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ABSTRACT An experimental assessment of a ‘‘plug-and-play’’ tiny artificial-intelligence-empowered out-
put filter parameter extraction framework for digital power is presented. The framework can be incorporated
into an existing digital controller to perform online parameter extraction without adding extra sensors or
modifying the power conversion stage. The idea is based on firstly transferring the control from the default
control law to the framework, which consists of a predefined control law to perform output regulation for
a few switching cycles, then introducing a small-signal perturbation into the control signal, and finally
utilizing a long short-term memory (LSTM) network to recognize the dynamic response of the control
signal to perform either regression or classification of filter parameters. The LSTM network is trained
with a reconfigurable output filter. The proposed framework has been successfully evaluated on a 240W,
100V/48V buck DC/DC converter prototype. The framework’s performance is studied by extracting the
parameters of a second-order output filter and a fourth-order output filter. For the second-order output filter,
the root-mean-square errors (RMSEs) in performing the filter inductor and capacitor regressions are 2.35%
and 2.25%, respectively, and the F1-scores in classifying the inductance and capacitance are 0.805 and
0.815, respectively. The framework occupies 0.93% of the memory space of the controller with 512kB flash
memories. The extraction time is 17.3ms. For the fourth-order filter, the maximum RMSEs in performing
the regression of the filter inductors and capacitors are 2.04% and 6.49%, respectively. The framework
occupies 3.62% of the memory space and the extraction time is 328ms.

INDEX TERMS Artificial intelligence, digital power, system identification, neural network, control, power
converters, diagnosis.

I. INTRODUCTION
The latest developments in microelectronics and embedded
system technology have accelerated the penetration ofDigital
Power (DP) to meet the increasingly complex power elec-
tronic systems [1]. DP offers the merits of high flexibility,
high reliability, and system miniaturization. Apart from the
monolithic integration of the power conversion stage (PCS)

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Raza .

and controller, such as proposing sophisticated digital pulse-
width modulation (PWM) techniques to improve power
efficiency in [2] and enhance transient response in [3], main-
stream research also emphasizes dealing with the effects of
sampling and computation delays and nonlinearities [2], [3],
enhancing the characteristics of individual functional block
and control law [4], [5], and optimizing system perfor-
mance [6], [7]. Reference [2] proposes a digital PWM and
low-power self-tracking zero current detector that can achieve
high linearity and low power consumption. Reference [3]
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proposes a digitally controlled buck converter that utilizes
multiple-outputs bang-bang phase detector in a digital phase
locked loop to reduce design complexity and improve tran-
sient response. Reference [4] proposes an FPGA-based hys-
teretic multimode control scheme with two PWM modes
and pulse frequency modulation (PFM) modes for mixed
conduction mode is proposed. Reference [5] proposes a dig-
ital predictive control algorithm for boost-type power factor
corrector with the peak-to-peak inductor current estimated by
a triangular modulation-based predictive control and a known
value of output inductor. In [6], a digital average voltage
and digital average current predictive control achieves a high
output voltage accuracy, wide stability range, and fast tran-
sient response. In [7], the effective resolution of the PWM is
enhanced by using a dithering technique on an ‘‘SoC FPGA’’
that can reduce peak output voltage ripple and lower switch-
ing frequency subharmonics. The control laws are typically
designed by taking circuit parameters into account [5], [6].
For example, in [5], the peak-to-peak inductor is estimated
by taking the value of inductor into account. As discussed
in [6], the control scheme proposed is robust and can keep
converter operate in stable when the circuit parameters have
small variation.

In principle, if the filter parameters can be identified, the
digital controller can adaptively tune the parameters in the
control law to maintain optimal system performance [8], [9].
For examples, the optimal sliding surface function in the
sliding mode control for dynamic voltage restorers in [8]
is dependent on the output filter parameters. The switching
functions in the trajectory prediction control proposed in [9]
requires using output filter parameters to aim at reaching
the steady state in one switching cycle after supply/load
disturbances.

The identified filter parameters can also be used as infor-
mation for monitoring the condition of the filter components,
thereby preventing possible catastrophic faults [10], [11],
[12], [13] and/or parametric faults [14], [15], [16], and thus
reducing the failure rate. The entire system will not break
down unexpectedly and create unplanned downtime. In [11],
different fault conditions are identified by using a Rogowski
coil to sense inductor voltage and a voltage sensor to sensor
diode voltage. The determination of the inductor voltage is
obtained by considering the inductance of the output inductor
and the coupling inductance. A detection method is proposed
in [12] to classify transient fault current and switching inrush
current. An overview of different condition monitoring tech-
niques for DC-link capacitors is given in [13], because the
capacitor is known to be a reliability critical component [14].
A degradation model of capacitors is presented in [15].
In [16], a reference submodule-based capacitor monitoring
method for capacitance estimation in the modular multilevel
converter is proposed. The idea is based on utilizing the
relationships between one capacitor and the others to estimate
the capacitance ratios.

