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ABSTRACT As deep learning (DL) models have been successfully applied to various image processing
tasks, DL models, particularly convolutional neural networks (CNN), have been introduced into the
geosciences to assist geologists in faster seismic interpretation. However, the generalization of DL-based
fault interpretation is a challenge. When applied to seismic data with different characteristics, their
performance degrades significantly. Several recent studies have proposed transfer learning techniques,
in which similar but different source tasks are assumed to benefit the target task. However, it is unclear
which source datasets would be most beneficial for this particular task (i.e. fault interpretation). In this
paper, we first demonstrate through a systematic literature review that synthetic seismic datasets are the
most popular source datasets in this area. Further, previous studies have not compared them with other types
of datasets. Then, we demonstrate experimentally that the choice of source dataset should be influenced by
the amount of annotation available in the target dataset. In addition, normalisation appears to be an essential
factor in fine-tuning techniques, particularly when interpreting faults. Finally, state-of-the-art performance
was achieved on the ThebeFault dataset (0.903 for AP, 0.849 for OIS and 0.845 for ODS). Our code is
publicly available at: https://github.com/anyuzoey/pretrain.

INDEX TERMS Deep learning, fault, seismic interpretation, transfer learning.

I. INTRODUCTION
Seismic interpretation, a process of analysing and inter-
preting seismic data, is essential for obtaining subsurface
geological information such as geological structures and
natural resources. In recent years, seismic interpretation
algorithms based on DL have gradually emerged due to
the high sensitivity of seismic datasets, the high variability
of geological structures, the time-consuming and labour-
intensive manual annotation, and the excellent performance
of DL algorithms in other fields. However, DL algorithms
are also data-hungry, leading to most DL-based seismic
interpretation literature using synthetic seismic datasets.

Recent work such as [1] and [2] has argued that DLmodels
trained directly using synthetic datasets show unsatisfactory
performance on field seismic datasets because synthetic
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datasets are very different from real datasets. Even if a
field seismic dataset is used to train a DL model, the
trained DL model may still perform poorly on the new
field seismic dataset due to the significant characteristic
differences between different seismic datasets [3]. Therefore,
transfer learning techniques have been proposed to alleviate
this problem.

Transfer learning solves the problem of insufficient
training datasets by transferring knowledge from a source
domain (e.g. a synthetic dataset) to a target domain (e.g. a new
target dataset) [4]. A common assumption of transfer learning
is that the accuracy of the target dataset will benefit from the
knowledge learned from similar but not identical datasets.
It is difficult to define the similarity between two datasets,
especially for pixel semantic segmentation tasks. In computer
vision, ImageNet (a large-scale image classification dataset)
is often chosen as the default pre-training dataset, and most
achieve satisfactory performance regardless of the specific
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vision task. This choice implies an assumption that image
datasets are all similar. Nevertheless, [5] mentioned that
several medical image processing pieces of literature believe
non-medical source datasets may be too different from the
target medical dataset and will not provide useful prior
knowledge [6], [7], [8]. Reference [5] then performed several
experiments and concluded that ImageNet is the best source
dataset for medical datasets and that the size of the source
dataset is disproportionate to its performance on the target
medical dataset.

Like medical image datasets, seismic datasets are
signal-imaged and differ significantly from optically imaged
natural image datasets such as ImageNet. Whether this
difference affects the effectiveness of the prior knowledge
provided by natural image datasets on seismic datasets still
needs to be explored. Besides, much literature in seismic
data interpretation that adopted transfer learning uses seismic
datasets as source datasets by default without a doubt of
whether it is the best for this specific task. Thus, we are
motivated to compare the popular computer vision datasets
with seismic datasets and investigate which type would be
the best source dataset for seismic interpretation tasks.

The highlights of this paper are as follows:

• Provided the first systematic literature review on
deep transfer learning and seismic fault interpretation.
Revealed synthetic seismic data is almost the default
source dataset in the domain literature.

