IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 30 November 2022, accepted 2 February 2023, date of publication 13 February 2023, date of current version 2 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244600

== RESEARCH ARTICLE

Neural-Network-Optimized Vehicle Classification
Using Clustered Image and Fiber-Sensor Datasets

PATRIK KAMENCAY “1, (Member, IEEE), MIROSLAV MARKOVIC", JOZEF DUBOVAN',
MILAN DADO"!, (Senior Member, IEEE), AND DANIEL BENEDIKOVIC 1.2, (Member, IEEE)

! Department of Multimedia and Information-Communication Technologies, University of Zilina, 01026 Zilina, Slovakia
2University Science Park, University of Zilina, 01026 Zilina, Slovakia

Corresponding author: Daniel Benedikovic (daniel.benedikovic @uniza.sk)

This work was supported in part by the Slovak Research and Development Agency under Project APVV-21-0217, Project APVV-17-0631,
and Project PP-COVID-20-0100 (DOLORES.AI); and in part by Slovak Grant Agency VEGA under Grant 1/0113/22.

ABSTRACT Internet of Things (IoT) becomes indispensable for transport and automotive industry to
advance functions in on-road traffic monitoring. Indeed, smart management tools and machine learning
concepts are inevitable in vehicle categorization systems. However, to date, existing systems for vehicle
classification are exclusively based on singular technological platforms only. This not only limits their
long-term use and future scaling, but also sets restrictions to obtain high classification accuracies
with modern machine learning tools feed with diversified big volume data. In this work, we design a
novel convolutional neural network (CNN) that substantially improves the on-road vehicle classification.
In particular, we experimentally harness, to the best of our knowledge for the first time, two different
datasets from separated technological platforms based on close-circuit television (CCTV) and fiber Bragg
grating (FBG) sensors, respectively. The hybrid CNN classification system, with individual CCTV and FBG
datasets, substantially improves detection levels, reaching in-class accuracy up to 90% - 97%. Moreover, this
classification concept includes an intrinsic back-up verification with respect to each platform compensating
the shortcomings of individual technologies. Our demonstration can make key advances towards near-
unity accuracy in vehicle classifications for IoT systems, capitalizing on cost-effective and well-established
platforms.

INDEX TERMS Internet of Things, vehicle classification, convolutional neural networks, close-circuit
television, fiber Bragg gratings.

I. INTRODUCTION

The Internet of Things (IoT) is seen as universal solution
to merge diverse technologies into a conceptual network.
IoT allows different devices to be mutually sensed with
respect to their surroundings and then communicate with an
instant response [1], [2], [3]. The IoT is particularly appealing
for data-intensive applications [4]. “Big data” applications,
which range from military, medicine, and smart buildings
to intelligent transport and automotive industry, are good
examples. In recent years, the IoT becomes indispensable for
transport and automotive industries to advance activities such
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as vehicle classification, instant on-road control, or traffic
management, among others [1], [2], [3], [4], [5], [6].

The ever-rising number of vehicles on roads calls upon
smart solutions with dynamic monitoring and novel plat-
forms. Present traffic capacities are unable to satisfy the
infrastructural needs set by smart cities. Over the years,
many IoT platforms were proposed and demonstrated to
address these problems. Modern platforms can enhance
traffic monitoring, management of road resources, and
vehicle classification. So far, image recognition method
remained the first choice for such platforms, considering the
quality-cost trade-off [7], [8], [9]. Although these platforms
are still widely used, they face a range of challenges.
This includes limitation by weather conditions, slow data
collection and inefficient processing. Nowadays, sensing-to-
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communication platforms take a massive leap. They can be
found as radio-founded networks [10], [11], [12], [13], virtual
clouds and storages [14], [15], and a variety of ground-based
concepts [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [301, [31], [32], [33], [34], [35],
[36].

Ground-based solutions can provide neat monitoring,
management, and car classification. They are typically based
on inductive and magnetic loops or may benefit from
many sensing methods [20], [21], [22], [23], [24], [25],
(261, [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36]. The sensing maps a measurable physical quantity into
virtual data, creating a basis for computation, analytics,
and adoption of artificial intelligence (AI) and machine
learning (ML) algorithms. For a sensing part, anisotropic
magneto-resistance [20], piezoelectricity [21], [22], or hydro-
electricity [23] are typically exploited. Alternative classes for
on-road traffic control rely on embedded strain gauge [24],
vibration [25], or fiber-optics [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36] sensors.

