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ABSTRACT This paper proposes a method to estimate the 6D pose of an object grasped by a robot hand
using RGB cameras mounted on the palm and visuotactile sensors installed at the fingertips. It can deal with
objects made from a wide range of materials thanks to combining the two types of sensors. The method
allows a robot to robot to perform in-hand pose estimation while holding the object, eliminating the need
for preparatory actions or particular environmental backgrounds. The mechanism at the back of the method
includes deep-learning-based background subtraction and denoising auto-encoder-based sensor fusion. With
the poses estimated using the proposed method, a robot controller can rectify the grasping uncertainty and
adjust the robot motion to move an object toward required goals with satisfying accuracy. We conduct
various studies and analyses in the experimental section to understand the proposed method’s advantages
and disadvantages. The results demonstrate the benefits of the proposed combination and mechanism. They
also provide essential knowledge to readers considering using a similar configuration for estimating object
poses.

INDEX TERMS In-hand pose estimation, visuotactile sensors, robotic manipulation.

I. INTRODUCTION
A critical issue in robotic manipulation planning is that a
robot cannot grasp an object in the same pose assumed
in simulation. Uncertainty happens during the physical
interactions between an object and the robot hand, making the
in-hand object pose after grasping different from expectation.
Previously, many researchers in robotics have studied using
in-hand pose estimation to solve the problem. The goal was
to estimate the pose of an object in the robot hand that
grasped it. For example, Bimbo et al. [1] used tactile sensors
to collect pressure data and computed the co-variance and
eigenbasis of the pressure to search for in-hand object poses.
Bauza et al. [2] used a visuotactile sensor to measure the
contact surface between a finger pad and an object and used
a neural network to predict the in-hand pose considering a
dense set of contact shapes. Wen et al. [3] used depth cameras
mounted on the body of a dual-arm robot to estimate in-hand
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poses while considering detecting and removing the point
cloud of the holding hand. These previous works showed that
estimating an object’s pose with a single type of sensor was
possible. They also revealed that the estimation performance
depended on the availability and limitations of particular
sensor types. The tactile sensors are applicable only when the
grasped object has significant features at the finger contact
surface. The depth sensors have a minimum visible range
and must be installed far away from target objects. Their
performance is also related to the object’s surface materials.
Considering these problems, we propose combiningRGB and
visuotactile sensors to make up for the shortages of each
single sensor type in this paper. We develop a deep-learning-
based background subtraction and a denoising auto-encoder-
based sensor fusion method to fuse respective sensors for in-
hand 6D object pose estimation.

In detail, our proposed method uses data collected from
two RGB cameras mounted on the palm of a robot hand,
and two GelSight [4] sensors installed at the fingertip to
estimate object poses. The configurations of the cameras
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FIGURE 1. Using two RGB cameras mounted on the hand palm and two
GelSight sensors installed at the fingertips to estimate in-hand object
poses. The method applies to many objects regardless of their texture,
optical properties, shapes, and changes in the environmental background.
(a) Sensor configuration. (b) Estimating the pose of a crystal test tube.

and GelSight sensors are illustrated in Fig. 1. The RGB
cameras and image processing apply to objects made from
a wide range of materials but have less flexibility in
obtaining depth and rotation information. In contrast, tactile
sensors have advantages in recognizing a grasped object’s
contact penetration and local rotation. By combining them,
we can estimate the in-hand pose for various objects. The
performance is irrelevant to surface texture, optical properties
(transparency, reflectivity), and shapes.

The main contributions of this work are as follows. First,
we employ a deep learning-based background subtraction
method to separate the hand, hand-held objects, and sur-
rounding environment in the RGB cameras’ views. Although
the tactile sensors always appear at particular portions in
the frames captured by the RGB cameras, an object may be
grasped in different poses, and the environment background
will be different. Extracting exact object regions and using
them for pose estimation is challenging. We propose mixing
MiDaS (Mixing Datasets for zero-shot cross-dataset trans-
fer) [5] and RAFT (Recurrent All-Pairs Field Transforms) [6]
to get reliable performance. The MiDaS method enables
estimating the depth information from a single RGB image.
The RAFT method allows the optical flow estimation during
the hand motion and differentiates between the stationary
and moving image pixels. They jointly permit segmenting
the hand, hand-held objects, and surrounding environment
in the RGB cameras’ views. Second, we send the segmented
hand and hand-held object image regions to an auto-encoder
trained using simulated RGB and visuotactile data to extract
features. We use cosine similarity to compare the extracted
features with a dense reference set prepared in the same way
(but with simulated grasping configurations) and thus obtain
predicted in-hand poses.

We conduct multiple studies and analyses to understand
the proposed method’s advantages and disadvantages. In the
experimental section, we examine the precision and flexi-
bility of the proposed method by using markers and objects
with various surface properties. The results demonstrate the
benefits of the proposed combination and mechanism. With

their support, the proposed method can estimate an object’s
in-hand pose regardless of its texture, optical properties,
shapes, and changes in the environmental background. The
experiments and analyses also provide essential knowledge
to readers considering using a similar configuration for
estimating object poses.

The remaining sections of the paper are organized as
follows. First, we present related work in Section II and
clarify the novelty of our study. Then, we give an overview
of the proposed method in Section III to provide a high-
level summary of the workflow. After that, we show data
processing, training, and estimation details in Sections IV, V,
and VI. Experiments and analyses are carried out in Section
VII. Section VIII draws conclusions and discusses future
work.