• Conducted the first investigation regarding the influence
of different source datasets on the effectiveness of DL
fault interpreters when transfer learning was used.

• Demonstrated that applying transfer learning does not
necessarily lead to a better outcome; seismic source
data is not always the best option; and it is important
to consider the number of annotations available in the
target dataset when choosing the source dataset.

• Analyzed the impact of normalisation and outliers onDL
fault interpreters.

• Achieved state-of-the-art performance on the Thebe-
Fault dataset.

The remainder of this paper is organised as follows.
Section II presents our systematic literature review of the
source datasets used for DL-based fault interpreters. Sec-
tion III describes the datasets involved. Section IV documents
the methodology. Section V provides experimental results
while Section VI gives a discussion of experimental results,
limitations and futureworks. Finally, our paper is summarised
in Section VII.

II. SYSTEMATIC LITERATURE REVIEW
Geological faults are planar fractures in the Earth’s crust
that are often associated with the accumulation of natural
resources such as oil and gas [2]. Fault interpretation is one
of the most critical components of seismic interpretation,
focusing on locating and annotating geological faults (i.e.
the black lines in the Fig. 3 ThebeFault and FaultSeg

annotations) on seismic data. Fault interpretation is partic-
ularly challenging due to the thinness of the target. It was
not until 2018, as shown in Fig. 1, that DL techniques were
successfully incorporated into fault interpretation. DL-based
fault interpretation models have evolved rapidly since
then, demonstrating encouraging results on seismic datasets
[2], [9]. In response to the demands of big data-based DL
algorithms, two seismic datasets have been made publicly
available in 2019 and 2021 respectively. Nevertheless, some
recent literature has highlighted the fact that most supervised
trained CNN fault interpreters are unable to correctly connect
newly acquired seismic data with the training data, resulting
in unsatisfactory generalization performance on new seismic
data [1]. This phenomenon is primarily associated with two
challenges in this task: 1. the huge variation in seismic data
characteristics. 2. DLmethods’ high data volume requirement
while obtaining seismic fault annotations is difficult.

Transfer learning techniques, which focus on improving
the learning of new tasks by transferring knowledge of
known tasks, are particularly well suited to deal with
the two challenges mentioned above. Transfer learning on
DL methods is called deep transfer learning. The most
popular class of deep transfer learning is network-based deep
transfer learning methods. Its basic principle is that shallow
convolutional layers learn features of low-level generic visual
cues such as angles and edges. In contrast, the deeper
convolutional layers gradually move towards complex visual
cues focused on objects and highly relevant to the target
task. This technique directly reuses partial or all of the
pre-trained weights and fine-tunes the weights to suit the new
task [4]. With the success of transfer learning in other DL
tasks, network-based deep transfer learning has been adopted
recently in geoscience. It relaxes the required training data
volume and alleviates the poor generalisation ability of
current CNN fault interpreters to new seismic datasets [1].

Although much literature has successfully applied the
network-based deep transfer learning technique in the fault
interpretation task, there is a lack of systematic review
on what source dataset is often used for the specific
seismic fault interpretation task and for what reason. Here,
a systematic literature review was conducted in accordance
with Kitchenham’s best practice systematic review guide-
lines [10]. The detailed flowchart is shown in Fig. 2.
In response to the research questions we want to answer,
we focus on papers using neural networks and involving
pre-training and fine-tuning for the fault interpretation task.
On 2 April 2022, we searched articles that include ‘‘seismic’’,
‘‘neural network’’, and ‘‘fault’’ in the title or abstract and
contain the keywords ‘‘pre-train’’ or ‘‘fine-tune’’ in the full
text. Articles should be peer-reviewed journal articles or
conference research articles as they are of high quality.

Two well-known digital libraries (IEEE Xplore and
Science Direct) were searched, and a total of 13 research
papers were retrieved. One was excluded because it was
irrelevant to seismic data, and four were excluded because
keywords only appeared in related work. Besides, one paper,
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FIGURE 1. The developmental trajectory of fault interpretation. Among them, we indicate the occurrence time of two seismic datasets and
seven selected literature.