Fiber-optic technologies are proved to be compelling
for traffic surveillance as they afford a virtually unlimited
capacity compared to electrical wires, while fiber sensors
constitute a close-to-ideal choice for optical sensing. Co-
existence between high-speed network and optical sensing
platform is highly desired to keep both cost and complexity
at low levels [36]. Fiber Bragg gratings (FBGs) emerge as
an attractive optical platform to form single- and multi-
point sensor arrays [26], [27], [35], [36], [37], [38], [39].
In FBGs, the reflected light adds constructively in the
backward direction and creates a distinct narrowband drop in
the transmission, while the rest of the light passes through
the grating. The external perturbations induce a spectral
shift compared to the initial position and the change can be
clearly determined. This way, the FBG platform unleashes
promises for effective vehicle categorization, especially in
dense traffic situations. However, FBG systems have a range
of obstacles, which includes instrumentation, installation, and
calibration issues, while require improved data collection,
vehicle categorization, and overall detection accuracy - IoT
system parts that are mostly driven by modern processing
techniques.

In this work, we propose and demonstrate a novel
CNN architecture for enhanced vehicle classification. Here,
we harness a clustered dataset, originating from a hybrid
technological platform. Hybrid system combines data inputs
from CCTV system and FBG sensors, respectively, a vital co-
existence has remained unexplored to date. Clustered CNN-
based classification improves vehicle detection accuracy and
provides an intrinsic back-up verification with respect to each
separate technology.

Il. TESTING PLATFORMS AND DATA COLLECTION

In this work, the technological base for vehicle classification
comprises two experimental platforms: an optical sensor
network and a visual-based CCTV system. Indeed, each of
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them can be operated separately, but this brings a range of
limitations. Measurements were performed over three weeks.
The total number of vehicles passing through the platform
was up to 2000 per day.
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FIGURE 1. Schematic top view of the experimental platform based on
fiber Bragg gratings.

A. FBG SENSOR NETWORK
The sensor network comprises a FBG array. This in-house
testing platform, schematically shown in Fig. 1, is situated
at the campus of the University of Zilina, Slovakia. The
FBG sensor array is connected to two active interrogators.
Interrogators collect the output data from the sensor array.
The Sensing array includes active induction loops to help
detection of passing vehicles. For this work, inductive
loops are disconnected, and FBG sensor array is only used
passively, i.e. without additional electricity, which reduces
power consumption. From an installation point of view, FBG
sensors were mounted invasively into the ground, i.e. directly
into the existing road in the two-layer asphalt arrangement.
In the optical array, FBGs are positioned both ver-
tically (parallel to the vehicle wheels) and horizontally
(perpendicular to the vehicle wheels), which enable to set-
up different experimental topologies. For our investigation,
we are primarily focused on the spectra response of the
FBG sensor array, for now, without the possibility to operate
platform dynamically to detect the vehicle speed or exploit
weigh-in-motion functions. The horizontally oriented (HO)
fiber sensors are used at the beginning only to verify
platform operation and working conditions. Vertical FBG
array is divided into two 1.75 m long parts, located on both
sides of the road, respecting the road center. The sensor
array on each side comprises 36 vertically-oriented (VO)
FBGs. The reference spacing between the individual optical
sensors is 100 mm. FBG sensors are used to measure the
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deformation caused by pressure, once the vehicle passes
through the platform. Double-sided sensor topology helps
to create a back-up solution for situations, when the optical
fiber is damaged, or fiber connections are interrupted.
Output data from the on-road sensor cluster are transmitted
through single-mode optical fibers (SMF-28) to two four-
channel interrogators. The interrogators cover a spectral
range from 1485 nm to 1610 nm. Interrogators are situated
in the local data center, 700 m away from the experimental
platform. On a side of interrogators, there are standard
opto-electrical input/output (I/O) interfaces. This includes:
4 optical ports, two USB ports, 1 Ethernet and HDMI port
and a serial interface RS485. Interrogators use a 12 V
DC industrial adapter as input power. An RJ-45 Ethernet
port allows connection to a wired 10/100/1000 Mbps local
area network. Optical fiber ports are used to connect the
interrogator to the sensor array, in particular, each 1/O fiber
port connects 19 FBGs.
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FIGURE 2. The spectral output of the interrogator’s channel. The output
was retrieved from the fiber Bragg grating array.
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FIGURE 3. Spectral outputs from the sensor array using vertical sensor
arrangement. Two-dimensional pressure map of the vehicle passing the
platform as a function of time and FBG sensor position. Here, the vehicle
detected on the map has a wheelbase of 2570 mm.

