platforms.

1) PAIRING REBAR DATA WITH ELEMENTS IN AS-BUILT BIM

The significant obstacle to pairing off the acquired rebar in
GPR data and as-built BIMs is that GPR data does not contain
any unique features that can map to a specific concrete ele-
ment from which GPR data is obtained. Therefore, a practical
solution is proposed by utilizing timestamps as an additional
link. As shown in Figure 5, an extra image with a specifically
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designed label is collected for each element and named as
the labeled image. The sequence of collecting the labeled
images is the same as scanning elements with the GPR device.
According to the recorded timestamps, the labeled images
and GPR data are grouped and matched one by one. The
labeled images are later used to map the group data to the
BIM.

¢

Time{ < Time§ < Time§

Timef < Time§ < Time$

FIGURE 6. Same sequence of collecting GPR data and capturing labeled
images.

a: TIMESTAMPS RECORDING

After collecting images for 3D reconstruction, a unique
designed label is attached to each element scanned by the
GPR device, and one image is acquired for each element.
Meanwhile, the chronological sequences of the GPR data
and the labeled images are recorded and used to match the
scanned elements and GPR data automatically. In order to
correctly match the GPR data and the labeled images, the
labeled images are collected in the same order as the scanning
sequence of the GPR device. For instance, the GPR device
scans Element A first and then scans Element B, then the
labeled image from Element A should be collected before
Element B, which is illustrated in Figure 6.

(TGh, TiGV) are the timestamps of GPR data scanned from
the i"* element E;, Gh, Gv represent two directions of E;. Tl.L
is the timestamp of the labeled image collected from element
E;. As indicated above, the labeled images and the GPR
data are collected in the same sequence, then an augmented
rule can be designed as {((T$", T7%") — TE, (TS", TF") —
T2L, ...} to match the GPR data and the labeled images, which
establishes the initial link between GPR data and scanned
element.

b: LABEL RECOGNITION

The labeled images are served as bridges between the GPR
data and the elements in BIM models. These labels, among all
images, need to be detected and recognized first, furthermore,
the 2D label images will need to be projected back to the 3D
to indicate the scanned element in BIM models.

To implement label detection and recognition task, a deep
learning method, Faster RCNN is introduced, which is a
promising network for object detection due to three technical
features: (1) an algorithm of selective search is designed to
extract region proposals; (2) region proposals are converted
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to feature maps; and (3) a region of interest pooling layer is
added to rescale region proposals into a uniform size. Figure 7
illustrates the architecture of Faster RCNN.

The general idea of projecting 2D labels to 3D models
is demonstrated in Figure 8, which applies the approach of
inverse photogrammetry [58]. The photogrammetry is for
3D reconstruction by projecting 2D images into 3D models,
while the inverse photogrammetry is to project 3D models
back to 2D images. As discussed in [58], some intrinsic
parameters of a pinhole camera are required to formulate
the equations for projecting 3D points back to 2D images:
(1) the calibration matrix K consisted of the principal point
(x0, yo), the focal length (F), Fy) and the skew coefficient Si
(Equation 1), (2) the translation matrix 7 consisted of three
intrinsic parameters (Equation 2), and (3) the rotation matrix
R consisted of nine intrinsic parameters (Equation 3). Then,
according to the workflow of a pinhole camera model [59],
the projection between a 3D point P3 and a 2D point P? can
be built by using Equations 4-5, where m, my and m3 are the
intermediate variables served as a medium between P> to P2
These three variables are first determined by P> (Equation 4)
and then used to derive P?> (Equation 5). Since the range of
the label has been detected in the previous step, there will be
a binary value to indicate if P? is within the label range or
not. If P? locates in the label range, P3 can be determined
as a point of the label in the 3D model. By searching all 3D
points, the label can be completely identified in the 3D model
(Figure 8).