FIGURE 2. Flowchart showing our literature search inclusion process.

which uses pre-trained weights to build a complex ensemble
network, is excluded as it is irrelevant to our research focus.
As a result, seven research papers were involved in the
analysis.

The most popular source dataset category is synthetic
seismic datasets, with five of the seven (71.4%) papers
selected falling into this category [1], [11], [12], [13], [14].
A typical background is that synthetic seismic datasets are
often used to train the DL-based fault interpreters, and
the trained models are generalised poorly on field seismic
datasets. Fine-tuning techniques are, therefore, used to
address this problem. In addition to the above five articles, [2]
mentioned using fine-tuning techniques to improve their

DL-based fault interpretation models trained from field
seismic datasets.

For both types of articles, the fine-tuning technique was
only used to improve the performance of DL models on
newfield seismic datasets without considering the differences
in the source datasets and their effectiveness. Other than
the above six articles, [15] discusses the difference between
having a source dataset and not. This article used the
ImageNet dataset (default choice in computer vision) as
the source dataset and significantly improved the prediction
results. However, it did not discuss the difference between
ImageNet, a non-seismic dataset, and seismic datasets
regarding the target seismic interpretation problem. Among
them, only [1]mentioned comparing ImageNet with synthetic
seismic data as one of the potential future works. Therefore,
in this work, we compare several popular computer vision
datasets, including ImageNet, with seismic datasets for the
first time to investigate which can provide better prior
knowledge for the target seismic fault interpretation task.

III. DATASETS
In this paper, we involved five different datasets, two (i.e.
ThebeFault, FaultSeg) of which are seismic datasets and three
(i.e. ImageNet, COCO, BSDS500) of which are non-seismic
datasets. All datasets involved are publicly available datasets.
Table 1 presents the summary of the five datasets including
their source links. Fig. 3 shows some visual examples of each
dataset.

ThebeFault [2], [3], [19], [20] is a large geological fault
dataset obtained by experts from the Fault Analysis Group
at University College Dublin, annotated on the seismic data
allocated from the ThebeFault gas field, located on the
North West Shelf of Australia. The size of this dataset is
1803[inline]×1537[sample]×3174[crossline]. As described
in [2], the dataset contains three subsets: the training set, the
validation set and the test set. The first 900 inline sections
were divided as the training set, followed by 200 inlines as
the validation set, and the final 703 inlines as the test set.
The processed training and validation sets are 181,029 and
64,317 patches of size 96 × 96 pixels, respectively. This is
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FIGURE 3. Illustration of involved dataset: ThebeFault [3] (left is seismic data, right is fault annotation), FaultSeg [9] (three
image-annotation pairs, left are synthetic seismic data, right are fault annotations), ImageNet [16] (six image-annotation pairs,
upper are image data, lower are corresponding image-level label/annotations.), COCO [17] (two image-annotation pairs, left are
image data, right are semantic segmentation annotations.), BSDS500 [18] (two image-annotation pairs, left are image data, right
are edge/contour annotations).

TABLE 1. Details of the datasets involved in this paper.

the largest publicly available expert-annotated field seismic
dataset, to the best of our knowledge.

FaultSeg is a well-known 3D synthetic seismic data
proposed by [9] to train a CNN fault interpreter. The paper
proposes a seismic data-generating approach that can gener-
ate seismic images and corresponding fault annotations with
various characters by customising different combinations
of parameters (e.g. seismic fold level and fault structure,
wavelet peak frequency magnitude and noise intensity). This
approach generates datasets that theoretically cover enough
geological structures and should perform well on different
field seismic datasets. Based on the above assumption and

the fact that it is so far the most popular synthetic seismic
baseline dataset in this area, we believe this dataset can
provide sufficient prior experience related to geological fault
recognition. This dataset has 220 seismic cubes of size 128×

128×128. Among them, 200 belong to a training set, and the
other 20 are split into a test set.