The output spectrum from the sensing array at one of
interrogators channel is shown in Fig. 2. Interrogators process
the data offline from the sensor network offline, with a
recording frequency 500 samples per second. Examples of
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spectral outputs from FBG sensors for vertically positioned
configurations are shown in Fig. 3. Here, we can observe
a detail of vehicle passage with an optimal trajectory over
a sensor array, having an axle wheelbase of 2570 mm.
Measured values correspond to the wavelength shift of
the reflected optical signal. This way, we create a two-
dimensional pressure map of the vehicle as a function of the
time and FBG sensor position. Sensor data were collected
from 2000 tests using 36 vertical FBG sensors. The dataset
comprises 500 samples per second x 4 s time slot per single
vehicle.

The time period is sufficiently long to cover the majority
of vehicles that passed in and out of the platform, with a
restricted area speed of 30 km/h. Moreover, correct detection
for front and back axles is always obtained at different
positions. In turn, this helps to reduce the FBG dataset
down to 600 correct measurements x 36 vertical FBGs per
one passing vehicle. Furthermore, from the dataset analysis,
we found out that a maximum of 5 sensors from the whole
array is primarily responsible for the spectral outputs, which
lowers the final dataset to 600 tests x 5 vertical sensors. The
spectral shifts initiated by the remaining sensors (compared to
the 5 dominant) are close to zero, and thus their contribution
can be neglected. Last, but not least, measured data are
normalized to toned image values (shaded gray colors),
having a range from 0 and 1. Output data are stored in Tagged
Image Files Format (TIFF). Output TIFF data, shown in
Fig. 4, are then used to train and test CNNs and to categorize
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FIGURE 4. TIFF outputs obtained from a fiber Bragg grating array for: a)
small car, b) personal car, ) SUV, d) Minivan, and e) VAN/Trucks.

TABLE 1. Training and testing dataset for CNN in case of different vehicle
categories.

L. Dataset
Class Description
X Y V4
1 Small cars 1346 940 406
2 Personal cars 2148 500 648
3 SUV 790 550 240
4 Minivan 690 480 210
5 Van/Trucks 250 170 80

X: Total number of data; Y: Data used for training; and Z: Data used for
testing.

The system for car identification encompasses the body
type of the vehicle, the number of axles, wheelbase as well
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as the number of vehicles driving in and out of the platform.
Table 1 sums up car categories and corresponding datasets.
In total, there are 5 specific car categories (see Tab. 1). Cor-
responding parameters (specific car characteristics) are listed
in Tab. 2. Specific characteristics for 5 vehicle categories are
also depicted in Fig. 5 and explained below [37], [38]:

TABLE 2. Special characteristics for given vehicle class [37], [38].

Class Description Characteristics

205/55R 16
1&2 Small cars & Personal 195/65R 15

cars 165/70R 14

215/65R 16
215/70R 16
235/55R 18

205/65R 16
215/65R 16
225/65R 16

225/50R 18
235/45R 18
245/45R 18
255/45R 18

3 SUV

4 Minivan

5 Van/Trucks

205-55-R-16

|8
l—} D: Wheel diameter in inches
C: Sceleton construction type
B: Aspect ratio (height/width)
» A: Tire width in milimeters
Tire sceleton construction type
Radial (R)

FIGURE 5. Example of special characteristics for a given vehicle class
(small cars).

Diagonal (D)

i

o A: The tire width is marked by the first three numbers
(from the side to side) in millimeters.

o B: The next two values determine the aspect ratio (the
tire height as a percentage of the width). In our case, the
aspect ratio is 55. This means that the sidewall of the tire
is 55 percent higher than the tire width.

o C: The construction type is represented by a single letter
which describes the type of the internal construction of
the tire (R is for radial tires and D is for tires built with
diagonal plies).

o D: The last number describes the diameter of the wheel
in inches.

B. CCTV SYSTEM

CCTYV system represents a conventional image-based recog-
nition technique. Here, visual recognition was carried out
with an industrial camera situated in a close proximity to
the experimental FBG platform (of about 100 m). Data
were retrieved according to the local GDPR rules. CCTV
system operates with digitalized data from a recorded video
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stream. This video stream is then transformed into static
images. Once the vehicles pass through the platform, image
characteristics are changed. The camera has a resolution of
1920 x 1080 pixels, with the speed of 30 frames per second.
Camera was supplied by Power over Ethernet (PoE) interface
and the video stream was recorded on a computer using Open
Broadcaster Software Studio. For vehicle classification, only
images of passing cars were selected from the entire video
stream, and then only points of interest were captured from
those images, i.e. that is the passing vehicle itself. For this,
images are shrunk down to a square resolution with 800 x
800 pixels and 1:1 aspect ratio. Images with shadows, blurs
or images affected by weather conditions were excluded from
further processing. By repeating this process, we retrieved
final images of vehicles that are assigned to the specific car
categories. Different vehicles from the CCTV system are
shown in Fig. 6. In turn, this creates a final image dataset for
neural network training and testing.