The converter output filter is composed of passive compo-
nents, including inductors, capacitors, and resistors. Among
them, capacitors have the shortest life expectancy and are
susceptible to parametric faults. A large body of literature
is devoted to extracting the intrinsic parameters of output
capacitor, including capacitance and equivalent series resis-
tance (ESR) [13], [16]. The ESR is sometimes chosen as
an indicator to indirectly determine the health condition of
the capacitor as degraded capacitors have their capacitance
reduced and ESR increased.

In theory, the value of each filter component can be com-
puted by processing the sensed voltage and current wave-
forms associated with the component under test [17], [18],
[19]. In addition to requiring extra sensors and increasing
cost, the reliability of the entire system is also negatively
affected. In [17], the idea is based on firstly introducing a
low-frequency signal to the control signal, and then calcu-
lating the capacitor value by sampling the low-frequency
voltage and current associated with the capacitor. In [18],
odd harmonic frequencies are injected by the inverter dur-
ing the night time. The capacitor impedances at different
frequencies are obtained using a tuned bandpass filter. The
ESR and capacitance are estimated by using Least Mean
Square algorithm. In [19], the ESR is calculated by using
high-frequency harmonics in capacitor voltage and current
and the capacitance is calculated by using low-high frequency
harmonics. The harmonics of interest are extracted by the
Goertzel algorithm.

Practically, the operation bandwidth of sensors limits the
measurement of high-frequency voltage and current wave-
forms, such as ripple voltage and ripple current. For example,
reference [20] requires sensing the inductor current peak and
output voltage jump. This is particularly critical for future
power electronic systems that will operate at a high switching
frequency.

Another extraction approach is based on first devising a
circuit model to describe the system dynamics, and then
applying deterministic or stochastic techniques to determine
filter parameters [21], [22], [23]. Since the accuracy depends
on the level of abstraction and sophistication of the model,
characterization of high-order filters and nonlinear behavior
will pose challenges in mathematical modeling and guaran-
teeing the numerical convergence.

To cope with the above issues, this paper gives another
perspective by proposing a ‘‘plug-and-play’’ tiny artificial
intelligence (AI)-empowered output filter parameter extrac-
tion framework for digital power. The idea is based on extract-
ing the features of the dynamics of the duty cycle with a
long short-term memory (LSTM) network to perform either
1) classification or 2) regression of the output filter parame-
ters, after the system is subject to a small-signal perturbation
in the control signal. The proposed framework has the follow-
ing features, and a comparison with other methods has been
given in Table 1:

VOLUME 11, 2023 14729



K. Y.-W. Hong et al.: Experimental Assessment of a Tiny AI-Empowered Output Filter

TABLE 1. Comparison of existing related methods.

1. No additional voltage and current sensors are needed.
Many online parameter identification methods require mul-
tiple sensors. Besides increasing system complexity and
cost, additional sensors have a detrimental effect on system
reliability.

2. The framework is a standalone software module. It can
be incorporated into existing digital controllers to perform
online extraction of output filter parameters.

3. No detailed mathematical models are needed, as the
framework is purely data-driven. Conversely, many param-
eter identification methods require sophisticated system
modeling.

4. The weights and parameters in the LSTM network are
trained under all operational conditions. They are unneces-
sary to be trained for individual converters.

Supervised learning for determining the parameters of the
LSTM network is adopted. The training and testing datasets
are obtained under pre-determined output filter parameters,
realized by a reconfigurable output filter (ROF). The parame-
ters of the LSTM network are trained by a stochastic gradient
descent algorithm. Data pre-processing, network operation,
post-processing of the network output, and network training
are given.

The proposed framework has been experimentally eval-
uated on a 240W, 100V/48V buck DC/DC converter with

its output filter configured as either a second-order LC or
fourth-order LCLC filter. The perturbation causes the output
voltage with ±3.3% variation only.