[ Fy Sk xo

K = 0 Fyyo (1)
[0 01
C

T=1|n 2)
[ ri1 i 13

R=|rirrm 3)
| 731 732 733

[m1 my my] = K % [RT] % P? @)
P2=[m1/m3 mz/m3]/ 5)

2) REBAR PLACEMENT IN CORRESPONDING ELEMENTS

Next, rebars are translated from GPR data into corresponding
elements in BIM with accurate coordinates. As shown in
Figure 9, each element is scanned in two directions with
two separated GPR scans, and we take the vertical rebar
(see the left scan in Figure 9) as the example to discuss the
rebar placement. In order to reduce the influence of depth
deviations within one element and simplify the procedure,
we assume that all rebars in the same direction have a uniform
depth. Although differences between detected and designed
depths cannot be avoided due to the existence of construction
errors, it still can fall within an acceptable error range. Some
experiments have been conducted in [10], which indicates a
mean average error of 6.73% for depth determination. It is
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FIGURE 8. Label projection from 2D image to 3D model.

indicated as Dg in GPR data with the unit of the pixel.
Then, the rebar depths D, in the BIM can be determined by
Equation 6:

where Dg is the pixel depth of GPR data, and D, is the max-
imum detection depth of the GPR device. It is worth to noting
that this procedure can be applied to concrete elements with
any depths as it does not dependent on element sizes. Even
though, the proposed method will not work if the embedded
depth of rebar is greater than D,y .

Ly
’(#1 #2 #3  #4 #5 )‘

Dy v
7

Vertical Rebar Horizontal Rebar

FIGURE 9. Rebar translation from GPR data into BIM.

Similarly, the distance from rebar i to the vertical element
boundary is calculated by Equation 7:

L, =Li/Lg * Ly (7

where L; is the pixel distance between rebar i and the left
boundary of GPR data, L is the pixel length of GPR data, and
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Layer Layer
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L,, is the length of the element. The underlying reason behind
this calculation is that although GPR data does not record the
actual scanned lengths in concrete elements, but the length of
GPR data is proportionate to the length of scanned element.
In addition, each GPR data is scanned from left to right and
bottom to top for each element, so the rebar complies with the
same rule when being placed in BIM.

D. IFC-BASED BIM GENERATION

To generate as-built BIM that is compatible with various com-
mercial applications, this research adopts the IFC to convert
the point clouds with rebars into as-built BIM. It should be
noted elements involved at this stage are walls, columns,
slabs, and rebars, and other elements are not considered.
The instances of IFC used in this research are IfcWall-
StandarCase, IfcColumn, IfcSlab, and IfcReinforcingBar.
Meanwhile, this research detects the openings (i.e., doors,
windows, or empty spaces) to vertically split shear walls,
which are scanned by the GPR device. Besides the geometri-
cal parameters, materials are also important features that must
be identified. Nevertheless, material identification is not the
scope of this research, thus, a set of predefined materials is
applied to all elements.

In this research, we create a script to predefine all possible
elements, such as walls, columns, slabs, and rebar. As dis-
cussed above, we consider the spatial details of models, thus,
the quantities, locations, and scales of all elements are set
as variables. After implementing the method, these variables
are determined and fed into the predefined script to generate
a file in /FC format, which can be read by cross-platform
applications. Figure 10 shows the necessary workflow for
generating /F'C models.

Ill. EXPERIMENTAL SETUP
We select six case studies to evaluate the feasibility of
the proposed system. Figure 11 shows the five concrete
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TABLE 1. Details of the selected six cases.

Casel Case2 Case3 Case4 Case5 Case6

Yes ‘ Parameters of the 17 Wall | ‘ IFC Wall Instance #1 ‘
Point Cloud
= e ‘ Parameters of the 259 Wall ||:>{ IFC Wall Instance #2 ‘
EQ IFC Model
@ No

] o e

Predefined
Script

FIGURE 10. Generating IFC models.

buildings, which are all located on the University of Utah.
Case #1 and #2 is from a renovated building, MCE Build-
ing, which hosts the Department of Civil and Environmental
Engineering; Case #3 is from a student living center, LSND
building; Case #4 is from the FMAB buildings, which hosts
the Department of Film and Media Arts; Case #5 is from the
CRCC buildings used for business education; and Case #6 is
from the BPLS building, a five-story parking lot. Table 1 sum-
marizes the number of elements categories, image numbers,
and GPR scans of the involved five cases.

i3

P
el

(d) (e)

FIGURE 11. The profiles of the selected concrete buildings: (a) MCE
Building, (b) LSND Building, (c) FMAB Building, (d) CRCC Building,
and (e) BPLS Building.

