
Received 27 December 2022, accepted 6 February 2023, date of publication 13 February 2023, date of current version 17 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244656

A Novel Machine Learning Approach for Android
Malware Detection Based on the Co-Existence
of Features
ESRAA ODAT1 AND QUSSAI M. YASEEN 2,3
1Department of Computer Information Systems, Jordan University of Science and Technology, Irbid 22110, Jordan
2Artificial Intelligence Research Center AIRC, College of Computer Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
3Faculty of Computer and Information Technology, Jordan University of Science and Technology, Irbid 22110, Jordan

Corresponding author: Qussai M. Yaseen (q.yaseen@ajman.ac.ae)

ABSTRACT This paper proposes a machine learning model based on the co-existence of static features for
Android malware detection. The proposed model assumes that Android malware requests an abnormal set
of co-existed permissions and APIs in comparing to those requested by benign applications. To prove this
assumption, the paper created a new dataset of co-existed permissions and API calls at different levels of
combinations, which are the second level, the third level, the fourth level and the fifth level. The extracted
datasets of co-existed features at different levels were applied on permissions only, APIs only, permissions
and APIs, and APIs and APIs frequencies. To extract the most relevant co-existed features, the frequent
pattern growth (FP-growth) algorithm, which is an association rule mining technique, was used. The new
datasets were extracted using Android APK samples from the Drebin, Malgenome and MalDroid2020
datasets. To evaluate the proposed model, several conventional machine learning algorithms were used.
The results show that the model can successfully classify Android malware with a high accuracy using
machine learning algorithms and the co-existence of features. Moreover, the results show that the achieved
classification accuracy depends on the classifier and the type of co-existed features. The maximum accuracy,
which is 98%, was achieved using the Random Forest algorithm and the co-existence of permissions features
at the second combination level. Furthermore, the results show that the proposed approach outperforms the
state-of-the-art model. UsingMalgenome dataset, the proposed approach achieved an accuracy of about 98%,
while the state-of-the-art achieved an accuracy of about 87%. In addition, the experiments show that using
the Drebin dataset, the proposed approach achieved an accuracy of about 95%, while the state-of-the-art
achieved an accuracy of about 93%.

INDEX TERMS Android, co-existence, FP-growth, machine learning, malware.

I. INTRODUCTION
Smartphone market is growing immensely. According to the
ICD report [1], it is estimated that by 2024, the annual sales of
mobile phones will reach more than 351 million units glob-
ally. Among the several mobiles operating systems, Android
is the dominant operating system with over 2.5 billion active
users across over 190 countries [2].

The wide range of capabilities offered by smartphones and
the rising number of activities carried out by their users,
including social networking, online banking, and gaming,

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru .

has given rise to very serious concerns about device security
and personal privacy. Since Android is an open-source plat-
form, it is easy for malware developer to launch their attacks
and develop Android malware apps that pose severe harm.
Obviously, the impact of Androidmalware is rising inmodern
society [3], [4].

Mobile malware is constantly updated with new features to
evade detection by anti-malware scanners. Android malware
applications usually use three types of breakthrough tech-
niques to get access to the user’s devices.

1) Repackaging: is one of the common techniques used
to install malware applications. This approach misuses
popular applications as the developers install popular

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 15471

https://orcid.org/0000-0003-0777-1871
https://orcid.org/0000-0003-1930-9473


E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

applications, disassemble them, inject their malicious
code, re-assemble them, and upload the injected app to
the third party to be downloaded by users.

2) Update: The developer here may still be using repack-
aging, but instead of closing the malicious code to the
app, they set an update component that even downloads
malicious code at runtime.

3) Downloading: The most common technique where the
developer encourages users to download their apps is
by attracting them to download interesting and useful
apps. However, these apps are malicious and may harm
their devices.