FIGURE 6. TIFF outputs obtained from a CCTV system: a) small car, b)
personal car, c) SUV, d) Minivan, and e) VAN/Trucks.

C. NEURAL NETWORK STRUCTURE AND INPUT DATASETS
CNN comprises a three-dimensional architecture built upon a
convolutional layer, MaxPooling, and fully connected layers.
The general schematic of CNN is shown in Fig. 7.

Convolution
& ReLU

Pooling
Convolution
& ReLU
Pooling
EC Output

-1 [T

FIGURE 7. Schematics of the convolutional neural network.

CNN’s are conventionally leveraged to recognize two-
dimensional (2-D) image patterns from the pixels of the input
data with minimal pre-processing. CNN classifies an input
image into the following four categories: supine, left side,
prone, and right side.

Main operations performed by CNN rely on: (i) convolu-
tional layer to extract various features from the input image.
For a reliable process, these layers (and thus operations
they perform) are repeated several times; (ii) the non-
linearity (ReLU) layer serves as an activation function for
data processing; (iii) MaxPooling or sub-sampling layer that
searches for the largest element in the feature map and forms
a bridge (inter-layer) between initial convolutional layer and
ending fully connected (FC) layer; and (iv) fully connected
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layer (classification). This way, CNN can learn more and
more complex symptoms. In the first layers, the network
encodes low-level image features (such as edge detectors and
simple color transitions). In the subsequent layers, features
for shapes (such as semicircle or multicolor gradients) are
described. The last CNN layers comprise features responsible
for individual image objects or complex image shapes.

TABLE 3. Image sizes for conventional open-access CNNs.

CNN Size [pixels]
AlexNet 227 x 227
GoogleNet 224 x 224
ResNet-50 224 x 224
ResNet-101 224 x 224

Ill. RESULTS AND DISCUSSION

For given datasets, training and testing is realized with
re-sized image inputs to match the size of open-access
CNNs (AlexNet, GoogleNet, ResNet-50, and ResNet-101),
as defined in Tab. 3. Those images pass through the CNN
convolutional layers, with filters that extract local image
features.

The CNN activation function determines values of the
outputs for individual neurons based on their internal
potential. The internal potential is a by-product between
weights and the input. Outputs from individual windows
are combined to create a new down-scaled feature map.
Once this process applies to all new maps, an additional
set of feature maps are created, which then form inputs to
the next convolutional layer, where the whole process is
repeated. The output of the convolutional layer is flattened
via fully connected layer. Finally, the Softmax output layer
for image classification is used. This way, we determine and
link specific input image with an appropriate vehicle class.

Predicted Class Predicted Class
g
True False l = £
= q (3 I
- positive negative 2
E (TP) (FN) = - 96 38 8 2
S i E 5
E = S ; o
S False True =] E 33 ° 12 2 T
< positive negative § g > %
(EP) (TN) 8 11 | 20 B 6 +
=
—— +
TP
Precision = ——— 2 3 5 o0 «
TP + FP g
2 x Precision x Recall L. 289
Fl-score= —F——————— Precision= ——————————— = 0.59
Precision + Recall 289+179+12+8+2
2x 0.59 x 0.71
Fl-score = =0.64
0.59+0.71

FIGURE 8. Example of the confusion matrix. (a) General scheme and
(b) ResNet-50.
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The confusion matrix, schematically shown in Fig. 8a,
summarizes the result of the classifier [39], [40]. Rows of the
confusion matrix are indexed by output variable classes (cor-
responding to the reality), while columns are sorted according
to classes predicted by the model (estimation/prediction).
Thus, each column within the confusion matrix represents
predicted classes. The individual rows in the confusion matrix
represent the current (correctly assigned) classes. Success
parameters, specifically P, R, and FI-score, were calculated
from the obtained values. The parameter of precision (P) is
the ratio between true positive (7P) and the sum of positive
data (true positive (TP) and false positive (FP)). On the
other hand, the parameter of recall (R) is the ratio between
true positive (7P) and the sum of data from the actual class
(true positive (TP) and false negative (FN)). The FI-score
denotes a combination between precision and recall, i.e.
weighted average value of precision and recall. The resulting
accuracy is obtained as the ratio between the sum of correctly
predicted samples and the sums of all samples. In particular,
Fig. 8b shows the actual numbers of the confusion matrix,
here for conventional open-access CNN - ResNet-50. This
matrix summarizes the result of the classification. The rows
of the confusion matrix represent the actual class (small cars,
personal cars, SUV-s, minivans and the VAN/Trucks).