ImageNet dataset proposed in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [16] is the most
popular image classification benchmark in the image pro-
cessing domain. It provides the first large-scale open-source
dataset with 1000 object classes and 1,281,167 training
images, 50,000 validation images and 100,000 test images.
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FIGURE 4. Overview of the methodology. The experimental group has an additional component where models are pre-trained on the
source dataset than the control group. There are three main areas of interest in this paper. 1. the impact of source dataset selection, 2. the
amount of annotations in the target dataset that can be involved in fine-tuning, and 3. the impact of image processing methods, especially
normalisation.

ImageNet is therefore often considered one milestone in the
history of DL development and often used as the default
pre-training source dataset for different image processing
tasks [21]. Images in ImageNet are all coloured images
captured by commercial cameras with an average size of
469 × 387 pixels.
The Common Objects in Context (COCO) Dataset [17] is

another popular computer vision baseline for object detec-
tion, segmentation and captioning tasks and a popular source
dataset choice. In this paper, we focus on how this dataset
will contribute to the task of fault interpretation. As fault
interpretation is often considered an image segmentation task,
we hypothesise this dataset may be more similar to seismic
fault interpretation datasets than ImageNet. Here we use the
pre-trained weights trained from the COCO dataset provided
by PyTorch for its ease of use [22]. In PyTorch, the weights
were trained using 20 of the 91 stuff categories from the
COCO train2017 version. The corresponding training set
was 95,279 coloured images with an image size of 640 by
480 pixels.

Berkeley Segmentation Data Set 500 (BSDS500) [18] is a
classic benchmark for the edge detection task. Annotations
include object contours, interior object boundaries and
background boundaries. Multiple annotators annotate each
image. As faults yield otherwise continuous rock layers
discontinuous, traditional fault interpretation usually involves
using edge detection algorithms. We hypothesise that this
popular edge detection dataset may be closer to the seismic
fault interpretation task and provide useful prior knowledge.
Therefore, we selected and introduced this dataset in our
experiments. The dataset consists of 500 colour images
divided into three parts, of which 200 are used for training,
100 for validation and the remaining 200 for testing.

IV. METHODOLOGY
In the systematic literature review described above,
we demonstrate that seismic datasets, particularly synthetic
datasets, are often used as source datasets. And, there is a lack

of literature exploring the effects of source datasets on the
CNN fault interpreter. Therefore, this paper focuses on filling
this research gap. More specifically, we aimed to answer
the following two research questions. RQ1: When using
transfer learning, how do different source datasets affect the
effectiveness of CNN fault interpreters? RQ2: Is the amount
of annotations within the target set relevant to the choice of
source dataset?

For RQ1, we can break it down into two sub-questions:
What source datasets (i.e. seismic or non-seismic) are
most beneficial for fault interpretation? Do different source
datasets always lead to positive results? To investigate these
questions systematically, we created a control group and
an experimental group, as shown in Fig. 4. The control
group represents DLmodels trained from scratch (i.e. random
initialisation of weights) using only the training set of
the target dataset. The experimental group represents fault
interpreters trained with a priori knowledge. Specifically, the
DL models were trained using one of the source datasets and
then fine-tuned using the target dataset. We had two goals
in mind for this experiment. As a first step, we examined
whether the experimental group consistently outperforms
the control group when the source datasets are different.
Next, we assessed whether seismic source datasets have
more positive effects on evaluation results than non-seismic
sources.

Building on RQ1, we also investigated whether the number
of annotations available for fine-tuning within the target set
influenced the selection of the source dataset (i.e. RQ2). Since
it is difficult to obtain fault annotations in practice, it is rare to
find target datasets with as many annotations as ThebeFault.
In order to simulate scenarios with different amounts of
annotation in real applications, we gradually reduced the
amount of annotations in the target dataset involved in the
fine-tuning process (i.e. 10%, 1%, 0.1%).