The Google Play Store, which is the marketplace for
Android applications, has more than 3.43 million apps as of
January 2021 [5]. Many third-party and non-Google stores
are appearing, such as AppBrain and AppChina, which pro-
vide applications to be downloaded by users. The appli-
cations provided by the third-party markets have a high
risk of being malicious apps that are not monitored or
detected. Allix et al. [6] reported that 22% of Google
Play applications were identified as malicious applications
and 50% of AppChina applications were recognized as
malicious apps.

Many defense techniques have been used to detect and pre-
vent malicious applications. Signature-based malware detec-
tion is an early method that works as a pattern comparison
between already exposed apps and new apps. It works well
for known malware but it is easily evaded by obfuscation
mechanisms or unknown malware. To evaluate the effec-
tiveness of existing signature-based anti-malware scanners,
Zhou and Jiang [7] tested four different mobile security appli-
cations against more than 1200 Android applications. The
results showed that the existing anti-malware apps cannot
detect obfuscated or repackaged malware apps. Similarly,
Scott [8] applied an obfuscation technique to ten different
malware applications from different families. The results
showed that none of them can detect malicious applications
after obfuscation.

Machine learning methods are applied to detect Android
malware and distinguish them from benign oneswithout com-
paring the patterns of the known Android malware. Machine
learning methods work smartly by building a model based on
sample data, known as ‘‘training data’’, to make predictions
or decisions without being explicitly programmed. The mal-
ware detection techniques using machine learning algorithms
are classified into two types, which are static analysis and
dynamic analysis. In static analysis, an Android application is
examinedwithout running it. In contrast, in dynamic analysis,
the application is run in a controlled environment to analyze
its behavior.

Static Analysis uses static features that are extracted from
the manifest (i.e. permissions requested by apps), the source
code (i.e. API calls), and intents. Many of the extracted fea-
tures may be disruptive features. For example, many permis-
sions are requested by both benign and malware applications.

Therefore, different feature selection methods are applied to
select the most relevant features that accurately classifies
malware apps. Predefined feature selection algorithms utilize
statistical methods to score the correlation or dependency
between input variables and output or class variables. Most of
these algorithms score each feature alone. In the contrary, this
paper relies on the co-existence of features to detect Android
malware. The contributions of this paper are summarized as
follows.

1) The paper extracted new datasets of co-existed fea-
tures using the APK samples gathered from three dif-
ferent datasets, which are Drebin, Malgenome, and
MalDroid2020. The new dataset is available online for
research use [9].

2) The paper applied the Association rule mining tech-
nique (FP-growth) to construct a novel co-existence-
based dataset that depends on the existing of different
features together.

3) The paper extracted the features co-existence of per-
missions only, APIs only, permissions and APIs, and
APIs and APIs frequencies.

4) The paper extracted the features co-existence at differ-
ent levels, which are level 2 (combinations of two fea-
tures), level 3 (combinations of three features), level 4
(combinations of four features), and level 5 (combina-
tions of five features).

5) The paper used several machine learning algorithms to
test the effectiveness of the proposed approach.

6) The experiments show that the proposed model can
successfully classify Android malware with a high
accuracy of about 98% using the RF classifier and
the co-existence of permissions features at the sec-
ond combination level. Moreover, the results show that
the proposed approach outperforms the state-of-the-art
model.

The rest of the paper is organized as follows. The next
section discusses some related work. Section III discusses
the methodology. Section IV demonstrates and discusses the
experiments and results. Finally, Section V concludes the
work.

II. RELATE WORK
Many machine learning approaches have been developed to
prevent or detect Android malware. Machine learning algo-
rithms use static, dynamic and hybrid features for static,
dynamic and hybrid analysis, respectively. The following
subsections discusses some related work that used different
types of machine learning approaches, and Table 1 compares
between the related work. We should mention here that these
algorithms score each feature alone. In the contrary, this
paper relies on the co-existence of features to detect Android
malware. To the best of our knowledge, the proposed work in
this paper is the first work that focuses on the co-existence
of features at different levels, and uses this variety of
combinations.