A. CONVENTIONAL NEURAL NETWORKS

First, we trained and tested conventional open-access CNNs
(I - AlexNet; 2 - GoogLeNet; 3 - ResNet-50 and 4 - ResNet-
101) using FBG dataset only. These CNNs have input sizes
as specified in Tab. 3. Results obtained from open-access
CNNs are provided in Tab. 4 and Tab. 5, respectively. From
the obtained results, we can conclude that conventional CNNs
(AlexNet, GoogleNet, ResNet-50 and ResNet-101) are better
suited for pure image data recognition. For this reason, the
afore-mentioned standard CNNSs, in all cases fed by sensor
data only, obtained results that are less precise compared
to the CNN architectures based on CCTV-based image
inputs [27].

TABLE 4. Results of vehicle classification (Confusion matrix) using

FBG-based dataset through conventional CNNs: a) AlexNet, b) GoogleNet,
c) ResNet-50 and d) ResNet-101.

Confusion matrix (AlexNet) Confusion matrix (GoogleNet)

1 2 3 4 5 1 2 3 4 5
1 205 115 53 30 3 1 294 82 17 11 2
2 137 324 99 78 10 2 165 310 99 66 8
3 26 66 112 31 5 3 16 45 153 23 3
4 10 30 53 107 10 4 10 12 24 159 5
5 3 10 10 12 45 5 4 3 6 6 61

Confusion matrix (ResNet-50) Confusion matrix (ResNet-101)

1 2 3 4 5 1 2 3 4 5
1 289 84 16 14 3 1 297 80 15 12 2
2 179 327 96 38 8 2 168 351 90 35 4
3 12 33 181 12 2 3 10 30 189 9 2
4 8 11 20 165 © 4 7 9 19 172 3
5 2 2 3 5 68 5 2 2 3 4 69

To monitor the generalization performance and select the
optimal study model, the dataset was divided into a training
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TABLE 5. Results of vehicle classification using FBG-based dataset
through conventional CNNs: a) AlexNet, b) GoogleNet, c) ResNet-50 and
d) ResNet-101.

Classification results (AlexNet) Classification results (GoogleNet)

Precision Recall Fl-score Precision Recall Fl-score
1 0.54 0.50 0.52 1 0.6 0.72 0.65
2 0.60 0.50 0.55 2 0.69 0.48 0.57
3 0.34 0.47 0.39 3 0.51 0.64 0.57
4 0.41 0.51 0.45 4 0.60 0.76 0.67
5 0.62 0.56 0.59 5 0.77 0.76 0.76

Classification results (ResNet-50) Classification results (ResNet-101)

Conv2D_4

Input 2
Image
Data

MaxPool_2

MaxPool_4
Conv2D_6 Flatten_2

Conv2D_1

Input 1 A 4
Sensoric Conv2D_2
A 4

Data

MaxPool 1

A 4
A 4

MaxPool_3

E Concatenate '

Conv2D_3

FIGURE 9. Proposed CNN with two independently operated CNN
branches. Individual CNN branches are based on pure sensor and pure
image datasets.

Precision Recall Fl-score Precision Recall Fl-score
1 0.59 0.71 0.64 1 0.61 0.73 0.66
TABLE 6. Description of individual layers of the hybrid CNN.
2 0.72 0.50 0.59 2 0.74 0.54 0.62
3 0.57 0.75 0.65 3 0.59 0.79 0.68 L.
Layer (type) Output Shape Activation
4 0.71 0.79 0.75 4 0.74 0.82 0.78
5 0.78 0.85 081 5 0.86 0.86 0.86 input_1 (Inputlayer) (None, 600, 5, 1) -

set with a data amount of 70% and a validation set, having
a 30% of data amount. The performance of the proposed
CNN with a training set was continually improved, while the
CNN performance with a validation set reached a saturation
point, after which the network starts to overfit training data,
and then the network learning algorithm was terminated. The
implementation of the CNN models relies on the TensorFlow
framework. Moreover, from the results summarized in Tab.
4, we can observe that GoogleNet and ResNet-50 performed
better than AlexNet. The obtained precision levels are 34%
- 62% for AlexNet, 51% - 77% for GoogleNet, 59% -
78% for ResNet-50, 61% - 86% for ResNet-101. From a
precision point of view (classification results), by comparing
the same vehicle class for different types of standard CNNss,
we can clearly see this trend. These results arise from
the fact that the GoogleNet network uses combinations of
inception modules, and each of them encompasses Max-
Pooling, convolutions at different scales, and concatenation
operations.