II. PROPOSED FRAMEWORK
Fig. 1 shows the system architecture of a buck DC/DC
converter with an output filter. The output filter is either a
second-order LC or fourth-order LCLC filter. The detailed
configuration of the output filter is given in Sec. IV-A. The
output voltage vo is regulated at the reference value Vref by a
‘‘default controller’’. The error voltage is ve = Vref − vo. For
the sake of illustration, the default controller executes typical
proportional-plus-integral (PI) control with the proportional
gain of Kp,d and integral gain of Ki,d . It generates a control
signal to dictate the state of themain switch S1. The duty cycle
of the control signal is dd , which is fed to the driving circuit
via a logical selector Ssel .

FIGURE 1. System architecture.

The proposed framework performs the same objective as
the default controller to regulate the output voltage. Upon
estimating the filter parameters, the controller will transfer
the output voltage regulation function from the default con-
troller to the framework temporarily via Ssel . The framework
‘‘Controller’’ in Fig. 1 implements a PI control with the
proportional gain Kp,f and integral gain Ki,f . It generates a
control signal with the duty cycle df in the n-th switching
cycle. Mathematically,

df [n] = Gf (ve[n])

= Kp,f ve[n] + Ki,f
n∑

i= 1

ve[i]Tint (1)

and

ve[n] = Vref − vo[n] (2)
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FIGURE 2. Waveforms of vo, d , df , and dp. (a) Fixed L and variable C . (b) Fixed C and variable L.

TABLE 2. Parameters used in the analysis.

where Tint is the sampling time interval generated by the timer
interrupt and is the same as the switching period of the main
switch.

The duty cycle of S1, d , is superimposed by a perturbed
signal dp, which is defined as

dp[n] =

{
Ap 0 ≤ n ≤ N − 1
0 N ≤ n ≤ 2N − 1

(3)

where Ap is the magnitude of the perturbation.

The duration of the perturbation lasts 2NTint. After engag-
ing the framework, vo starts increasing at n = 0, where dp is
changed from zero to Ap. Conversely, vo starts reducing at
n = N , where dp is changed from Ap to zero. The magnitude
of Ap is chosen such that the peak output voltage overshoot
Vo,max and undershoot Vo,min should be less than that defined
in the specification of the converter.

Therefore, when Ssel = 1,

d[n] = df [n] + dp[n] (4)

Fig. 2 shows the waveforms of d , df , dp, and vo after the
control is switched between the default controller and the
framework with different combinations of the values of L and
C in a second-order output filter (Fig. 1). The nominal values
of L and C are Lnorm and Cnorm, respectively. The parameters
used in the analysis are tabulated in Table 2. It can be observed
that the values of L and C determine the amplitude and
frequency of oscillation of d and vo. Thus, the waveform
of d can be taken as a unique signature to identify the values
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FIGURE 3. LSTM network for filter parameter extraction.

of L and C without using extra sensors to measure the
voltage and current waveforms associated with the compo-
nents. Moreover, the transfer function Gf in (1) exhibits a
low-pass filtering function that can attenuate high-frequency
noise in vo. To make the signature recognize easily, the
values of Kp,f and Ki,f are chosen, such that the entire con-
verter is operated in a lightly damped condition, i.e., with
damping factor close to zero. It is worth noting that the
stability of the proposed framework can be confirmed as
long as Kp,f and Ki,f are designed according to the phase
margin under all possible combinations of inductance and
capacitance [24], [25], [26].

III. PARAMETER IDENTIFICATION USING LSTM
Two LSTM networks having the output using regression
layer and classification layer, respectively, are described. The
regression model is used to estimate the value of each filter
component. It is suitable for providing the default controller
with information to adjust control parameters. The classifica-
tionmodel is used to classify the value of each filter parameter
to a predefined bin. The number of bins and bin size are user-
defined. It is suitable for one to estimate the condition of the
output filter.

Fig. 3 shows the LSTM network utilizing a sequence-to-
one model [27]. It consists of an input layer, a hidden layer,
and an output layer. The hidden layer contains LSTMcell. For
illustration, the network is unrolled through time to process
input data x at every time step. The hidden state h[n] and
the cell state c[n] are updated by the LSTM cell and then
passed to the next time step. At the end of the calculation,
i.e., n = N , the network gives the output y. The elements of yr
are estimated values for the filter parameters in the regression
model while the elements of yc are probabilities of each bin
in the classification model.

FIGURE 4. Formulation of the input layer.

FIGURE 5. Structure of LSTM cell.