II. RELATED WORK
In this section, we will review the related studies according
to the different sensor types used for in-hand pose estimation.
Note that our focus is on in-hand pose estimation. Broader
pose estimation methods like [7], [8] are out of the scope.

A. VISION-BASED METHODS
The vision-based methods use RGB or depth cameras to
detect and estimate in-hand object poses. For example,
Mohammed et al. [9] used AR (Augmented Reality) markers
attached to the object to simplify estimation and implemented
real-time in-hand pose tracking for assembly. Kokic et al. [10]
estimated the pose of an object grasped by a human hand
using neural networks trained with synthesized RGB image
data. Like Kokic et al., Hasson et al. [11] estimated the
object pose grasped by a human hand by combining CNN
(Convolutional Neural Network) and optical flow. Hasson’s
method does not require synthesizing much training data
thanks to optical flow analyses and photometric consistency-
based background subtraction. Wen et al. [3] estimated in-
hand poses of a hand-held object by matching the object’s
model to point clouds obtained from a depth sensor mounted
on the robot body. The robot hand was adaptive, and its finger
positions cannot be precisely obtained from motor encoder
values. For this reason, a hand state estimation method was
developed to remove the fingers from the depth sensor’s view
correctly. Liu et al. [12] developed a similar depth sensor-
based method to estimate the pose of a pen held by a robot
gripper and then used the estimated pose to update previously
planned or optimized drawing trajectories. Although using
depth sensors for in-hand pose estimation has high fidelity,
it retains a problem that the depth sensors must be installed
far away from the objects. Visual obstructions may frequently
happen due to the installation. They are challenging to be
avoided.

The above vision-based methods were good at estimating
large and well-textured objects. However, they had diffi-
culties extending to objects with various surface textures,
optical properties, and shapes since the observation suffered
from transparency, reflection, and occlusions. In this work,
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we use a similar optical and photometric method to avoid
synthesizing a large amount of data for training pose
recognition neural networks [13], [14]. We employ deep-
learning-based background subtraction and binarization to
avoid influences from objects’ surface properties.

B. TACTILE-BASED METHODS
For the tactile sensor-based methods, Bimbo et al. [15] used
multi-fingered hands and F/T sensing-based tactile sensors
at the fingertips to re-estimate in-hand object poses. The
initial object pose was obtained using a vision sensor before
grasping, and the objects had spherical, cylindrical, or rect-
angular shapes. The same group also estimated the in-hand
object pose by comparing the geometry pre-annotated based
on the object model and the tactile information obtained
from pressure sensors embedded on a Barrett robot hand [1].
Li et al. [16], and Cui et al. [17] used a GelSight sensor
to estimate and adjust various workpieces for successful
insertion. Pirozzi et al. [18] used a photo reflector array to
measure the deformation of soft finger pads and estimate the
in-hand pose of electric wires. Koyama et al. [19] developed a
proximity sensor-based tactile fingertip to detect the tilt and
distance of in-hand or near-hand objects. Hogan et al. [20]
used an ABB Yumi robot with two GelSlim sensors [21]
installed at each arm’s tool center point to manipulate
cubic objects and estimate their poses simultaneously. They
considered mixed prehensile and non-prehensile grasping
to accord with the large sizes. Bauza et al. [22] estimated
the in-hand pose of an object by matching the geometry
information obtained offline using the GelSlim sensor. The
same authors also proposed an alternative method to estimate
the in-hand object pose by comparing the GelSlim data with
simulated images [2], [23]. She et al. [24] used GelSight
to estimate the pose of a cable in the grip and the friction
forces during cable sliding. They developedmethods to adjust
the gripping power and pose in real time according to the
estimation results. Yamaguchi and Atkeson [25] used Finger
Vision to measure tactile forces, and control knife poses
for successful cutting. Liang et al. [26] tracked the object
pose in hand by using tactile information obtained from
BioTac touch sensors installed on the four fingertips of an
Allegro robot hand. They compared the tactile information
with the values obtained in a continuously updating physical
simulator to optimize prediction. Kuppuswamy et al. [27]
used a gripper with Soft-Buble fingertips to measure 3D
contact point clouds and estimate the in-hand object poses.
The method could help estimate the in-hand pose of crystal
wine glasses. Lambeta et al. [28] used a multi-finger hand
with tactile sensors on each fingertip to detect the in-
hand marble positions and perform model predictive control.
Tian et al. [29] presented a similar predictive control method
for rolling a 20-sided die. The work carried out the learning
in an end-to-end style instead of explicit pose estimation.

The above tactile-only methods were reliable, but they
assumed that the grasped objects had significant features at

the finger contact surface, and the contact information is
enough to imply a whole object pose. As discussed in the
following subsection, the assumption led to limitations and
might be secured by fusing tactile data with other sensor
values.

Besides the above tactile-based work, there are also studies
that used geometric constraints and a series of contact to
estimate in-hand object poses [30], [31], [32], [33], [34], [35].
The methods were clever but required multiple or continuous
robotic actuation.