15472 VOLUME 11, 2023



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

A. STATIC BASED APPROACHES
Using static features to detect Android malware have been
studied by many authors. Table 1 compares between the
discussed related work in this section.

Tiwari and Shukla [10] proposed a machine learning
method using logistic regression to detect Android malware
based on permissions and API features. The authors tested the
model using the full features dataset and a reduced features
dataset that consists of 131 features. The authors claimed
that their model achieved an accuracy of 97.25% and 95.87%
using full features and reduced features datasets respectively.

Potha et al. [11] proposed an extrinsic random-based
ensemble method, called ERBE. The proposed model used
an aggregation function that combines the output of all
base models and computes the average of the output of
the base models instances separately. The authors tested the
effect of external instances and showed that ensembles based
on a large and homogeneous external instance are effec-
tive more than small and heterogeneous external instances.
The experimental results on different datasets, namely
AndroZoo [12], Drebin [13] and Virusshare [14], showed that
the proposed approach achieved an accuracy up to 97.3%
using Androzoo dataset. Similarly, using AndroZoo dataset,
Kouliaridis et al. [2] tested the applicability of Principal Com-
ponent Analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) methods in Android malware detection.
They tested several base prominent classifiers and how they
can be used together to build an accurate ensemble, and
proposed a simple ensemble method and a complex ensem-
ble method. They claimed that their method is effective of
assembling using Androzoo benchmark corpora. In addi-
tion, they claimed that ensembles using a heterogeneous and
large set of base models provide a stable performance. The
results showed that the accuracy using the fusion function
AVARAGE(AVG) achieved an accuracy of 91.7%.

Taheri et al. [15] proposed four Android malware detection
methods using Hamming distance, which are First Nearest
Neighbors (FNN), All Nearest neighbors (ANN), Weighted
All Nearest Neighbors (WANN), and k-medoid based nearest
neighbors (KMNN). The authors tested their methods using
three datasets, which are Drebin [13], Contagio [16], and
Genome [17]. The authors claimed that the proposedmethods
using different types of features of API, intent, and permis-
sion features, achieved an accuracy up to 99%.

Millar et al. [18] proposed an Android malware detection
model based on Discriminative Adversarial Network (DAN),
called DANdroid. The authors claimed that their work has
three contributions. The first contribution is the capability of
their approach in discriminating adversarial learning results
in malware feature representations. The second one is the
using of three feature sets (raw opcodes, permissions and
API calls) in increasing the obfuscation resilience in a multi-
view deep learning architecture. The third one is the capa-
bility of their approach in generalizing over rare and future
obfuscation approaches that do not exist in the training.

Furthermore, the authors claimed that their model achieved
an average F-score of 97.3% using Drebin dataset [13].

Tao et al. [19] studied Android apps searching for hid-
den patterns of malware highly sensitive APIs. The authors
implemented an automated malware detection system, called
MalPat. They conducted many experiments using a dataset
of 31185 benign apps and 15 336 malware samples they col-
lected from Google play, Virusshare [14] and Contagio [16].
The authors claimed that MalPat achieved an F1-score of
98.24% and outperformed the state-of-the-art methodsMUD-
FLOW [20], Drebin [13] and DroidAPIMiner [21].

B. DYNAMIC BASED APPROACHES
This section discusses some related work about using
dynamic features in detecting Android malware. Table 1
compares between the discussed related work in this section.

Afonso et al. [22] proposed a model based on dynamic
analysis of Android applications. The proposed system
dynamically detects malware using Android API calls and
system call traces. The authors used different datasets from
Malgenome project [17] and Virusshare [14] with a total of
7520 apps. The proposed model tested several classification
algorithms and achieved an accuracy of 96.66%. However,
their approach failed to monitor the malicious behavior in
some cases. For example, when an app fails to connect to the
Internet, the model stops executing the app without gathering
information about any malicious actions.