A. PRE-PROCESSING OF SAMPLED DUTY CYCLE
The sampled duty cycle is filtered, down-sampled, normal-
ized to the steady-state characteristics and performed differ-
ential from the time series of the best-fit averaged duty cycle
response in the training process. The duty cycle df is firstly
filtered by a moving average filter. The time series of the
averaged duty cycle d̃f

d̃f [n] =
1
Wdf

n+Wdf − 1∑
i= n

df [i]s (5)

whereWdf is the window size of the moving average filter.
Since the natural frequency of the output filter is signif-

icantly less than the switching frequency, the input to the
LSTM network is down-sampled. The averaged duty cycle is
taken for the network in everyWDS samples. The time series
of the down-sampled duty cycle d̃f ,DS is

d̃f ,DS [n] = d̃f [nWDS ] (6)

for 0 ≤ n ≤ 2N – 1.
Thus, the data length of the time series of df and d̃f equals

2N WDS . d̃f ,DS is then normalized by multiplying the ratio
between the nominal steady-state duty cycle Dnorm in the
training process and the actual steady-state duty cycle Dact
in the operation. The normalized duty cycle d̃f ,DS,norm is

d̃f ,DS,norm[n] =
Dnorm
Dact

d̃f ,DS [n] (7)

Its difference, denoted by d̂f , from the time series of the
averaged duty cycle d̄train, which is obtained from the a-th

14732 VOLUME 11, 2023



K. Y.-W. Hong et al.: Experimental Assessment of a Tiny AI-Empowered Output Filter

FIGURE 6. Example of the bin assignment.

dataset in the training process, is calculated by

d̂f [n] = d̃f ,DS,norm[n] − d̄train[n] |a (8)

where d̄train[n] |a =
1
E

E∑
i=1

d̃f ,DS,norm,i[n] |a , E is the number

of the time series of the duty cycle in the a-th dataset in the
training process, and d̃f ,DS,norm,i[n] |a is the n-th sample of
the i-th time series in the a-th dataset.
The a-th dataset is chosen to be the one that has minimum

Euclidean distance between d̃f ,DS,norm and d̄train among ρ

datasets in the training process. Mathematically,

a = argmin
i

(
2N−1∑
n=0

(d̃f ,DS,norm[n] − d̄train[n] |i )2),

∀i ∈ {1, . . . ,ρ} (9)

B. ALIGNMENT OF DATA FOR THE INPUT LAYER
OF THE LSTM
The input layer records the time series of d̂f at every step.
However, to assist the LSTM to extract the features from the
input data effectively, the input data x is composed of aligned
time series of d̂f under different perturbations. As shown in
Fig. 4, each perturbation section of d̂f , as defined in (3),
is considered as an individual feature. Based on Fig. 4, there
are perturbations, including ‘‘Perturbation 1’’ with dp = Ap
and ‘‘Perturbation 2’’ with dp = 0. The input data x is
constructed as a matrix with each row corresponding to one
feature. Mathematically,

x[k] =

[
d̂f [k]

d̂f [k + N ]

]
, ∀ k ∈ [ 0, N − 1 ] (10)

C. OPERATION OF THE LSTM CELL
The structure of the LSTM cell is shown in Fig. 5 [28].
It contains two memory contents c[n] and h[n], and three
gating operations, including input gate σi, forget gate σf and
output gate σo, to control the flow of information. c[n − 1]
contains the information aggregated from historical data and
operations. h[n], which contains short-term historical infor-
mation, is passed to the next step for cell operation. h[N ] acts
as the output of LSTM cell at the last step. σi governs the
proportion of x[n] that enters the network cell. σf determines
whether c[n] should be reset. σo determines the magnitude
of the scaled c[n] in calculating h[n]. σi, σf , and σo are all
dependent on the historical information and current input.

The computations within the LSTM cell include

i[n] = σi(wxix[n− 1] + whih[n− 1] + bi) (11)

f[n] = σf (wxf x[n− 1] + whf h[n− 1] + bf ) (12)

o[n] = σo(wxox[n− 1] + whoh[n− 1] + bo) (13)

g[n] = tanh(wxgx[n− 1] + whgh[n− 1] + bg) (14)

c[n] = f[n] ⊙ c[n− 1] + i[n] ⊙ g[n] (15)

h[n] = o[n] ⊙ tanh(c[n]) (16)

where

σi = σf = σo = σ (k) =
1

1 + e−k
(17)

tanh(k) =
e2k − 1
e2k + 1

(18)

andw∗ and b∗ represent the network weight and bias, respec-
tively. For example, wxi is the weight of x for σi, whi is the
weight of h for σi, and bi is the bias of σi. Element-wise
sigmoid functions σ∗ is used as an activation function of each
gate, hyperbolic tangent tanh is used as an input activation
and cell state activation and ⊙ is an element-wise product.
Training of w∗ and b∗ is described in Sec. IV.