In addition, ResNet-50 and ResNet-101 are a type of CNN
with a depth of 50 layers and 101 layers, respectively. The
ResNet-50 and ResNet-101 models replace each two-layer
residual block with a three layer bottleneck block. This then
uses 1 x 1 convolutions to reduce and subsequently restore
the channel depth, allowing for a reduced computational load
when calculating the 3 x 3 convolution. Those specific fea-
tures of both CNNs are particularly advantageous, facilitating
more accurate categorization. On the other hand, the AlexNet
is formed by 5 convolutional layers, followed by 3 fully
connected layers, and finally added a 1000-way Softmax.
This then corresponds to the probability of 1000 categories (in
our case we used five vehicle classes as the output). Typically,
this network includes repetition of few convolutional layers
and each one is followed by max MaxPoolings and few dense
layers. However, there was no standard for the filter sizes to
be used, which is a significant shortcoming of this CNN.
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input_2 (Inputlayer)
conv2d 1 (Conv2D 1)
conv2d 2 (Conv2D 2)
conv2d 3 (Conv2D 3)
conv2d_4 (Conv2D_4)
max_pooling2d_1
(MaxPooling_1)
max_pooling2d_2
(MaxPooling_2)

(None, 32, 32, 3) RelLU
(None, 300, 4, 32) ReLU
(None, 100, 4, 32) ReLU
(None, 100, 4, 32) ReLU
(None, 29, 29, 16) ReLU
(None, 2,2, 32) ReLU

(None, 14, 14,32)  ReLU

conv2d 5 (Conv2D 5) (None, 50, 2, 64) ReLU
conv2d 6 (Conv2D 6) (None, 14, 14, 32) ReLU
max_pooling2d 3 (None, 2, 1, 16) ReLU
(MaxPooling_3)

max_pooling2d_4 (None, 5, 5, 16) ReLU
(MaxPooling_4)

flatten_1 (Flatten_1) (None, 32) ReLU
flatten_2 (Flatten_2) (None, 400) ReLU
concatenate | (Concatenate) (None, 432) ReLU
dense_| (Dense) (None, 5) Softmax

B. HYBRID IMAGE- AND SENSOR-BASED NEURAL
NETWORK
The proposed CNN, schematically shown in Fig. 9 and
described in Tab. 6, comprises two parts: sensor- and image-
based branches, respectively. This is a hybrid CNN structure
with two independent inputs (sensor- and image-based data).
The first network (sensor-based) is fed with 600-d inputs,
while the second one (image-based) accepts the 32-d inputs.
Both networks operate separately with respect to each other
and then they are merged into the single CNN that performs
the final classification.

The individual layers of the hybrid CNN are described
below.

1) SENSOR DATA BRANCH
o The sensor data was used as input. These input data were

resized.

o The second to fourth blocks of the sensor part were
2D CNN layers, which have 32 feature maps with 3 x
3 kernel dimension. The Rectifier linear unit (ReL.U)
was used as an activation function.
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o In the next block, the MaxPooling layer with kernel
dimension 2 x 2 was used. The Dropout layer with a
probability set of 0.25 was used.

« In the sixth block, the 2D CNN was used with the same
parameters as in the second to fourth blocks. However,
the number of feature maps was doubled to 64.

« MaxPooling and Dropout layer have the same parame-
ters as the fifth block.

2) IMAGE DATA BRANCH
o The image data was used as input. These input data were

resized.

o The second block of the image part was the 2D CNN
layer, which has 16 feature maps with 3 x 3 kernel
dimension. The Rectifier linear unit (ReLU) was used
as an activation function.

« Inthe next block, the MaxPooling layer was used (kernel
dimension 2 x 2. The Dropout layer with a probability
set of 0.25 was used.

o The fourth block, the 2D CNN was used with the same
parameters as in the second block. However, the number
of feature maps was doubled to 32.

o The MaxPooling layer and Dropout have the same
parameters as the third block.

3) HYBRID SENSOR AND IMAGE DATASETS
o In our case, we tack on a fully connected layer with

fifth neurons. Our final model using the inputs of both
branches (sensor and image data) was defined.

o The connection of the final layers in the hybrid network
is based on the output of both the sensor and image
branches. The final output of the hybrid network was

classified into 5 different classes of cars.
Features are extracted from individual sources of infor-

mation by building appropriate network models, preferably
models that are most suitable for given data types. Feature
extraction from one source is independent with respect to
the other one. Once all the features essential for prediction
are extracted from both datasets, they are combined into the
single-shared representation. In the next step, information is
merged from two modalities to perform a final prediction.
The information coming from different modalities is charac-
terized by varying predictive power and noise topology. In our
case, we take a weighted combination of the sub-networks
so that each input modality can have a learned contribution
towards the final output, i.e. towards a resulting prediction.