C. METHODS USING MULTIPLE SENSORS
Some studies estimate in-hand object poses by fusing
multiple sensor information. For example, Herbert et al. [36]
fusedmultiple data from F/T sensors at the wrist, joint sensors
in the fingers, and stereo vision sensors in the environment
to estimate the pose of a grasped object. Izatt et al. [37]
presented an object-trackingmethod by fusing the point cloud
information from an external RGB-D camera with GelSight.
Pfanne et al. [38] fused joint measurements and visual
features to estimate the in-hand object pose. Li et al. [39]
combined RGB cameras and resistive tactile sensors [40]
to estimate the pose and, thus, kinematics of articulated
tools. Dikhale et al. [41] combined external RGB-D data and
tactile data to estimate 6D object poses in hand. Combining
different sensor data is beneficial compared to a single one.
Suresh et al. [42] employed an overlooking depth camera to
initialize observation and incrementally built an object’s 3D
shape through multiple touches. Anzai and Takahashi [43]
used a hand-mounted RGB camera and a GelSight sensor
attached to the robot hand to estimate changes in the
grasping posture from an initial position. Gao et al. [44]
built a multisensory database for versatile object recognition.
Chaudhury et al. [45] presented a similar system to this
work. The authors used two cameras and one Gelsight sensor
to locate objects. The objects are on a table rather than
grasped by a robot hand. Fusing RGB (vision) and GelSight
(visuotactile) data using a deep neural network trained with
simulated data is quite new, as it was not until recently that
the simulation techniques were developed. Especially for the
GelSight sensors, Sferrazza et al. [46] proposed a method to
express the image from the GelSight sensor in the simulation
by combining the Finite Element Methods (FEM) and optical
flow. Agarwal et al. [47] used a physical rendering simulator
to generate simulated GelSight views. Gomes et al. [48]
presented a sim-to-real learning method to simulate GelSight
sensors. Lee et al. [49] developed a deep-learning method to
interconvert the GelSight sensor’s photometric and marker
images.

This study uses hand-mounted RGB cameras and finger-
equipped GelSight sensors to estimate in-hand object poses.
Unlike RGB-D sensors, our sensor setting does not require
long sensing distances. We can install cameras and GelSights
into a small robot hand while still having competitive
estimation performance. Also, we can avoid preparing a lot
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FIGURE 2. An overview of the proposed method.

of real-world data using modern simulation and photometric
methods and achieve satisfying estimation performance.

III. AN OVERVIEW OF THE PROPOSED METHOD
Our proposed method can be divided into offline and online
phases, as shown by the diagram in Fig. 2.
In the offline phase, we perform grasp planning using a

database of synthesized object CAD models and the target
robot hand, collect the ground-truth grasping poses of the
synthesized object models, and obtain the simulated RGB
and visuotactile data using simulation. We use the simulated
RGB and visuotactile data to train an auto-encoder [50]
for extracting features and performing cosine similarity
analyses.

In the online phase, we obtain the real-world sensor
data while an object is grasped and estimate the in-hand
object pose. Particularly, we collect a series of RGB images
using the hand-mounted cameras when the robot hand is
performing a task (moving the object). The background of
these RGB images is different since the robot hand is in
action. Contrarily, the foreground stays the same. We extract
the foreground (the object and hand area) of these images
by using a combined optical-flow estimation neural network
(MiDaS) and depth estimation neural network (RAFT).
Along with the RGB images and background subtraction,
we also collect depth images using the GelSight sensors at
the fingertips. The foreground silhouette and depth images
will be sent together to the auto-encoder trained in the offline
phase to extract features for cosine similarity evaluation.

The cosine similarity evaluation is carried out against
features extracted from sensor data simulated based on
a dense set of in-hand poses for the same object. The
auto-encoder trained in the offline phase is again used for
feature extraction. The extracted features are considered the
ground truth for comparison. The cosine similarity evaluation
compares the features extracted using the real-world sensor
data with the ground truth and finds the most similar one. The
in-hand object pose that produces the most similar feature
will be counted as the estimated result.

The above two phases and the details of data processing,
training, and estimation will be presented in the following
Sections IV, V, and VI.

IV. AUTO-ENCODER TRAINING WITH SIMULATED DATA
In this section, we present the details of the offline phase. The
content corresponds to the upper ‘‘Offline Phase’’ frame box
of Fig. 2. The goal is to train autoencoders using simulated
data. The trained autoencoders will be used in the ‘‘Online
Phase’’ frame box and ‘‘Dense Set Preparation’’ dashed
frame box of Fig. 2 for extracting features. Fig. 3 shows the
structure of the auto-encoder designed for feature extraction.
There are two autoencoder networks in the structure. The
first encodes the RGB camera data and is named the camera
encoder. In our design, we convert the original RGB images
captured by the cameras to binary images to reduce the
influence of textures and illumination. The environmental
background is binarized as black, and the foreground (hands
and in-hand objects) is binarized as white. The camera
encoder extracts features from the binarized RGB images.
The second autoencoder network extract features from the
GelSight sensors and is named the visuotactile encoder.
The GelSight sensors could output depth images about the
contact. The depth images are directly used for feature
extraction. For both autoencoder networks, we reshape the
matrix output of the third Maxpooling 2D layer into vectors
as the extracted features. The lengths are 16×9×8 = 1152 for
RGB cameras and 12×12 × 8 = 1152 for GelSight sensors.
Since there are two RGB cameras and two GelSight sensors
in the system, we get a total of 1152 × 2.1152×2 feature
vectors for pose evaluation. Fig. 3(a) shows the training
process, and Fig. 3(b) shows the prediction process of the
two autoencoders respectively. Especially, we use a denoise
autoencoder for camera data. As we will see in the next
section, the results of MiDaS and RAFT are binary images
with noisy boundaries. Using a denoise autoencoder will
be more effective in feature extraction in the presence of
noises [51].