D. OUTPUT LAYER
After obtaining the output of the LSTM cell at the last step,
i.e., h[N ], the output of the framework is determined by two
possible output layers. They are regression layer and classi-
fication layer. Their corresponding models are described as
follows.

1) USING REGRESSION LAYER
The output of the regression model, yr , is calculated by

yr = wrh[N ] + br (19)

where wr and br are the weight and bias of the output layer
of the regression model, respectively.

The dimension of yr equals the number of filter parameters
to be identified. For example, for a second-order LC filter, the
dimension of yr is two with one of its elements representing
the value of L and another element representing the value
of C .

2) USING CLASSIFICATION LAYER
For classification model, the dimension of the output vector a
is firstly transformed by the following equation,

a = wch[N ] + bc (20)

where wc and bc are the weight and bias of the classification
layer, respectively. The dimension of a equals the number of
bins in the classification model. Softmax function is used to
calculate the probability of the estimated parameter in each
bin. The probability of the i-th bin yc,i is calculated by

yc,i =
eai

Q∑
j=1

eaj
(21)
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FIGURE 7. ROF. (a) IB. (b) CB. (c) IBBU. (d) CBBU.

FIGURE 8. Connection of the ROF to a buck converter with second-order
output filter.

where ai is the i-th element of a and Q is the total number of
bins.

The bin with the highest probability is the one that the
considered filter parameter is classified.

Fig. 6 shows the allowable variation of a filter parameter,
ranging from -Z % to +Z %. The range is divided into
seven sub-ranges. Each sub-range is called ‘‘bin’’. Depend-
ing on the classification requirement, the bin size can be
evenly or unevenly distributed. Fig. 6 shows an example that
the bin size around the nominal value is smaller than the
one away from the nominal value. Thus, the system will
recognize slight change or degradation of the filter param-
eters at the early stage. It is considered as the point of
interest (POI).

If the value of a filter parameter is close to the boundary
of two adjacent bins, the estimated probabilities falling into
the two bins are similar and thus the classification becomes
uncertain. A post-processing technique is used.Q-1 fictitious
bins, namely F-Bins, are introduced to represent filter param-
eter values around bin boundaries. The considered filter
parameter will be classified into bin bnew with the following
criteria (22), as shown at the bottom of the page, where borig is
the original bin predicted without post-processing and α is the
threshold to perform the post-processing.

For example, if Z % = 25%, Q = 7, α = 0.2, the seven
originally defined bins are [−25%, −13%), [−13%, −5%),
[−5%, −1%), [−1%, 1%), [1%, 5%), [5%, 13%), and [13%,
25%], and the six fictitious bins are [−15.6%, −10.4%],
[−6%,−4%], [−1.2%,−0.8%], [0.8%, 1.2%], [4%, 6%] and
[10.4%, 15.6%].

The performance of the post-processing technique is evalu-
ated by comparing the predicted bin bnew (using eq. (22)) with
the actual bin and/or actual F-Bin. Table 3 shows the evalua-
tion criteria. The principle is that the evaluation is correct if
the calculated bin number, no matter originally defined bin or
fictitious one, correctly matches with the corresponding bin
type.

E. ROBUSTNESS AGAINST SAMPLING NOISE
After Considering that sampling noise might influence the
estimation performance of the LSTM network. As dis-
cussed in [29] and [30], input-to-state stability (ISS) can be
used to verify the robustness of the trained LSTM network
against sampling noise. With the LSTM network defined
in (11)-(18), the ISS of a trained LSTM network can be
assured if the following inequalities are met,

(1 + σ (|wxo who bo |∞))σ (|wxf whf bf |∞) < 1 (23)

(1 + σ (|wxo who bo |∞))σ (|wxi whi bi |∞)|whg|1 < 1 (24)

bnew =


2borig − 1

2
, if borig − 1 ≥ 1 and yc,borig−1 > yc,borig+1 and

∣∣yc,borig−1 − yc,borig
∣∣ < α

2borig + 1
2

, if borig + 1 ≤ Q and yc,borig−1 < yc,borig+1 and
∣∣yc,borig+1 − yc,borig

∣∣ < α

borig, otherwise

(22)
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where σ denotes the sigmoid activator defined in (17) and |·|n
denotes the induced n-norm of the matrix.

IV. NETWORK TRAINING
The LSTM network is trained by using a ROF that can be
programmed to give different combinations of the values of
the output inductance and output capacitance. The parameters
in the LSTM network are trained by a stochastic-gradient-
descent-based algorithm [31].