In order to simulate real-world usage, the ThebeFault
dataset was chosen as the target dataset since it is the only
real seismic dataset available. The other four datasets were
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selected as source datasets to provide a priori knowledge.
Thus, the control group is trained by supervised learning
using the entire ThebeFault training set. The experimental
group are models that were pre-trained on one of the four
source datasets and fine-tuned on the ThebeFault dataset
using its training set.

DeepLabV3 with ResNet101 [23] backbone (DR) was
chosen as the primary model architecture for two main
reasons. First, it is the best-performing model for the
segmentation task offered by the PyTorch library [22].
Secondly, the PyTorch library offer pre-trained weights learnt
from ImageNet or COCO for this dataset, which can greatly
save the effort of repeated training. In addition, we compared
our optimal solution with several benchmarks including a
state-of-the-art solution on the ThebeFault dataset. Included
benchmark models are: UNet [24], DeepLabV3-MobileNet
(DeeplabM) [25], [26], [27], HED [28] and RCF [29].

We followed the same evaluation methods proposed by [2]
and [3]: average precision (AP) and two F1 scores based
on the optimal threshold per image (OIS) and the optimal
threshold for the dataset (ODS). AP provides a comprehen-
sive evaluation result without considering threshold selection
and is chosen as the primary evaluation metric compared to
ODS and OIS.

V. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
The parameter settings for all experiments were kept as
constant as possible and close to baseline to ensure a fair
comparison. The input patches are all 96 by 96 pixels in
size. Adam [30] optimiser with an initial learning rate of
0.01 was set for UNet and DeepLabM and 0.001 for HED,
RCF and DR. The batch size was set to 64 (as literature [2])
for the four baseline models and 32 for model DR. The
model architecture for DR is more complex and requires
more GPU memory. The training and validation iterations
were set to 100 and 20 per epoch, respectively. Learning
rate and early stopping scheduler were used to avoid over-
fitting. All experiments in this paper were conducted on a
GeForce GTX 1080 Ti graphics card. Following PyTorch’s
recommendation of normalizing the images, we first nor-
malized the target dataset to [0, 1] based on its maximum
and minimum values, and then z-score normalized the
target dataset using the mean and variance of the source
dataset to ensure a consistent distribution between the two
datasets.

B. RQ1
In the ‘‘our solutions’’ section of Table. 2, we have named
the control group, i.e. the fault interpreters that did not
apply transfer learning, ‘‘DR_DN’’. The interpreter for the
experimental group is then denoted by the suffix ‘‘*ft’’.When
using the full ThebeFault training set, the model with prior
knowledge showed comparable or higher performance than
the control group model. While seismic source datasets are
generally considered more beneficial to fault interpreters,

TABLE 2. SOTA comparisons on the ThebeFault dataset.

ImageNet, a non-seismic dataset, provided a surprising
optimal boost. The boosts for AP, OIS and ODS were
1.53%, 1.51% and 1.50% respectively. This is followed by
another non-seismic dataset, COCO, and a seismic dataset,
FaultSeg. As a result of using the COCO dataset as the
source dataset, AP, OIS, and ODS gain 0.15%, 1.07%, and
1.11%, respectively. Using the FaultSeg dataset as the source
dataset gives a 0.51%, 0.43%, and 0.33% improvement in AP,
OIS, and ODS. Finally, the non-seismic dataset, BSDS500,
achieved a slightly lower (−0.16% to −0.39%) result than
the control group.

This experiment demonstrates that applying transfer learn-
ing does not necessarily lead to a better outcome. Contrary to
popular belief, the seismic source dataset is not necessarily
the best choice. With the current findings in hand, we will
continue to explore the factors that influence both findings
and attempt to explain them.