Dash et al. [23] proposed an approach that uses appli-
cation runtime behaviors only to classify Android malware
into families. The proposed approach used Support Vector
Machines SVM and Conformal Prediction. The experiments
were conducted using system calls and Binder communica-
tion features on Drebin dataset [13] and achieved an accuracy
of 94%. However, their approach suffered from the limited
information gathered from tracing low-level events and the
insufficient coverage when testing applications.

Cat et al. [24] proposed a dynamic classification model
for Android Applications, called DroidCat. It used different
dynamic features such as intents, method calls, and inter-
component communication (ICC). The authors tested Droid-
cat using a large dataset of about 34343 apps collected
from Genome [17], AndroZoo [12], VirusShare [14] and
Drebin [13]. The authors claimed that DroidCat achieved an
accuracy of about 97%. Moreover, the authors stated that
some dynamic features, such as the distribution of method
calls over user code and libraries feature capturing app execu-
tion structure, are very important in the classification process
in comparing to some used features such as sensitive flows.

Wang et al. [25] proposed a framework for Android mal-
ware detection using network traffic as features. The authors
tested the machine learning algorithm C4.5 using Drebin
dataset. The experiments showed that the proposed model
achieved an accuracy of 97.89%. Similarly, Sun et al. [26]
proposed ‘‘Patronus’’, which is a machine learning model
that can dynamically detect Android malware using

VOLUME 11, 2023 15473



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

runtime information. The authors claimed that Patronus can
detect malware accurately without posing high performance
overhead or battery consumption.

C. HYBRID BASED APPROACHES
Unlike the approaches discussed in the previous two subsec-
tions, some authors relied on using hybrid approaches that
combines both static and dynamic features to detect Android
malware. Table 1 compares between some hybrid approaches
that are discussed in this subsection.

Kouliaridis et al. [4] proposed a tool, called Androtomist,
that can apply static and dynamic analysis of Android appli-
cations. Androtomist is available as open source software
and has two modes: novice and expert users. The authors
tested Androtomist using three Android datasets and sev-
eral machine learning classifiers. In addition, the authors
used an ensemble approach by averaging the output and
showed the most influencing features. The authors claimed
that Androtomist achieved a 100% accuracy on Drebin [13]
and Virusshare [14] datasets, while it achieved 91.8% using
Androzoo dataset [12].

Alzaylaee et al. [28] proposed a deep learning system,
called DL-Droid, to detect Android malware using dynamic
analysis and stateful input generation. Moreover, the authors
tested the performance of the stateful input generation
approach using random-based input generation as a baseline
for comparison. The experiments were conducted using a
large dataset of more than 30,000 Android benign and mal-
ware applications. They showed that DL-Droid achieved a
high accuracy up to 97.8% using dynamic features only and
99.6% using both dynamic and static features. The authors
argued that there is a high significance for enhanced input
generation in dynamic analysis since DL-Droid outperformed
the state-of-the-art approaches tested in their work.

Lindorfer et al. [33] proposed a hybrid system, called
MARVIN, that uses both static and dynamic analysis to
detect unknown Android malware. MARVIN used a rich
set of features such as Class Structure, Certificate Meta-
data, Network Activity, Data Leaks, Dynamic Code Loading,
Used/Required Permissions, Crypto Operations, etc. More-
over, the proposed approach was tested using a large dataset
that consists of 135,000 Android apps and 15,000 malware
samples. The authors claimed that MARVIN achieved an
accuracy of 98.24%.

Chen et al. [35] proposed a streaminglized machine
learning-based MD model, called StormDroid. StormDroid
is a hybrid approach that uses a variety of features such as
Permission, Sensitive API Call, sequences, dynamic behav-
iors to classify Android malware. The proposed model tested
different machine learning algorithms such as SVM, C4.5,
MLP, NB, IBK, Bagging predictor on a dataset collected
from Google Play and Contagio [16] and consisted of about
8,000 applications. The proposed model supports a large-
scale and scalable analysis that can monitor static and
dynamic behaviors. The authors claimed that StromDroid
achieved an accuracy of 93.8% and improved the efficiency

rate by approximately three times in comparing to a single
thread.