A. ROF
As shown in Fig. 7, the ROF is constructed by an inductor
bank (IB) and a capacitor bank (CB). The IB consists of
several series-connected basic units, namely (IBBUs), with a
series inductor LF . The CB consists of two series-connected
capacitor bank basic units (CBBUs) and a fixed capacitor CF
connected across them. The numbers of IBBU and CBBU
used in the IB and CB, respectively, depends on the required
resolution of the combinations.

TABLE 3. Evaluation of the post-processing method.

Each IBBU is constructed by K (or K + 1) relays, SL,1,
SL,2, . . . , SL,K , and/or SLP and K fixed-value inductors,
L1, L2, . . . , LK . A relay is connected in series with each
inductor, forming a branch between the two terminals of
the IBBU. SLP is connected between the two terminals of
the IBBU.

Each CBBU is constructed by M (or M+ 1) relays,
SC,1, SC,2, . . . , SC,M , and/or SCP and M fixed-value capac-
itors, C1, C2, . . . , CM . A relay is connected in series with
capacitor, forming a branch between the two terminals of
the CBBU. SCP is connected between the two terminals of
the CBBU.

With multiple IBBUs and CBBUs connected in series, the
number of combinations of equivalent output inductance and
capacitance can be increased. An output filter with differ-
ent frequency characteristics can then be configured. Fig. 8
illustrates how the IB and CB are connected to a buck con-
verter. The state of the relays is controlled by a low-speed

FIGURE 9. Training procedure of the LSTM network.

microcontroller because the operating frequency of the relays
is very low.

B. TRAINING OF THE LSTM NETWORK
The time responses of the duty cycle upon subjecting the same
perturbation method, as depicted in Sec. III, under different
combinations of the output filter parameters with the ROF and
the output powers are conducted to train, validate, and test the
LSTM network parameters in Fig. 5. Let NLC be the number
of combinations of the output filter parameters and ρ be the
number of output power levels in the entire training process.
The time responses are divided into ρ datasets. Each dataset
represents the system response at one power level. It contains
NLC time series of the duty-cycle response df corresponding
to NLC output filter parameter combinations. In other words,
there are NLC × ρ time series. They are randomly classified
into three sets. 70% of the time series is used to train the
LSTM network, 20% of the time series is used to validate
the hyperparameters, and 10% of the time series is used to
test the LSTM network.

Let NT be the number of time series chosen for the training
in one batch. At the start of the training process, the network
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parameters are randomly chosen. Then, they are determined
through a stochastic-gradient-decent-based algorithm. The
procedure is shown in Fig. 9. By using the ROF, Dnorm is
determined and df are collected and divided into ρ datasets.
For each df , d̃f ,DS,norm are calculated by (5)–(8). Then,
ρd̄train are obtained. No matter in the training, validation
or testing, each df is being evaluated with the following
procedure. First,Dact is taken from the steady-state duty cycle
before the framework is engaged. d̄train is chosen among ρ

datasets, where the a-th dataset is selected by using (9). Then,
the network input x is formulated with (5) – (8) and (10),
as described in Sec. III-A and III-B. Finally, the output filter
parameters are estimated with the LSTM using (11)-(22).

During the training process, the estimated output filter
parameters are compared to the actual filter parameters. The
difference is called ‘‘loss’’. For the regression model, the loss
ℓ of the NT estimated output filter parameters is defined as

ℓ =
1
2

NT∑
i=1

R∑
j=1

(yr,e,i,j − yr,t,i,j)2 (25)

where R is the number of components in the output filter,
and yr,e,i,j and yr,t,i,j are the estimated and actual value of
the j-th component value associated with the i-th time series,
respectively. yr,e,i,j is obtained by (19).

TABLE 4. Nominal, Minimum and Maximum Values of the Output Filter
Components.

TABLE 5. Network and training parameters.

For the classification model, the loss ℓ is defined as

ℓ = −
1
NT

NT∑
i=1

Q∑
j=1

yc,t,i,j log yc,e,i,j (26)

where yc,e,i,j is the estimated probability of the j-th bin of the
i-th time series, and yc,t,i,j is the actual probability of the j-th
bin of the i-th time series. yc,e,i,j is obtained by (21). yc,t,i,j is
either 0 or 1. It is equal to 1 if the j-th bin is the actual class
of the i-th time series.

The network parameter set θ is updated by using gradient
descent algorithm

θt+1 = θt − λ
∂ℓ

∂θt
(27)

where λ is the learning rate, and θ ∈ {wxi,whi,wxf ,whf ,wxo,

who,wxg,whg,bi,bf , bo,bg,wr ,br } in the regression model
or θ ∈ {wxi,whi,wxf , whf ,wxo,who,wxg,whg,bi,bf ,bo,
bg,wc,bc} in the classification model.