In addition, we present some baseline methods and their
performance data in Table. 2. Our method significantly
improved fault interpretation, with the most accurate fault
interpreter, DR_ImageNetft, showing an improvement of
7.95%, 3.78%, and 4.49%, respectively, over the previous
SOTA results (i.e. HED [2]) in the evaluationmetrics AP,OIS,
and ODS.

C. RQ2
As shown in Fig. 5, the performance of the CNN fault
interpreter on the target ThebeFault test set shows a high
correlation with the volume of training annotations involved
in control group training or experimental group fine-tuning.
For the pure supervised model DR_DN in the control group,
the test set’s performance drops as expected when trained
using fewer samples. When too few samples are involved
in the training process, the performance of model DR_DN
drops dramatically. By introducing prior knowledge learned
from different source datasets, models in the experimental
group generally alleviate the requirement for the amount
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FIGURE 5. Performance of the CNN fault interpreter on the ThebeFault test set with different amounts of ThebeFault training annotations involved
in the supervised learning or fine-tuning. Here, 100%, 10%, 1% and 0.1% are the four experimental annotation volumes involved in supervised
training of the DR_DN baseline or fine-tuning from the four source datasets. For example, 0.1% represents using only 0.1% of the ThebeFault
training annotations to simulate the use case that only a limited number of annotations are available on the new seismic dataset. Y-axis labels are
placed as subtitles.

of training data and slow down the rate of performance
degradation.

Interestingly, we found that as fewer labels were used
in fine-tuning, the lead of DR_ImageNetft at 100% and
DR_COCOft at 10% was replaced by DR_FaultSegft.
Furthermore, DR_COCOft consistently outperforms
DR_ImageNetft when viewed from the 10%point to the right.
As a result of this phenomenon, it would be prudent to take
into consideration the number of annotations available in the
target dataset when selecting the source dataset. When only
a limited number of fault annotations are available in the
target dataset, the FaultSeg dataset is better than the popular
image pre-training dataset and can alleviate the need for large
amounts of labelled data. Some visual examples are provided
in Fig. 6.

D. NORMALISATION
As Table. 2 shows, our methods show a significant perfor-
mance improvement over the baseline models. Referring to
the training process of the control group model in Fig. 4,
there are three main possible elements, i.e. data processing
method, model selection, and training method. The impact
of the latter two is more intuitive, and in this section,
we focus on the impact of the data processing method.
We note that the main difference between our methods and
the benchmark methods in terms of data handling is the
data normalisation method. We use the z-score normalisation
(i.e. ‘‘_DN’’) method suggested by the PyTorch library,
whereas the benchmark methods all use min-max normal-
isation (i.e. ‘‘_IN’’). Their formulas are listed in 1 and 2,
where xmin and xmax represent the image-wise minimum and
maximum values of the input pixels x. µ and σ represent the
mean and standard deviation of the source dataset. Moreover,
we found that of the seven relevant papers found through the
systematic literature review, three did not provide details of
the normalisation process, three used min-max normalisation

and only one used z-score normalisation.

xIN =
x − xmin

xmax − xmin
(1)

xDN =
x − µ

σ
(2)

To focus on the differences introduced by the normalisation
methods, we designed ablation experiments. As shown in
Table 2, we use the suffixes ‘‘_IN’’ and ‘‘_DN’’ to denote
the image-wise min-max normalisation method and z-score
normalisation, respectively. The suffix ‘‘_ClipDN’’ denotes
clipping of outliers prior to z-score normalisation.

As Table. 2 shows, our version of baseline models all show
a significant improvement in effectiveness over the original
baseline models. Here, to isolate the impact of the training
method, we add two more sets of UNet-based experiments,
namely UNet_IN and UNet_ClipDN. it can be observed
that the z-score normalisation approach leads to a 4.41%
1.27% 1.21% improvement in the AP, OIS, and ODSmetrics,
respectively, for the same model under the same training
conditions.