To train the auto-encoders, we use synthesized objects in a
simulation environment to collect a large amount of training
data, as shown in Fig. 3(a). The synthesis considers four
primitive shapes as the basis: a box, a cylinder, a pyramid,
and a cone. These four shapes are resized and laid up
randomly to form dummy objects, as shown in Fig. 4(a).
We use a grasp planner [52] to plan many grasping poses
for the dummy objects and obtain the simulated RGB camera
images and visuotactile depth images by rendering the objects
and the planned grasped poses in simulation. Fig. 4(b)
shows an example of the images obtained in the simulation.
Especially for the visuotactile data, we sample the object
surfaces to get surface point clouds and extract the points
that fall into the region of the GelSight sensor’s silicone
pad to simulate deformation at the contact. The deformation
is normalized against the maximum sensing depth of the
GelSight sensor to produce depth images. We do not have
special considerations about the elastic deformations of the
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FIGURE 3. Structure and usage of the auto-encoders. (a) Training process.
(b) Extracting Features using the auto-encoders. Especially a denoise
autoencoder is used for the RGB cameras.

FIGURE 4. (a) Synthesizing objects using primitive shapes. (b) Planning
grasping poses by using a synthesized object and the robot hand’s CAD
model. Simulated RGB camera and visuotactile depth images are obtained
by rendering the objects and the planned grasped poses in simulation.

Gelsight’s rubber finger pads. The grasping power is fixed
to a given value and the penetration depth is always the
same at this stage. After obtaining the RGB camera and
visuotactile depth images, we process them to prepare for
training. First, we recast the RGB images to binary images
by considering the background pixels as black values and
the hand and in-hand object pixels as white values, and add
noises to the binary images to make them similar to the
result of a real-world binarization. The considered noises
include (1) Extra background removal; (2) Less background
removal; (3) Jagged boundaries. We simulate the noises by
expanding or contracting binary edges and adding noises to
the expanded or contracted area. After that, we apply Mosaic
processing by making the foreground area smaller or larger
to restore the original size. Second, we add noises to the

FIGURE 5. Originally simulated RGB image and the result after including
the various noises.

visuotactile depth images to make them similar to real-world
data. Fig. 5 illustrates an example of the originally obtained
images and the results after including the various noises.
We train the auto-encoder by using the processed binary and
depth images. We use the noisy binary images as the input for
the camera encoder and their corresponding noise-free binary
images as the output to learn the network parameters. For
the visuotactile encoder, we use depth images as the input
and output for learning. The trained networks are used in the
online phase to extract features from real-world sensor data,
as illustrated in Fig. 3(b). The details of the online extraction
will be presented in the next section.

It should be noted that the training process did not
take into account real-world objects. This was due to
the difficulty in replicating the exact grasping state in
the simulation with a real-world robot. Furthermore, the
simulation employed a variety of grasping poses, making
it impractical to prepare real-world Gelsight data for them.
However, recent studies have suggested that combining
real-world data with simulation data during training can
improve the performance of neural networks, as noted in
reference [53]. As such, it would be beneficial to develop a set
of simple, ‘‘standard’’ objects to enable the collection of cor-
responding real-world and simulation data, which could then
be combined with pure simulation data to enhance training
performance.

V. EXTRACTING REAL-WORLD SENSOR FEATURES
This section presents the details of the online phase.
It corresponds to the ‘‘Online Phase’’ frame box of Fig. 2.
The dashed frame box inside it is irrelevant.

In an online phase, we take advantage of a moving robot
hand for the cameras to get a series of RGB images with
changing backgrounds. The hand and in-hand objects do not
change in the image series since they are relatively stationary
concerning the cameras.We thus can segment the background
and foreground considering the changes of each image and
binarize the RGB data. Conventional methods to perform
the separation were model-based methods like building a
Gaussian Mixture Model or analyzing the changes in the
optical flow of the image series. They exhibited satisfying
performance but were not robust to illuminations and
environmental changes. Unlike the model-based methods,
we use a combinedMiDaS and RAFT deep neural network in
this paper to carry out the separation and image binarization.
The MiDaS [5] network can estimate the depth information
from a single RGB image. Since the hand and the in-hand
object are relatively close, and the background is relatively

17222 VOLUME 11, 2023



Y. Gao et al.: In-Hand Pose Estimation Using Hand-Mounted RGB Cameras and Visuotactile Sensors

FIGURE 6. Using MiDaS and RAFT to remove background and binarize the RGB images. (a) Capture RGB images while performing a task (transporting
a tube held in hand). (b) Captured RGB images. (c.1) Results of MiDaS. It is applied to the first and last frames, and thus there are two images. (c.2)
Results of RAFT. It is applied to all frames. (d) Final binary output.

FIGURE 7. (a) Structure of the GelSight sensor used in this paper. (b) Image of the contact surface and corresponding depth map. (c,d) Simulated depth
images under different grasping power. (d.1) Small grasping power. (d.2) Medium grasping power. (d.3) Large grasping power. The circled numbers
denote the corresponding simulated depth images from the left and right sensors.

far from the cameras, the MiDaS network may help tell
the foreground and background from the view of estimated
depth values. The RAFT [6] network can estimate the optical
flow in a series of images. The moving robot hand leads
to changing background and thus changing the optical flow
in the images. At the same time, the hand and the in-hand
object do not move and do not cause much optical change.
Using RAFT, we expect to obtain the optical flow in the
image series and tell the background by recognizing the
image regions with large optical values and the foreground
hand/in-hand objects by recognizing the regions with a low
optical response. Note that neither MiDaS nor RAFT can
perfectly segment the background and foreground. We apply
them to different image frames collected during the robotic
manipulation motion to improve integral performance. It is
not necessary to prepare specific actions or environments in
advance. The MiDaS and RAFT algorithms are capable of
compensating for each other’s limitations and segmenting the
hand and hand-held objects from the surrounding environ-
ment based on data collected during task execution with high
performance.