After an epoch has finished, the entire training set is reused
for the next epoch. The training process is terminated if the
loss remains over a few epochs, implying that the network
performance has been maximized. The entire validation set
is evaluated after a number of epochs. The loss obtained with
the validation set is used to 1) monitor the training process,
2) prevent the network from overfitting the training data,
and 3) tune the hyperparameters used in the training process.
Upon completing the training process, the performance of
the framework is evaluated with the testing set. The training
process will be terminated manually if the losses obtained
with the training set and the validation set diverge.

V. EXPERIMENTAL VERIFICATIONS
The effectiveness of the proposed framework has been evalu-
ated on a 240W, 100V / 48V DC-DC buck converter. Two
types of output filters have been tested. They are second-
order and fourth-order filters. Fig. 10(a) and 10(b) show the
schematics of the converter with the two types of filters,
respectively. The nominal values of the components for the
two types of filters are tabulated in Table 4.

The default controller is of Type-II and the control param-
eters are given in Table 2. The switching frequency and the
sampling frequency of the controller are both 100kHz. Fig. 11
shows the photo of the ROF, which was built in the labora-
tory. Each IBBU consists of multiple fixed-value inductors
and CBBU consists of multiple fixed- value capacitors. Two
IBBUs and two CBBUs are used. The nominal (Nom), min-
imum (Min) and maximum (Max) values of the inductors
and capacitors in the output filters in Fig. 10(a) and (b) are
tabulated in Table 4.
The training process is performed on a computer using

AMD Ryzen 3950X CPU and Nvidia RTX3080Ti GPU,
the average training time is less than 13 minutes for the
second-order output filter and less than 60 minutes for
the fourth-order output filter. The network and training
parameters are given in Table 5. During the training pro-
cess, 64 samples are randomly sampled as a batch to
update the network and the entire training set is processed
100 times (Epoch).

After the training process on a PC is completed, theweights
and parameters in the LSTM network are downloaded to the
digital controller to control the PCS and identify output filter
parameters. Since they have already included all operational
conditions in the PCS, it is unnecessary to train the LSTM
network for individual converters. Thus, in the following
discussions, the resources used in the training process are not

14736 VOLUME 11, 2023



K. Y.-W. Hong et al.: Experimental Assessment of a Tiny AI-Empowered Output Filter

FIGURE 10. Circuit schematics of the converter.

FIGURE 11. Photos of the converter with the ROF.

included. The additional computational resources, including
storage space and computation time, required to perform the
proposed parameter estimation framework (‘‘framework’’)
on the digital controller are briefly given in Table 6.
Nowadays, microcontrollers contain a lot of memory. For

example, STM32F4 has 512kB flash memories. The frame-
work only occupies 0.93% (4.768 / 512) of the memory space
in executing the framework for a converter with LC filter,
and 3.62% (18.54 / 512) of memory space in executing the
framework for a converter with LCLC filter. It can be easily
integrated into a microcontroller. Even if the operation of
the framework is non-time critical, it only takes 9.3ms and
320ms to extract LC and LCLCfilter parameters, respectively,
in the LSTM computation, and the two perturbations take
8ms. The overall time taken to execute the framework is
17.3ms and 328ms to extract LC and LCLC filter parameters,
respectively.

By substituting the trained weights and bias of the LSTM
obtained in the experiment into (23) and (24), both inequal-
ities are satisfied. It implies that if the sampling noise is
bounded, the state of the LSTM would also be bounded and
global asymptotic stability, demonstrating the robustness of
the trained LSTM network to sampling noise.

Fig. 12 shows the waveforms of the output voltage vo
and inductor current iL with the second-order output filter.
Fig. 13 shows the waveforms of capacitor voltage vC4,1 , the

FIGURE 12. Waveforms of vo (1 V/div, 45 V offset) [blue] and iL (2 A/div)
[purple]. (Timebase: 2 ms/div).

output voltage vo, and inductor currents iL4,1 and iL4,2 with
the fourth-order output filter. In both cases, four operating
intervals, including [t0, t1], [t1, t2], [t2, t3], and [t3, t4], are
identified. During the time intervals [t0, t1] and [t3, t4], vo
is regulated by the default controller. During the time interval
[t1, t2] and [t2, t3], the control is transferred to the framework.
The framework lasts for 8ms. In the time interval [t1, t2], the
duty cycle of the main switch is initially perturbed by 1%
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FIGURE 13. Waveforms of vC4,1 (2 V/div, 45 V offset) [blue], vo (2 V/div,
45 V offset) [cyan], iL4,1 (5 A/div) [purple] and iL4,2 (5 A/div) [green].