We suspect that this performance improvement may be
related to the considerable outliers in the field seismic dataset.
Here, the outliers are defined by the interquartile range
(IQR) method [31]. As shown in Fig. 7, applying min-max
normalisation to the seismic images changes the distribution
of the original data. In addition, outliers in seismic data
provide valuable geological information that can be used to
visualise different horizons (i.e. rock layers), as shown in
Fig: 8. And the experimental findings also verify that the
fault interpreter is less effective if the outliers are clipped
(i.e. UNet_ClipDN and UNet_DN). This again demonstrates
the uniqueness of seismic datasets compared to natural image
datasets. In this regard, we recommend not clipping seismic
outliers and instead using z-score normalisation, which is
more tolerant of outliers.
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FIGURE 6. Visual examples of the CNN fault interpreter predictions on the ThebeFault test set. Seismic data is a 500 × 500 patch
randomly cropped from the Thebe test set. Fault annotations are annotations labelled by fault experts. The coloured lines are
predictions by CNN models, overlaid on seismic data for reference.

VI. DISCUSSION
This paper is the first to focus on the impact of the choice
of source dataset on the final DL fault interpreters, when
applying deep transfer learning. This issue has been neglected
in previous studies. Transfer learning literature typically
recommends using a dataset that is similar to the target
dataset. However, it is difficult to measure the distance
between datasets and to demonstrate a correlation between
distance and performance. Additionally, previous studies
have typically relied on transfer learning to enhance the
generalisation of fault interpreters trained from synthetic
seismic datasets only, without examining the impact of the
choice of source datasets. Our results can assist geologists
and DL experts in selecting and utilizing existing datasets
more rationally, thus improving the performance of DL fault
interpreters.

Based on the results of RQ1 and RQ2, we find that
using transfer learning does not necessarily produce more
positive results for seismic datasets. Moreover, unlike com-
mon assumptions in previous studies, seismic datasets do
not necessarily outperform non-seismic datasets as source
datasets. In particular, when the quantity of target dataset
annotations is large enough, the large-scale ImageNet dataset
will provide the most effective a priori experience. However,
when the target seismic dataset has few annotations, the
synthetic seismic dataset will provide the best a priori
experience. Reviewing the dataset comparisons shown in
Table 1, ImageNet is the largest dataset, followed by COCO,
Thebefault, FaultSeg, and finally BSDS500. Based on task
similarity, ThebeFault is most similar to FaultSeg, followed
by BSDS500, COCO and finally ImageNet. Combining the
above experimental results and the above dataset ranking,
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FIGURE 7. Box plots of 5 random training patches with different normalisation. Left: original seismic data without normalisation. Middle: inline
normalisation (IN) proposed by [2]. Right: dataset-wise z-score normalisation (DN). The outliers are indicated by black circles. Because of the large
number of outliers, they are superimposed on each other and are not clearly visible.

FIGURE 8. Outlier illustration of patch #2 in Fig. 7. Top left: original
seismic data. Top right: corresponding fault annotation. Lower left: pixels
with values above the upper boundary. Lower right: pixels with values
below the lower boundary. There is a clear association between the fault
annotation and the outliers.

it can be speculated that when there are only a limited number
of labels, the FaultSeg dataset is relevant enough to provide
valid a priori knowledge of the target task, despite its small
size. In cases where there are many labels for the target
dataset, a larger dataset would provide more general purpose
prior experience which may be of some benefit to the model.

In order to explain the above experimental results, here
we introduce a loss landscape visualization method. The loss
landscape visualisation method was initially developed to
explain why specific networks or setups were easier to train
than others [32]. They concluded that a visually wider and
flatter loss landscape usually represents a good DL model,
implying a better convergence ability and generalisation.
With a wider and flatter loss landscape, the network weights
ideally should update to global minima more easily with less
likely to land in chaotic regions (i.e. a place that contains
many local minima and has a high loss barrier to global
minima) [32], [33], [34].