Table 1 shows that the number of GPR scans is twice
the number of labeled images since each element is scanned
in both directions to obtain rebar arrangements, while only
one labeled image is captured for each element. To gen-
erate quality point clouds, the image number of each case
varies according to the scale of the target: larger-scale needs
more images, and vice versa. Another thing that should be
mentioned is that rebars are collected from shear walls and
columns, and other elements are not scanned by the GPR
device since the element boundaries (i.e., slabs) are not capa-
ble to be determined automatically, or no rebar is embedded
in elements (i.e., doors and windows).

Besides the images for 3D reconstruction, this research col-
lects 300 labeled images to train the Faster RCNN. To achieve
a better performance, data augmentation is applied to increase
the size of the dataset by scaling, flipping, rotating, cropping,
and translating the original images. At last, this research
obtains 1500 images, in which 60% (900) images are used
as the training dataset, 20% (300) images are the validation
dataset, and the rest 20% (300) images are the testing dataset.
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gggg‘“g MCE MCE LSND FMAb CRCC BPLS
Shear Wall # 2 5 2 2 7 3
Column # 2 2 0 0 0 3
Slab # 1 1 1 0 1 1
Door # 2 3 0 0 1 0
Window # 0 4 0 0 5 0
Image 205 711 477 324 658 590
Number

Label Images 5 8 4 2 4 2
GPR Scans 10 16 8 4 8 4

There are two data collection devices: the camera for cap-
turing images and the GPR scanner for obtaining rebar infor-
mation. For the camera, a smartphone’s camera is adopted
with a resolution of 3024 x 4032 pixels and a focal length of
4 mm. To develop quality point clouds, the angle deviation
between two adjacent images is controlled less than 15°.
For the GPR scanner, Handy Search NJJ-105, manufactured
from Japan Radio Co., Ltd, is adopted in this research. It has
a central frequency of 1.5 GHz and a maximum detection
depth of 30 cm. Meanwhile, to save the setting time of well-
established algorithms, this research uses ContextCapture,
a commercial program of Bentley, to implement the pho-
togrammetry procedure for 3D reconstruction from images.
In addition, the proposed system is designed and executed on
a computer with the configurations of Intel i7-8700 processor,
64 GB memory, and NVIDIA GeForce RTX 2080 Ti graphics
card.

IV. RESULTS AND DISCUSSION

By implementing the proposed system for all six case studies,
the point clouds, the point clouds with embedded rebars,
and the corresponding BIMs are generated and presented in
Figures 12-14. In general, the point clouds for the six cases
are of high quality (Figure 12). With the assistance of the
as-built BIM development approach for surface elements and
the rebar identification approach, rebars are correctly embed-
ded into corresponding elements in point clouds (Figure 13).
Meanwhile, as-built BIMs are successfully generated by IFC
and readable by various BIM platforms. Figure 14 are the
models shown in Autodesk Revit. The following sub-sections
will discuss the performance of the proposed framework in
detail.

A. AS-BUILT BIM DEVELOPMENT

The performance of the photogrammetry-based BIM devel-
opment is discussed at first. A deep learning method,
DeepLab, is involved in this workflow. To train DeepLab,
we collected 1500 images and used 60% of the images as the
training dataset, 20% of the images as the validation dataset,
and the rest 20% as the testing dataset. The Intersection-
Over-Union between the prediction and the ground-truth
bounding boxes on the testing dataset can reach 0.95 for
walls, 0.90 for columns, 0.95 for slabs, 0.92 for doors,
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TABLE 2. Element identification for six cases.