Saracino et al. [34] proposed a cross-layer machine learn-
ing model, called MADAM, which uses different set of static
and dynamic features, such as Sys Calls, SMS, Critical API,
User Activity and App Metadata. MADAM tested different
algorithms, such as K-NN, LDC, QDC, MLP, PARZC, RBF
using a large dataset collected from Genome [17], Conta-
gio [16] and VirusShare [14]. The authors claimed that their
model achieved an accuracy of 96.6%. Moreover, the authors
claimed that their model has limited battery consumption and
low performance overhead.

III. METHODOLOGY
The proposed method consists of two parts: preparing a new
dataset of co-existed features and using this dataset to classify
malware and benign apps using different machine learning
classifiers. The datasets of co-existed features consists of
permissions only, API Calls only, and a combination of per-
missions and API calls as well as API frequencies.

A. DATA COLLECTION
The Android APKs used in this work have been obtained
frommultiple sources to test the effectiveness of the proposed
technique. The paper used the APKs from three datasets,
which are the Drebin dataset, the Malgenome dataset,
and the CIC_MALDROID2020 dataset [36]. The Drebin
and Malgenome datasets have been acquired from [37],
which provided them as supplementary material. The mal-
ware samples of the two datasets named Drebin-215 and
Malgenome-215 originate from [13] and [7], respectively.
Both datasets contain 215 features, and consist of four fea-
ture categories: permissions, APIs, intents, and command
signatures, where 181 of them are permissions and APIs.
CIC_MALDROID2020 dataset is a recent and large dataset
of malware and benign Android application packages (APKs)
downloaded from the Canadian Institute for Cybersecu-
rity [36]. Based on these Datasets, this paper generated new
datasets of co-existed features and made these datasets avail-
able online for research use [9].

1) DREBIN-215 DATASET
The Drebin dataset [13] contains 15031 different applica-
tions; 5,550 applications from 179 different malware families
and 9477 benign applications. The samples were collected
from 2010 to 2012. Usign this datast, the paper extracted
181 different features; 109 permissions and 72 APIs.

2) MALGENOME-215 DATASET
The Malgenome dataset [7] is a malware dataset that was
active from 2012 to the end of 2015 and contains 3798 dif-
ferent applications; 1260 applications belong to 49 different
malware families; and 2538 benign applications. Using this
dataset, the paper extracted 181 features and 109 permissions
and 72 APIs.

15474 VOLUME 11, 2023



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

TABLE 1. A comparison between some related work.

3) CIC_MALDROID2020 DATASET
The CIC_MALDroid2020 is provided by the Canadian Insti-
tute for Cybersecurity (CIC) [36]. It is a comprehensive
educational, research, and enterprise entity that combines
researchers from the social sciences, business, computer sci-
ence, engineering, law, and science to share creative ideas.
The dataset has the following four characteristics: large,
recent, diverse, and comprehensive. The institute gathered
over 17,341 Android samples from a variety of sources,

including VirusTotal service, the Contagio security blog [38],
AMD [19], MalDozer [39], and other datasets used by recent
contributions [40], [25] and [39]. The dataset consists of four
malware categories, which are Adware, Banking malware,
SMS malware, and Riskware. We used the adware family
apps as a malicious software sample with benign apps to find
the coexistence of features in the same malware category.
Adware is an advertisement that is frequently hidden
within authorized apps that have been infected by malware.

VOLUME 11, 2023 15475



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

Adware can infect a mobile phone, causing it to download
specific forms of Adware and allowing attackers to steal
sensitive data. The used dataset consists of 2081 applications,
995 Adware application, and 1086 benign applications.