The hybrid CNN model comprises sensor and image parts.
They are described below.

4) SENSOR PART

1. model = input_1()

2. layers.conv2d_1(kernel_size=3,
input_shape=(n_features))
layers.conv2d_2(kernel_size=3, activation="relu’)
layers.conv2d_3(kernel_size=3, activation="‘relu’)
layers.max_pooling2d_1(pool_size=2)
layers.conv2d_5(kernel_size=3, activation="‘relu’)

activation="relu’,

A
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7. layers.max_pooling2d_3(pool_size=2)

8. layers.Flatten_1()

9. layers.Dropout(0.5))

10. layers.Dense(activation="‘relu’)

11. layers.Dense(n_outputs, activation="‘softmax’)

5) IMAGE PART
1. model = input_2()
2. layers.conv2d_4(kernel_size=3,
input_shape=(n_features))
. layers.max_pooling2d_2(pool_size=2)
. layers.conv2d_6(kernel_size=3, activation="‘relu’)
. layers.max_pooling2d_4(pool_size=2)
. layers.Flatten_2()
. layers.Dropout(0.5))
. layers.Dense(activation="relu’)
9. layers.Dense(n_outputs, activation="‘softmax’)
It is worth to note that hyper-parameters play a crucial role
to control the training process and to obtain the optimal
performance. The setting of hyper-parameters may affect
the results of the training process. For this reason, it is
critically important to train the CNN with an appropriate
set of hyperparameters, including learning rate, batch size,
weight factor initialization and optimizer. Details for optimal
hyper-parameters are provided in Tab. 7, while the hyper-
parameters description is provided below:

activation="‘relu’,

00 NN LN AW

TABLE 7. Description of CNN hyperparameters.

Hyperparameters Optimal value
Kernel size [3]
Pooling layers ["MAX], [2]
Activation function RelLu
Dropout size [0.5]
Learning rate [0.001]
Optimizer [’ADAM’]
Batch size [128]
Number of epochs [35]

e Adam optimizer: This is an extended version of the
stochastic gradient descent commonly used in deep learning
applications.

e Number of epochs: This can be set as an integer value
ranging from one to infinity. To increase the number of
epochs is advantageous, if the dataset contains a big data
count.

e Early stopping: The training process stops when
the validation performance deteriorates for 10 consecutive
epochs. This helps to avoid poor performance of the neural
network with non-training data, while learning well learning
on training data.

e Training function: This is the overarching algorithm used
to train the neural network and to associate certain inputs with
specific outputs.

e Minimum gradient: This refers to the minimum magni-
tude of the gradient descent required for the training of the
neural network to terminate.
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e Activation function to introduce non-linearity into the
models was used. In our case, the Rectified Linear Unit
(ReLU) was employed as an activation function.

e The pooling layer moves the filter through the output
feature map of the previous convolutional layer. The filter size
was 2 x 2 and max-pooling approach was used.

e The number of epochs is the number of times for the
training data that is displayed to the neural network.

o The batch size is the number of samples submitted to the
neural network.

e The learning rate describes the step-size for a neural
network model to achieve a function with minimum loss.

e Dropout size describes a technique that prevents the
neural network over-fitting.

e Kernel size parameter describes the size of the filter,
determining the size of the 2D convolution window.
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FIGURE 10. Graphical results representation obtained from individual
CNN branches. (a) and (b) Fiber sensor datasets. (c) and (d) Image
datasets.

TABLE 8. Results obtained from two independent CNN branches. Results
for a) sensor and b) image datasets.

SENSORIC DATA IMAGE DATA
Confusion matrix
a) 1 2 3 4 5 b) 1 2 3 4 5
1 287 83 18 15 3 1 371 17 11 6 1
2 136 362 84 56 10 2 20 610 10 6 2
3 26 40 151 18 5 3 5 7 220 5 3
4 15 34 29 122 10 4 4 5 8 191 2
5 2 5 5 6 62 5 2 2 5 9 62
Classification results

Precision Recall Fi1- Precision Recall Fl-
score score

1 0.62 0.71 0.66 1 0.92 0.91 0.91
2 0.69 0.59 0.64 2 0.95 0.94 0.94
3 0.53 0.63 0.58 3 0.87 0.92 0.89
4 0.56 0.58 0.57 4 0.88 0.91 0.89
5 0.69 0.78 0.73 5 0.89 0.78 0.83
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TABLE 9. Obtained results from hybrid CNN.