Case Shear

4 Wwall Column Slab  Door Window
1 True # 2 2 1 2 0
Identified# 2 2 1 2 0
) True # 5 2 1 3 4
Identified# 5 2 1 3 0
3 True # 2 0 1 0 0
Identified# 2 0 1 0 0
4 True # 2 0 0 0 0
Identified # 2 0 0 0 0
5 True # 7 0 1 1 5
Identified# 7 0 1 0 4
6 True # 3 3 1 0 0
Identified# 3 0 1 0 0

and 0.95 for windows. Regarding point cloud generation,
Figure 12 illustrates that photogrammetry can obtain promis-
ing performance since all elements are successfully devel-
oped. As shown in Figure 13, and after preprocessing with
noise removal and down-sampling algorithms, all models
maintain high-quality levels without any outliers. Table 2
summarizes the element recognition performance for all
cases. Overall, 39 out of 48 elements have been successfully
identified. Unlike object recognition for 2D images, the out-
puts of our method for object recognition in point clouds are
binary because of using the highest frequency of category
as results. The major cause of the failed cases is due to the
fact that such specific elements might not exist within the
training dataset. In this research, we did not collect enough
cases similar to the elements involved in this research, such
as the circular windows in Case 2 (Figure 12b) the standalone
column with black color in Case 6 (Figure 12f). Besides, the
two columns in Case 6 are recognized as parts of walls since
1) the texture of these two columns are similar to walls and
2) the columns are too thin to be identified.

B. REBAR TRANSLATION FROM GPR DATA INTO BIM

As afundamental step for translating rebar into as-built BIMs,
the performance of label recognition using Faster RCNN is
discussed here: The precision and recall of Faster RCNN on
the testing dataset are shown in Figure 15. The results are
acceptable since the design of label recognition is to identify
scanned elements. Once a label is recognized within one
element, the element can be successfully identified.

Then, Faster RCNN is applied to recognize labels from the
images, which are used to reconstruct point clouds. The accu-
racy, denoted whether or not the label is recognized, reaches
100%. Figure 16 includes three examples of the recognized
labels. One major reason behind the high performance is that
images for 3D reconstruction relatively have low noise and
are easy to be processed. Subsequently, the labels in images
are converted to point clouds to show the scanned elements
by using inverse photogrammetry. Similarly, all labels are
correctly converted to corresponding elements in 3D models.
The examples of converting labels from 2D images into 3D
models are presented in Figure 17, which demonstrates that
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the labels are successfully indicated in 3D models at proper
locations. However, compared the labels between 2D images
and 3D models, the labels in 3D models are not the same as
the shapes and areas in images. This phenomenon is caused
by the fact that this research uses the boxes predicted by
Faster RCNN, rather than the labels in images, to conduct
projecting labels in 3D models.

Consequently, by pairing timestamps according to the
sequences of capturing data, the GPR data and the labeled
images can be correctly matched. Since the labeled images
have been completely linked with elements in BIMs, all links
between GPR data and elements are built as well, which
demonstrates that rebar can be connected with corresponding
elements in BIMs.

C. REBAR PLACEMENT

This research evaluates the performance of placing rebar in
BIMs from the aspects of relative depths of rebars in two
different directions and distance between rebars in the same
direction. One column model and one shear wall model with
embedded rebars are selected to implement the evaluation and
shown in Figure 18. Regarding the relative depth of rebar
placement, this research uses the mean depths of all rebars in
one direction as the value to insert rebars in BIMs. For both
models, the depth distribution of rebars is consistent with the
depths in the GPR data. Rebars that are placed deeper in BIM
in one direction are relatively deeper in GPR data than the
GPR data in the other direction. On the other hand, distances
between different rebars in BIM are also consistent with the
GPR data. As demonstrated in Direction 1 of the column
model (Figure 19), the normalized distance vectors between
rebars in the BIM model and the GPR data are expressed in
Equations 8-9, respectively.