B. DATA PREPROCESSING
1) HANDLING IMBALANCED DATASETS
This paper used the random under-sampling method before
generating the combinations and during the classification
process. The combinations construction must rely on roughly
the same number of malware and benign samples to get a
reliable system, and build it using real data that can distin-
guish malware from benign applications. The random under-
sampling technique was used because it is a simple method
for removing samples without imposing any constraints on
the data. Furthermore, several experiments have shown that
the accuracy does not greatly change in every experiment
when using random under-sampling [41].Moreover, the num-
ber of examples is enough for training and testing themachine
learning models, and each application is decompiled alone.
Therefore, eliminating some applications does not lead to a
significant loss of data.

2) APK DECOMPILING
The Manifest file, the classes.dex file and the raw resources
like images and layout files are all packed in an Android APK
file. Dex2jar [11] andApkTool [28] are two open-sourceAPK
decompiling tools used in this work. The ApkTool has been
chosen because it is powerful and simple to implement. These
tools process one APK file at a time. Therefore, a python
code script has been developed to decompile all APK files
at the same time. Some APKs cannot decompile due to errors
in the file extension by the developer, therefore, they were
removed. After removing these files, 2081 APK files were
decompiled from the CIC_MalDroid2020 dataset [36]. Then,
their Manifest files and smali files were used for the extrac-
tion of permissions and static APIs.

3) FEATURES VECTOR AND DATASETS CONSTRUCTION
The samples obtained from the CIC_MALDROID2020
dataset were in APK raw format. Therefore, a Python code
developed to extract all requested permissions from man-
ifest files after decompiling APKs. Moreover, using smali
files, we extracted static API calls in two forms: existence
and frequencies. Next, a permissions-APKs matrix, an APIs-
APKs matrix, a permission and API-APKs matrix, and an
API frequencies-APKs matrix were constructed. The matri-
ces consist of APKs as instances and permissions and API as
features. To clarify this point, letR be a vector containing a set
of j number of Android permissions and API calls. For every
ith application in the dataset, we generated a binary sequence
Ri = {r1, r2 . . . , rj}, where rx denotes 1 if the corresponding
permission or API exists in the application and 0 if it does not
exist. Moreover, the class feature was added to the dataset,
where 1 indicates a malware and 0 indicates a benign APK.

4) PERMISSIONS CLEANING
It is necessary to eliminate some extracted permissions from
the manifest file due to some reasons. In this work, after
decompiling CIC_MALDROID2020 APKs, some extracted
permissions were removed because of the following reasons:

• Duplicated permissions.
• Incorrect permissions that are commonly caused by
input typos or wrong format.

• Permissions were requested by only one or two appli-
cations, adapted for specific system users to be more
persuasive to their local users, such as Huawei.

Therefore, from 1633 permissions extracted from CIC_Mal-
Droid2020 samples, only 825 correct, valuable, and fre-
quently used permissions were kept.

C. THE CO-EXISTENCE METHOD
The proposed approach assumes that a malware requests a
unique set of co-existed permissions and APIs, which are dif-
ferent from those requested by benign Android applications.
Therefore, this paper constructed different datasets for the
co-existing of the two types of features (Permissions, API
calls) at different combination levels (level2, level3, level4,
level5). The following subsections explain this process.

1) FREQUENT PATTERNS EXTRACTION
The effectiveness of frequent pattern-based classification is
discussed in [15].The authors showed that the infrequent pat-
terns may disturb the model due to their limited discrimina-
tive power. Therefore, they emphasized on the the importance
of selecting a reasonable minimum support threshold. More-
over, they explained that a frequent pattern has two properties:
every pattern is a combination of single features, and they
are frequent. Using the combination of features converts the
feature space into a non-linear feature combination, which
increases the new feature space expressive power.