In detail, we apply MiDaS to only the first and last frames
in the image series and apply RAFT to every adjacent and
adjacent frame pair in both forward and backward orders.
Fig. 6 illustrates the process. Suppose each frame in the
image series has a size of w × h, with a total of N frames.
The MiDaS network produces two depth frames. The RAFT
network produces (N − 1) × 2 + (N − 2) × 2 frames
where the value N − 1 indicates the number of adjacent

pairs, the value N − 2 indicates the number of every other
adjacent pair, the number 2 indicates the two orders. We get
4N − 4 frames of w × h data after applying MiDaS and
RAFT. We stack them together into a w × h × (4N − 4)
tensor, normalize the element values, and apply X-means
clustering [54] at the last column (cluster the (4N − 4)
vectors) to determine the pixel clusters on w × h. After that,
we assume the top center pixel of the image represents the
object with the highest confidence and regard the pixels that
belong to the same cluster as the top center pixel to be the
foreground.

For the GelSight sensors, the depth images are captured
once and are directly used without further processing.
The method we used to extract depth information from
GelSight sensors follows Yuan’s work [4]. It employs a
database to estimate the relationship between the reflection
intensities and the normal directions of the contact surface.
The database is built by pressing a standard 1 cm sphere
onto the sensor’s surface and collecting the surface images
using the embedded RGB camera. The database stores the
corresponding relationship between the normals and pixel
values. The surface normal map of an online contact is
estimated by comparing surface images captured using the
embedded RGB camera with the stored database. A dense
depth image can be obtained from the surface normal map by
solving a Poisson equation. After obtaining the dense depth
image, we use an extra sampling process to reduce its density
and make it coherent with the training visuotactile depth
images obtained in the simulation. Fig. 7(a,b) show details
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of the GelSight sensor, the dense depth image of the contact
surface, and the down-sampled depth image.

After obtaining the binary and depth images from the real-
world sensors, they are sent to respective auto-encoders for
feature extraction. The extracted features will be compared
against sensor data simulated based on a dense set of in-hand
poses for the same object for pose estimation. The following
section will present the estimation details.

VI. POSE ESTIMATION USING COSINE SIMILARITY
This section zooms into the dashed frame box inside the
‘‘Online Phase’’ of Fig. 2. This dashed frame box represents
a preparation step. The prepared features will be used in the
online phase for pose estimation.

Particularly, we compare features of the real-world data
against features extracted from simulated sensor data to
estimate the real-world grasping pose. The simulated data is
obtained using a dense set of in-hand grasp poses for the same
object. The comparison is divided into two steps to save time.
In the first step, we sample a feature set with large granularity
and find a rough best match. Then, we re-sample a dense
feature set near the rough best match in the second step to
refine the estimation result. The following part presents the
details of the two-step matching method.

First, given the CAD model of the object to be estimated
and the hand model, we plan a set of grasp poses with large
granularity, collect the simulated binary and depth images,
and encode them into features using the same auto-encoder.
The grasp planning and image collection are carried out
the same way as the synthesized shapes. Especially for the
GelSight Sensor, we additionally consider the robot hand’s
grasping power. Since different grasping power will lead to
different penetration depths, we use a range of maximum
penetration depths to produce different depth images and
simulate different grasping power. Like the training stage, the
depth images are normalized against the maximum sensing
depth of the Gelsight sensor. There is no consideration of the
Gelsight’s rubber pads’ elastic deformation. Fig. 7(b,d) shows
an example of the various simulated depth images produced
using the method.

With sampling and extraction, we can obtain a database of
features. Each feature in the database corresponds to a grasp-
ing pose with large discretization granularity. We estimate a
best-matched grasp pose by computing a cosine similarity
between the feature vector from the real-world sensors and
the ones in the database. The best estimation result is the
output of the first step.

The best estimation may have a large offset from the
ground truth value since it was an element in the database
sampled with a large granularity. To further refine it,
we perform refinement in a second step by re-sampling a
dense set of grasps near the rough best match, computing their
feature vectors, and re-matching the real-world vector to the
dense set. The second step’s best-rematched grasping pose
will be counted as the estimated in-hand pose.

VII. EXPERIMENTS AND ANALYSES
In this section, we examine and analyze the proposed method
using the hardware shown in Fig. 1. The robot gripper
is Robotiq-85 2F produced by Robotiq Inc. It has two
compliant parallel fingers driven by two five-bar linkages.
The two RGB cameras (ELP-SUSB1080P01-LC1100-J) are
mounted at the hand palm’s upper and lower flat areas.
The two GelSight sensors are installed on each of the
fingertips. The algorithmic implementations and 3D result
visualization are based on the open-source robot planning
and control platform developed in our lab.1 We prepared
simulated sensor data using 106 synthesized objects and
60293 associated grasping poses to train the auto-encoders.
In addition, we prepared another 10639 grasping poses for
the same objects and used the sensor data simulated based
on them to validate the trained auto-encoders. The computer
used for training and validation was equipped with an
i7-11700K CPU, 64 GB of RAM, and an NVIDIA GeForce
RTX 3060 GPU, and ran the Windows 11 operating system.
The training time for the visual-tactile and camera auto-
encoders was 2784 seconds and 3499 seconds respectively.
The training processes were stopped when there were no
improvements for five epochs. The validation loss for the
two autoencoders were 0.1112 and 0.0106 respectively when
the training loops were stopped. To carry out the two-step
cosine similarity analyses, we collected data of grasping
poses by the granularity of 5 [mm] and 5 [deg] in the first
step and 1 [mm] and 1 [deg] in the second step. The computer
used for the analyses was different from the one used for
training and validation since it was a part of the robot’s control
system. It was equipped with an i9-9900K CPU, 32 GB
of RAM, and a GeForce GTX 1080 Ti GPU, and ran the
Ubuntu 18.04 operating system. The time cost for one case is
approximately 167 seconds, which includes video and image
processing, feature extraction, and the two-step analyses and
estimation.