As shown in Fig. 9, all models trained with prior
knowledge (i.e. the right four columns in Fig. 9) produced
flatter loss landscapes than models trained using just the
target dataset (i.e. the left-most column in Fig. 9). This
suggests that the source dataset may affect convergence and
generalisation ability. Once again, the benefits of having
source datasets are demonstrated. Of the four source datasets,
ImageNet and COCO provided the two widest and flattest
loss landscapes, followed by FaultSeg and finally BSDS500.
This order is almost identical to the size order of the source
datasets, which may indicate that a larger training dataset
may provide a model with better generalisation. In addition,
it appears that having more labels from the target dataset
during supervised training or fine-tuning produces a flatter
loss landscape and lower error values (i.e. the top row 100%
ThebeFault training set vs. 0.1% ThebeFault training set).

This paper is also the first to investigate the impact of
data normalisation processing on DL seismic interpreters.
Previous work has mostly ignored this issue, commonly
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FIGURE 9. loss landscape visualisation of the trained CNN fault interpreter. From left to right: DR_DN (model trained using only ThebeFault training
set) and four models pre-trained using one of the four source datasets and then fine-tuned on the ThebeFault training set. The top row uses the entire
ThebeFault training set, and the lower row uses 0.1% ThebeFault training set.

TABLE 3. GPU time cost (hours) for each solution.

using simple min-max normalisation methods to rescale
values to [0, 1]. However, we noticed that seismic datasets
have very different values from natural image datasets. For
natural image datasets taken with a standard optical camera,
the images are stored as integer values from 0 to 255.
The standard normalisation for image datasets is min-max
normalisation, which divides all values by 255. Seismic
datasets, on the other hand, are images formed by processing
signals captured by remote geophones/sensors and have no
fixed min and max values. Besides, the extreme values of
the seismic dataset contain critical geological information.
Therefore seismic datasets without effective processing can
lead to reduced performance of DL seismic interpreters.
We recommend that interested researchers use z-score
normalisation when processing seismic datasets and do not
clip outliers in seismic datasets.

The study involved a considerable amount of time and
effort in pre-training and fine-tuning each dataset. In Table. 3,
we list the time costs associated with each solution. Clearly,
model training time is positively correlated with the amount
of training data. Model architecture also has a significant
impact. Compared to the SOTA solution (i.e. HED), our

optimal model requires less training time. Furthermore, this
model has pre-training models for ImageNet and COCO,
which significantly reduces pre-training time. Thus, when
choosing the source dataset, it is essential to also take into
account the time required for pre-training. However, transfer
learning will generally have a faster convergence rate when
pre-training time is not taken into account.

Due to limitations in computing resources, only five
datasets were analysed. However, if more datasets are
involved, it is possible to find more suggestions for source
dataset selection. As fault annotations is often intellectual
property in the field of seismic data interpretation, there are
very few relevant publicly available datasets. Due to this
constraint, only two seismic datasets are used in this paper.
We, therefore, encourage future researchers to publish their
data, code, and pre-trained models to facilitate subsequent
research. Despite the fact that we analyzed the impact of
the source datasets using loss surfaces, we did not find
any significant correlation between the accuracy of the
ThebeFault test set and the loss landscape. Moreover, future
work could focus on methods that measure the distance
between datasets, so that a suitable source dataset could be
recommended.

VII. CONCLUSION
In this paper, a systematic review and extensive experiments
were presented to understand the effect of different prior
knowledge on CNN fault interpretation models. Based on
the numerical and visual results, we recommend that domain
researchers consider the available annotations in the target
dataset and then decide on the source dataset accordingly.
Neural networks loss landscape visualisations demonstrate
that having a source dataset and involving more training data
could help result in a CNN model with better generalisation.
Even though there aren’t enough explanations about ‘‘why
and what makes certain source datasets suitable?’’, we hope
our paper will assist our colleagues in selecting the appropri-
ate source datasets. Additionally, our approach achieves state-
of-the-art performance on the ThebeFault test set.
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