HYBRID DATA

Confusion matrix

1 2 3 4 5
1 389 8 5 3 1
2 12 626 7 2 1
3 4 7 221 6 2
4 2 3 6 195 4
5 1 2 2 4 71
Classification results
Precision  Recall F1-score
1 0.95 0.96 0.95
2 0.97 0.97 0.97
3 0.93 0.92 0.92
4 0.94 0.93 0.93
5 0.90 0.89 0.89
HYBRID DATA
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FIGURE 11. Graphical representation of obtained results using hybrid
CNN.

Table 8 and Figure 10 show the results of the individual
CNN:ss, separately for the sensor branch (sensor data only)
and separately for the image branch (image data only), while
Tab. 9 and Fig. 11 summarize the overall performance of
the hybrid CNN. The proposed two-input-model of CNN
shows a significant improvement in the performance (pre-
cision accuracy) compared to conventional CNNs (AlexNet,
GoogleNet, ResNet-50, and ResNet-101 - see results in Tab. 4
and our single-input CNN based on sensor data). First, from
the retrieved results, it becomes apparent that the hybrid CNN
of combined datasets yields much better results than the CNN
with sensor or image data only.

As a result, precision for the vehicle classification reached
extraordinary high values, ranging between 90% and 97%,
with respect to the particular vehicle class. Moreover,
comparing precision results obtained by this novel hybrid
(combined image and sensor) CNNs with those previously
obtained via conventional CNNs (GoogleNet, ResNet-50,
ResNet-101, and AlexNet - shown in Tab. 4) and sensor data
only, we can observe a considerable enhancement in the
final classification results. Nominally, these improvements
are between 35% - 58% with respect to AlexNet, 20% - 39%
with respect to GoogleNet, and 19% - 33% with respect to
ResNet-50. Obtained results (confusion matrix and evaluation
criteria) are graphically represented in Fig. 11. Numbers in
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each cell of the graphical representation of the confusion
matrix refer to the percentage value of correctly and
incorrectly assigned objects. To show the percentage values
of individual objects of the actual class, we used color for
each cell. Here, the dark-blue color indicates 0% incorrectly
assigned vehicles, and then the color continually changes to
the light-yellow, indicating 100% correctly assigned vehicles
from all tested data.

The main advantage of the proposed hybrid CNN over
conventional approaches is the combination of image and
sensoric datasets. This solution has potential to afford com-
prehensive representation of the vehicle under test, with an
in-built back-up verification. As a result, predicted accuracy
is higher, as we demonstrated in this work. By prioritizing the
individual branches, we can manage classification accuracy
and improve the robustness of the system. The overall
classification can be increased as both data sources are
originally independent, and through the hybrid solution, they
can trade-off mutual shortcomings of individual techniques.
On the other hand, there are few challenges to be addressed
with such hybrid CNN solution. The effective integration
from both sources can be problematic in some situations.
This is due to the fact that, in general case, the image
and sensoric datasets can have contradictory characteristics,
scales, and requirements for complex processing in one
CNN system. Moreover, the categorization results can be
affected by image quality and by the number of images
used in each class and each branch. By comparing datasets
examples from Fig. 4 (sensoric dataset) and 6 (image dataset),
respectively, the image quality is different, which may impact
the overall results as well. Nevertheless, improved datasets
for both branches can facilitate further enhancement in the
final classification product.

From an application point of view, the proposed solution
for vehicle categorization can be potentially employed for
road transport monitoring within Smart cities, performing an
automatic counting or separation. This also includes dynamic
management to optimize different vehicle classes on the road
or road resources. Moreover, another potential application
field can be found in vehicle speed monitoring or weight-in-
motion function, where heavy vehicles can be diverted from
the main road towards a destined parking lots or to evaluate
the vehicle overload in- or on-side.

IV. CONCLUSION

In summary, we demonstrated a novel neural network archi-
tecture to improve vehicle classification. More specifically,
we used clustered datasets from a hybrid technological plat-
form based on a conventional CCTV system and FBG sensor
array. A novel clustered CNN-based classification system
(with both sensor and image-based datasets) improved vehi-
cle detection accuracy, obtaining precision levels between
90% - 97%, and including a back-up verification with
respect to each technology we used. Collecting data from
two technologically independent platforms can also trade-off
the intrinsic shortcoming of both conventionally decoupled
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solutions. The hybrid CNN concept substantially enhances
the detection accuracy for correct vehicle classification
and opens up a way for effective vehicle classification by
leveraging available and inexpensive technologies.
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