We designed two series of experiments to study the
performance of the proposed method: The first series studied
estimation accuracy using a 3D-printed object. AR markers
are attached to the object to obtain ground-truth poses for
comparison. The second series study the generalization of
the method for daily life objects, with a special focus on the
influence of surface textures and physical properties (trans-
parency, reflectivity). Besides the two series, we showcase a
scenario where the developed method can help improve the
performance of robotic manipulation systems.

A. PREDICTION ACCURACY
First, we study the prediction accuracy of the proposed
method by using a 3D-printed object. The object comprised
two cubes and a handle that connected them. We attached ten
AR markers to the cube faces and used an external camera
to estimate the markers’ poses. The average value of all
observable marker poses will be recorded as the object’s pose

1https://github.com/wanweiwei07/wrs
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FIGURE 8. (a) CAD model of the 3D printed object. (b) Markers are
attached to the end cubes. (c) Experiments in action.

in the external camera’s local coordinate system. Meanwhile,
we attach a reference AR marker to the wrist of the robot
for estimating the hand pose in the camera’s frame. The in-
hand object pose is computed as the relative pose between
the observed object’s pose and the observed hand pose. The
method does not require calibrating the cameras since there
is no need to know the mark poses in the robot’s coordinate
system.

Fig. 8(a) and (b) show the CAD model of the 3D printed
object and the AR markers attached to the end cubes,
respectively. Fig. 8(c) shows the view of the external camera.
The camera view can catch both the AR markers on the
object and the reference marker at the wrist of the robot
hand. Suppose the ground-truth pose obtained by the external
camera is denoted by (p, R) and the estimated pose by our
method is denoted by (p̂, R̂), we compute the estimated
position error and rotation error using

1p = |p̂− p|, 1ω = arccos
tr(R̂R−1) − 1

2
(1)

At the beginning of the experiments, we asked a human
to hand over the 3D-printed object to the robot hand with
45 random poses. We used the proposed method to estimate
the in-hand positions and rotations. We computed and plotted
the 1p and 1ω with collected data to understand the
estimation precision. The results are shown as a diagram in
Fig. 9(a), with detailed pictures of six representative results
listed in Fig. 9(b) and their corresponding sensor data in
Fig. 9(c). Four of the results are positive. The other two
are negative. The diagram in (a) shows that in 32 out of
45 cases, the proposed method can estimate the pose of the
3D printed object with less than 15 [mm] position error and
less than 15 [deg] rotation error. It had good performance
when the RGB cameras and GelSight sensors could measure
significant features of the object. Fig. 9(b)- 1⃝∼ 4⃝ show
four such cases. In the first three of them, the robot hand
grasped the middle part of the object handle. The object
was in a vertical pose. Its two cubes appeared in the views
of the two RGB cameras and exhibited significant features.
The GelSight sensors observed vertical handle shapes. The
proposed method estimated correct vertical poses. In the
fourth case, one camera could not see the cube, but the
GelSight sensors understood that the object handle was held
horizontally. Thus, the proposed method estimated a lateral
pose. Fig. 9(b)- 5⃝ and 6⃝ show two exceptional cases where
the proposed method exhibited bad performance. For 5⃝, one
cube was too near to the camera and was out of the camera’s

focus. The background subtraction method failed to extract
the exact cube shape (see Fig. 9(c)- 5⃝ for better insight).
In the case of 6⃝, a large part of the cube was lost during
background subtraction (Fig. 9(c)- 6⃝).

We particularly investigated the reason for the lost cube
section by observing the MiDaS and RAFT sequences
of 6⃝. The sequences are shown besides Fig. 9(c)- 6⃝ for
readers’ convenience. We speculated that there might be
two reasons for the wrong subtraction: First, there were
several large black monitors in the environment. They might
impair the optical flow and lead to misjudgment about
background and foreground. Second, the robot’s motion was
short and might fail to provide enough frames to capture
optical changes. Thus, we designed additional experiments
to examine if our speculations were correct. The additional
experiments involved a single in-hand pose, as shown in
Fig. 10(a). We examined its estimation result by considering
different environments and motion lengths. The result in
Fig. 10(b.1) was obtained in an environment with large
black objects (monitor screens) and short motion (16 frames
of images). The result in Fig. 10(b.2) was obtained in
an environment with large black objects (monitor screens)
and long motion (30 frames of images). The result in
Fig. 10(b.3) was obtained in an environment without large
black objects (monitor screens) and short motion (16 frames
of images). The result in Fig. 10(b.4) was obtained in an
environment without large black objects (monitor screens)
and long motion (24 frames of images). By comparing
the results, we confirmed that large black objects in the
background led to very bad subtraction results. For example,
the result in (b.2) was completely wrong. In contrast, results
in (b.3) and (b.4) had more acceptable errors. We also
understood from the results that longer motion was not
necessarily helpful. The result in (b.2) and (b.4) were
based on long motion with 30 and 24 frames of images,
respectively. However, they exhibited worse performance
than (b.1) and (b.3).