FIGURE 14. Histograms of the NRMSE of the second-order output filter.
(a) L2,1. (b) C2,1.

for the converter with the second-order output or 2% for
the converter with the fourth-order output filter. Then in
the time interval [t2, t3], the injected signals are removed.
It causes vo having a peak-to-peak variation of 2.38V and
3.0V, respectively for the two types of output filters. The per-
formance in extracting the two types of output filters is given
below.

A. SECOND-ORDER OUTPUT FILTER
1) REGRESSION
The results are obtained from evaluating the testing set that
includes datasets of the output power changing from 20%
of the rated power to 100% of the rated power and input
voltage changing from 80V to 120V. The histograms of the
normalized root-mean-square error (NRMSE) of each sample
in the testing set in 20 runs are shown in Fig. 14. Table 7
shows the mean RMSE, NRMSE, and the 95% confidence
interval (CI) of the results. The results show that the NRMSE
of the estimated values of L2,1 andC2,1 are 2.35% and 2.25%,

TABLE 6. Additional computational resources for the framework.

TABLE 7. Mean RMSE, NRMSE, and 95% CI of the regression model of the
second-order output filter.

TABLE 8. Mean F1-Score and 95% CI of the classification models of the
second-order output filter.

respectively. Majority of the NRMSE is about 2%, which is
practically acceptable.
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FIGURE 15. Statistical populations of the F1-scores of the L2,1 classifiers and the C2,1 classifiers.

FIGURE 16. Histograms of the NRMSE of the fourth-order output filter. (a) L4,1. (b) L4,2. (c) C4,1. (d) C4,2.
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TABLE 9. Mean RMSE, NRMSE, and 95% CI of the regression model of the
fourth-order output filter.

2) CLASSIFICATION
The statistical populations of the F1-scores of the L2,1 clas-
sifiers and the C2,1 classifiers trained in 20 runs are shown
in Fig. 15. Identical to the regression model, the testing set
contains the same output power and input voltage varia-
tions. Table 8 shows the mean F1-scores and the 95% CI
of the results. The results show that the F1-scores of the
L2,1 classifiers and the C2,1 classifiers are 0.805 and 0.815,
respectively. By introducing the F-Bin, the F1-scores of both
L2,1 classifiers and C2,1 classifiers are improved by more
than 0.078.

B. FOURTH-ORDER OUTPUT FILTER
For the fourth-order output filter, regression models are
trained to estimate the four filter parameters. It is because,
on the one hand, the capabilities of the proposed frame-
work have been demonstrated in the second-order case.
On the other hand, the regression model provides better
understanding of the filter parameter. The histograms of
the NRMSE of each output filter parameter are shown in
Fig. 16. Table 9 shows the mean RMSE, NRMSE, and the
95% CI of the results. The results show that the NRMSE
of the estimated values of L4,1, L4,2, C4,1 and C4,2 are
0.28%, 2.04%, 6.49% and 2.80%, respectively, which is gen-
erally acceptable except there is room for improvement in
estimating C4,1.

VI. CONCLUSION
A ‘‘plug-and-play’’ tiny artificial-intelligence-empowered
output filter parameter extraction framework for digital power
has been presented. The framework is a software module that
can be incorporated into a digital controller to extract output
filter parameters without adding extra sensors or modifying
the circuit. An LSTM network extracts the filter parame-
ters by recognizing the response of the duty cycle through
the framework after subjecting a perturbation into the duty
cycle. Detailed descriptions on the pre-processing of sam-
pled duty cycle, alignment of data for the input layer of
the LSTM, the operation of the LSTM cell, the training of
the LSTM network, and method to test the robustness of the
LSTM against sampling noise have been given. The proposed
framework has been tested and evaluated successfully on
a 240W 100V/48V buck DC/DC converter with its output
filter configured as either a second-order LC or a fourth-order
LCLC filter. Regression models and classification models are
both trained to estimate the filter parameter with acceptable

results in practice. The proposed framework can be applied in
industrial applications where the online identification of filter
parameters is required especially if no additional sensors
are expected to be added. These applications include but
are not limited to fault diagnosis, aging monitoring, model
predictive control, EMI design, etc. In the future, the pro-
posed framework can be further improved by incorporating
software simulator training instead of building the ROF for
data collection.
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