We believe that the feature co-existence technique captures
more underlying semantics than single features, and reduces
the number of base features that depend on them to detect
malware. Moreover, we realize that the combinations of per-
missions and APIs can be effective in detecting malicious
apps.

2) FP-GROWTH
Data mining helps in extracting information from a dataset
to identify patterns and meaningful data. The associa-
tion rule data mining technique tends to find interesting
patterns in transactional data. Two main techniques are
used in association rule generation: FP-growth and Apriori
algorithms.

Agrawal et al. [18] proposed a fast algorithm for min-
ing association rules called the FP-growth method, which
is used in this paper. FP-growth is a divide and conquer
strategy that consists of two steps: building an FP-Tree and
extracting the frequent itemsets from the FP-Tree without
considering candidates generations. Each path of the FP-Tree

15476 VOLUME 11, 2023



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

FIGURE 1. The Proposed co-existence-based detection model at every level.

represents frequent itemsets, where nodes in the path are in a
decreasing order based on the frequency. It also maintains the
association between itemsets. Moreover, Kavitha et al. [42]
conducted a comparative analysis study between Apriori and
FP-growth. Their work compared the performance of fre-
quent pattern searching in large datasets using FP-growth
method that uses divide and conquer and Apriori method that
uses the breadth-first search approach. The FP-growth algo-
rithm aims to extract frequent item sets from transactional
data without candidate set generation, whereas the Apriori
algorithm extracts candidate itemsets throughmany scans and
then filters frequent patterns. FP-growth is fast as it consumes
less time in frequent itemset generation than Apriori. More-
over, it is a memory-efficient technique due to its structure,
which extracts frequent patterns without requiring candidate
generation.

In this research, the FP-growth association rule mining
technique was applied to a dataset of binary and single fea-
tures to extract frequent patterns at different feature set sizes
and to use them as co-existing features in classification. The
FP-growth algorithm is used to extract frequent patterns at
different set of levels based on the frequency of these fea-
tures in datasets. Several experiments were conducted using
different number of top-frequent patterns (50, 75, 100, 150)
to select the best number of combinations to be used as
a feature in the new conditional dataset. 150 combinations
at all levels for all datasets were selected, as this num-
ber of combinations achieved the best detection accuracy.
Figure 1 shows the system flow from balancing the dataset,

extracting co-existence combinations, building a new dataset
based on highly frequent patterns as a feature, and then
applying machine learning models for classification.

3) THE LEVELS OF FEATURES CO-EXISTENCE
Four levels of features co-existence are considered in this
paper, which are level 2, level 3, level 4, and level 5.
To clarify this process, suppose that the dataset consists of
five APK samples and the extracted permissions features
are (READ_SMS, READ_PHONE_STATE, WRITE_SMS,
INTERNET, and PHONE_CALL). Table 2 shows an example
of the co-existence of permissions at every level. Table 3
shows an example of the co-existence of permissions features
in the dataset APKs at level 2. The values in the dataset are
based on the analysis of feature set requests by the apps.
If the app requests a feature set in a given column, the
value is 1, otherwise it is 0. For example, the first column
value is 1 if apps request (READ_SMS and SEND_SMS),
otherwise the value is 0. This dataset is fed into machine
learning algorithms to build a model that can differentiate
malware from benign applications based on highly co-existed
features.

D. CO-EXISTENCE EXTRACTION PREPROCESSING
Preprocessing is necessary for permission-API datasets
and API frequency datasets to prepare them for fea-
ture co-existence extraction. However, no preprocessing is
required for permission-only datasets and API-only datasets.

VOLUME 11, 2023 15477



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

TABLE 2. Examples of permissions co-existence at different levels.

TABLE 3. An example of the permissions co-existence at level 2 in the
dataset.