In addition to the above experiments and analyses, we also
explored the usefulness of combining different numbers and
types of sensors for pose estimation. We used the same 3D-
printed object to evaluate the accuracy of the estimations
since we could easily compare the estimation results with
the ground truth observed using the AR markers. The
results of these experiments are shown in Fig. 11, which
is divided into three parts. Part (a) shows the real-world
states, part (b) shows the sensor data, and part (c) shows the
estimated poses under different sensor settings. According
to the results, the proposed ‘‘GS12+Cam12’’ combination
had the best performance. The results of the ‘‘Cam12’’
column, which only used cameras, had lower accuracy
in estimating rotations. Particularly the ‘‘Cam12’’- 3⃝ item
represents a distinctive case. The ‘‘GS12’’ column, which
only used GelSight sensors, had even worse results, as the
sensors only provide local contact information and cannot
detect axial rotations. The results of the ‘‘GS12+Cam1’’ and
‘‘GS12+Cam2’’ columns, which used a combination of Gel-

VOLUME 11, 2023 17225



Y. Gao et al.: In-Hand Pose Estimation Using Hand-Mounted RGB Cameras and Visuotactile Sensors

FIGURE 9. (a) In-hand estimation results (position and rotation errors) of 45 random poses. (b) Detailed pictures of six representative estimation results.
The fifth and sixth cases had significant errors and were considered failures. (c) Sensor data corresponding to the results in (b). The small figure
sequences at the right-most columns are the details MiDaS and RAFT results of 6⃝.

FIGURE 10. Investigating the influence of large black backgrounds and motion length. (a) Experiments were carried out on this special pose for better
comparison. (b) Results with different background and motion length conditions.
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FIGURE 11. Comparison of estimation accuracy under different sensor numbers and combinations. Part (a) shows the real-world states, part (b) shows
the sensor data, and part (c) shows the estimated poses under different sensor settings.

Sight Sensors with a single camera, had better performance
but were still less accurate than ‘‘GS12+Cam12’’.

B. OBJECTS WITH VARIOUS SURFACE PROPERTIES
1) EXPERIMENTS AND RESULTS
In the second series of experiments, we examine whether
our proposed method can be applied to objects with various
surface textures and optical properties such as transparency
and reflectivity. We selected five representative objects,
as shown in Fig. 12(a), which include (1) a translucent test
tube, (2) a crystal test tube, (3) a stainless bearing shaft, (4)
a plastic bolt, and (5) a shiny metal fixture (Nickel plated).
Since it was difficult to attach AR markers to these objects,
we examined the estimation precision by requiring the robot
to place these objects vertically 10 [mm] above the table.
Like the 3D printed object, we asked a human to pass an
object to the robot with a random pose in the beginning. The
robot estimated the in-hand pose of the object after grasping
it and planned a motion to move the object to the desired
position with a vertical pose. Fig. 12(b) and (c) exemplify
the handover and final vertical pose. We installed a linear
laser on one side of the robot and used it to measure the
deviation of the vertical pose.When the object is moved to the
target pose, we shoot a line laser to the bottom of the object
and measure its difference from the expected position in the
x, y, z directions illustrated in Fig.12(c) as the estimation
accuracy. It is worth noting that the positional displacements

obtained using the proposed method are only estimates, as it
was challenging to accurately attach AR markers and obtain
exact 6D poses. Despite this limitation, the performance
of the method can still be evaluated by examining the
estimation results. Additionally, the surrounding environment
was not specifically modified or controlled in any way; it
included elements such as black monitors, glass windows,
and fluorescent lights, which were left as they were in order
to assess the generalizability of the proposed method. MiDaS
plus RAFT is exclusive for segmenting transparent and shiny
objects from such random environmental backgrounds. The
robot will fail to segment the foreground and background
if conventional model-based or Bayesian inference methods
were used, let alone fusing with tactile data and estimating
the in-hand poses.

We carried out experiments for each object by 15 times to
examine the estimation performance. Especially we divided
the grasping poses into two main categories. (I) Grasping
poses that both RGB cameras can see the object. (II) Grasping
poses that only one RGB camera can see the object. We chose
the division because the sensors would receive fewer features
when one camera cannot capture the object. Also, nearly all
negative results of the 3D printed objects involved one camera
that could not capture the object. We hope to understand
the performance when only one camera is effective. Table 1
shows the results of each object with the divided grasping
pose categories. The rows without yellow or green highlights
show successfully measured data. They confirmed that the
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FIGURE 12. (a) Translucent test tube, crystal test tube, stainless bearing
shaft, plastic bolt, and shiny metal fixture. (b) Human handover.
(c) Placing the object onto a grid sheet vertically following the estimated
results. A line laser is used to examine the accuracy. (d) A close-up view
of the grid sheet and line laser. (e) Several representative positive results.

proposed method could accurately estimate objects with
different surface textures and properties. Fig.12(e) illustrates
some representative positive results using simulation. Anal-
yses and discussions about failure cases or the results with
larger than 20 [mm] estimation error (elements with gray
highlights in the table) will be presented in the following sub-
subsection.

2) IN-DEPTH ANALYSES ON EXCEPTIONAL CASES
The experimental results indicate that although the method
is applicable to various objects regardless of their surface
properties, such as transparency or shininess, there remain
exceptional cases where the sensors fail to recognize the
object’s in-hand pose.

FIGURE 13. A negative result of the plastic bolt. (a) Real object’s pose.
(b) Estimated object’s pose. (c) Sensor data. GS: GelSight; Cam: RGB
Camera.