M_ (M M M M M M M M M
X —(xl,xz,x3,x4,x5,xé,x7,x8,x9)

= (0.22,0.13,0.42,0.36, 0.29, 0.39, 0.31, 0.48, 0.28)
(3
X9 = (le,xg,xg,xf,xg,xg,xf,xg,xg)
= (0.25,0.16,0.39, 0.35, 0.26, 0.36, 0.31, 0.53, 0.26)
9

Then, the cosine similarity, a well-known measure to deter-
mine the similarity between two vectors, is adopted to cal-
culate the similarity of the distances between rebars in the
BIM model and the GPR data. As illustrated in Equation 10,
sim (XM , X G) reaches 0.99, which represents a high simi-
larity as two vectors are more similar if the value is closer
to 1, and vice versa. Thus, rebar placement in BIM models is
consistent with the detection in GPR data. It is worth noting
we directly use the element boundaries to determine rebar
lengths. For instance, the column height in Figure 18 is set
as the lengths of vertical rebar.

sim (XM,XG) — xM ~XG/(HXM ” ”XGH) —0.99 (10)
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(d) (e) ()

FIGURE 14. As-built BIM: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

D. LIMITATIONS The intuitive approach to evaluate the performance of rebar
placement is to compare the rebar locations between BIM and
actual concrete elements, but there is one major obstacle that
the construction error exists and causes the deviation between

Although rebar has been successfully translated from GPR
data into corresponding elements in BIMs for in-service
buildings, a number of limitations still exist:
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FIGURE 15. Faster RCNN performance on the testing dataset.

FIGURE 17

D,

Cross-section
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FIGURE 18. Rebar placement in columns and walls.

actual locations and drawings. For instance, as shown in
drawings, the distances between the vertical rebar in the left
wall of Case 2 (Figure 12b) are the same as 300mm, but the
determined distances vary from 262.5mm ~ 357.5mm. Thus,
it is difficult to directly compare the rebar locations between
BIM and concrete buildings. Even though these errors can
be controlled within an acceptable range by adopting proper
methods, errors are always presented in as-built BIMs and
cannot be avoided. One potential solution is to design an
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FIGURE 19. Distance comparison between rebars: (a) BIM model and
(b) GPR data.

experimental concrete element that can accurately control the
locations of all rebar.

Another limitation of this research is that some openings in
walls (Figures 13b and 13e) are not considered when placing
rebar. This phenomenon is caused in the procedure of as-built
BIM development that our method fails to detect these win-
dows or windows are too small to be identified in walls. In this
case, rebar pass through windows by extending the detected
rebars in the walls beneath or above windows. To solve this
issue, the improvement of involving these windows should be
considered during as-built BIM development.

V. CONCLUSION AND FUTURE WORKS

Developing as-built BIM with surface elements (e.g., column,
shear wall, and slab) and rebar is a challenging task that needs
to address the issues of automated element identification,
accurate rebar localization, and efficient rebar placement.
Although these issues have been explored individually, to the
best of our knowledge, there have been no prior studies to
develop integrated systems to address these issues together.
In this research, we proposed an automated framework that
can develop as-built BIM for in-service buildings with sur-
face elements and rebar by using GPR. To achieve this
goal, we (1) developed an as-built BIM with the inverse
photogrammetry method and a deep learning approach and
(2) identified rebar from GPR data with the frequency filter-
based method and a rebar depth determination method. Then,
a label has been designed to attach to scanned elements, and
Faster RCNN was utilized to automatically recognize labels.
Meanwhile, timestamps were adopted to link the GPR data
and the labeled images for mapping rebars from GPR data
into corresponding elements in BIMs. The IFC schema was
deployed to generate as-built BIMs that were compatible
with various BIM platforms. Finally, six case studies were
selected to evaluate the proposed framework. By updating the
datasets used for training the DeepLab in the step of BIM
development and Faster RCNN for label identification, our
proposed workflow can be applied to other cases. The results
are promising and can draw two major conclusions:

1) Using timestamps and labeled images to connect GPR
data and BIMs is a successful setting that all rebars are trans-
lated from GPR data into corresponding elements in BIMs.
Meanwhile, Faster RCNN is an efficient tool to recognize
labels from massive images as the accuracy can reach 100%.
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2) Developing as-built BIM by using the proposed frame-
work is completely automated and compatible with various
BIM platforms due to the application of /FC. The rebar can
be inserted into the corresponding element from GPR data
with accurate coordinates.

As part of the future research plans, the authors will
consider more diverse element categories (i.e., all possible
shapes and cross sections of columns, etc.). Developing an
integrated hardware setting, capable of handling the tasks
of GPR and digital cameras simultaneously, will be another
future research task.
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