FIGURE 14. (a) A negative result of the shiny metal fixture: Front and
back sides flipped. (b) A negative result of the translucent tube: The top
and bottom flipped.

The first category of exceptional cases happens when
only one RGB camera can see the object or the object is
out of the RGB cameras’ view. Fig. 13 shows an example.
It corresponds to the ‘‘Plastic Bolt’’ (ID 1) results in Table 1
and had a 23 [mm] error in 1x. Here, only the RGB camera
2 can see the object. Also, the same exception can be observed
when only a section of the object instead of thewhole skeleton
is in the camera’s view. In this case, the RGB camera images
may not differentiate various displacements and rotations.

The second category of exceptional cases happens when
an object has symmetric or repeated features. For example,
the metal fixture used in our experiments has four right-angle
corners. When the gripper holds the fixture like Fig. 14(a.1),
the proposed method cannot tell which right-angle corner
is in contact. The GelSight and RGB camera data in the
case of Fig. 14(a.1) are shown in Fig. 14(a.3). Both the
two types of sensors have difficulty in understanding the
object’s orientation due to noises and the object shape’s
symmetric geometry. The second category of exceptional
cases also explains the failed rows marked with ×

1−3

(yellow background) in Table 1. Symmetry or repeated
features completely reversed the estimation results for these
rows. Fig. 14(b) shows an example. The reason for this
misestimation was that the transparent tubes were vulnerable
to noises. It wasn’t easy to extract the tube area from the RGB
images. Also, the dilation and erosion added to the simulated
images in section IV led to ambiguity at the two ends of the
test tubes. The auto-encoder failed to extract useful features
from them.
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TABLE 1. Estimation results of five representative objects with divided grasp pose categories.

FIGURE 15. (a) Dominating reflection or (b) refraction may cause
problems for background subtraction.

The third category of exceptional cases happens to objects
with high reflectivity or refraction. The optical-flow method
mightmisrecognize the reflection on an object’s surface as the
moving background, especially when the object is very close
to the camera and the reflection dominates the camera’s view.
Fig. 15(a) illustrates an example of RGB data under dominant
reflection. This corresponds to the results for ‘‘Shiny Metal
Fixture’’ (ID 15) in Table 1. Fig. 15(b) illustrates an example
of refraction. This corresponds to the results for ‘‘Translucent
Test Tube’’ (ID 10) in Table 1. The upper part of the tube,
which is close to the camera, is made imperceptible to the
camera due to light refraction. As a result, the estimation had
an error of more than 40 [mm] in 1x.
Some other factors may also impair the results. For

example, the auto-encoder may fail to extract valuable
features due to the sim-to-real gap between the simulated
and real sensor data. The dilation and erosion of simulated
RGB images mentioned in the second category represent

FIGURE 16. (a) Real data from GelSight. (b) Simulated data.

one case. For GelSight, the simulated sensor data could
be significantly different from the real data because of the
sensor’s flexible contacting medium, as shown in Fig. 16. The
contact area in real sensors could be more significant than
in simulated images due to the contact silicon’s continuous
elastic deformation. It easily leads to ambiguity in pose
estimation. Developing a realistic Gelsight simulator [55]
would be helpful in solving the problem.

In conclusion, the proposed method might lead to unsat-
isfying estimation results when one or more sensors provide
useless or misleading information. The method can estimate
an object’s in-hand pose regardless of its texture, optical
properties, shapes, and surrounding light changes. However,
it may still fail in the presence of dominating symmetry,
reflection, and illumination changes.

C. REAL-WORLD TASKS
The proposed sensor configuration and in-hand pose esti-
mation method are used in a practical, real-world task. The
goal was to insert a pipette into a transparent tube for liquid
aspiration. Fig. 17 shows the experimental setup for this task.

In the task, we assume the pipette is fixed on the robot’s
right hand with a known pose, and the tube is grasped with a
random unknown pose. The mouth of the test tube is small,
and the task has high requirements for accurately estimating
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FIGURE 17. A practical task: Inserting a pipette into a transparent tube
for liquid aspiration.

its in-hand pose and, thus, the exact mouth position and
orientation. The task is a representative requirement widely
seen in industrial scenarios. We used the method mentioned
above to estimate the tube pose and successfully carried out
the insertion and aspiration action. An execution result can be
found in the supplementary video attached to this manuscript.
The robot recognized in-hand poses while moving the tube
and successfully inserted the pipette.

VIII. CONCLUSION AND FUTURE WORK
In this work, we proposed a method to perform object pose
estimation using two RGB cameras mounted on a robot
hand and two GelSight sensors installed at the fingertips.
The method included an offline part and an online part.
In the offline phase, we trained auto-encoders using simulated
sensor data and extracted features from simulation data for
further comparison using the trained encoders. We used
the trained auto-encoder in the online phase to extract
features from real sensor data. We estimated the in-hand
object pose by comparing the extracted features with the
simulation. The proposed method could estimate an in-hand
object pose with 15 [mm] accuracy in position and 15
[deg] accuracy in rotation. It could estimate an object’s pose
without considering its shape, transparency, and shininess.
The method was practical and applied to a real-world robotic
pipetting task.

Despite the positive conclusions, there remains room for
improvement. The method’s performance worsens when
objects are large or in a pose where one or more sensors
cannot provide helpful information. In the future, we will
consider using extended sensor design and configurations to
promote performance. We are also interested in developing
robust optical flow algorithms and realistic simulations by
considering the elastic rubber deformation of the Gelsight
sensor in order to improve the performance of individual
supporting modules.
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