1) PERMISSION-API DATASETS
One of the goals of the proposed method is to measure
the effectiveness of relying on the co-existence of a mix of
permissions and APIs in the same set to discriminate malware
from benign applications. Therefore, the method extracts all
co-existing features at a specific level, and those that con-
tain only APIs or only permissions are excluded from the
co-existence matrix. Next, the system depends only on highly
co-existing features that have mixed features of permissions
and APIs. For example, if the dataset contains only permis-
sions combinations such as (READ-SMS, INTERNET), the
system will eliminate it because the purpose of this dataset is
to construct a model using permission-API combinations.

2) API FREQUENCY DATASETS
In this part, the proposed system considers only APIs with
high frequency in each APK. It uses a predefined threshold
to consider an API as frequent or not. The technique started
by developing an equation that determines the average of
frequencies of all requested APIs by all APKs. Next, this
average is used as the threshold based on which an API is
considered frequent or not. That is, if the frequency of an
API is greater than the threshold value, the API is considered
frequent and its existence value is set to 1, otherwise, it is not
considered frequent and its existence value is set to 0.

To clarify this point, assume that N is the total number of
APIs, M is the total number of API calls (total frequencies for
all APIs), and A is the threshold value, then:

A = N/M

where A is computed as the average of API frequencies. That
is, A is the minimum number of frequencies for an API to be
considered in the API’s Co-existence matrix.

Several experiments were conducted using different
threshold values, however, this formula achieved the
best results. The paper applied this idea using the
CIC_MALDROID2020 dataset.

IV. EXPERIMENTS AND RESULTS
The experiments aim at evaluating the performance of the
proposed technique using both permissions and API calls fea-
tures in three forms, which are: permission-only co-existence,
API-only co-existence, and permission-API co-existence.

Moreover, the proposed model aims at developing a malware
detection method based on the co-existence of a few fea-
tures. Five machine learning classifiers were tested, which
are Random Forest (RF), K-Nearest Neighbors (KNN),
Logistic Regression (LR), Decision Tree (J48), and Sup-
port Vector Machine (SVM). These algorithms were selected
because they are the top most used machine learning algo-
rithms [43]. The results are shown in terms of accuracy since
the dataset is balanced. The analysis includes identifying the
best model at the best co-existence level which accurately
classifies malware and benign apps, finds the correlation
between co-existence level and performance, and compares
feature sets to generalize which is the best form of features
co-existence that well classifies malware applications. The
experiments were conducted using the datasets acquired for
every subset—permission dataset, API dataset, permission-
API dataset and API-frequencies dataset. The results are
analyzed and compared for every dataset separately as shown
in subsequent sections.

A. SELECTING THE TOP FREQUENT CO-EXISTED FEATURES
Highly frequent candidates will not be the best discriminative
patterns as they appear in a large portion of the dataset in
different classes. Similarly, very low-frequent candidatesmay
disrupt the model’s accuracy due to overfitting. The best
co-existence combination is the one that is highly frequent
in malware and low or non-frequent in benign applications
and vice versa.

The proposed technique extracts the top 150 frequent fea-
ture combinations (co-existence), using FP-Growth, at dif-
ferent levels that are requested by applications frequently,
as discussed in third section. The models were built on
these combinations as features to measure their effective-
ness in classifying malware from benign applications. The
model chose this number of top features combinations since
it achieved the best accuracy results; the proposed model
tested the classifiers algorithms using different number of
combination features, which are 50, 75, 100 and 150, from
the different combinations of features co-existence extracted
from CIC_MalDroid2020 dataset. The results using Random
Forest are shown only in this paper since Random Forest
achieved the best accuracy as will be shown in subsequent
sections and since the experiments on the other classifiers
lead to the same conclusion. The results are shown in in
Tables 4, 5 and 6.

B. RESULTS USING CIC_MALDROID2020 DATASET
This section discusses the results of testing the machine
learning algorithms using different features co-existence,
which were extracted from CIC_MALDROID2020 Dataset.
The experiments were conducted at the different levels of
co-existence 2,3,4 and 5. Figure 2, Figure 3 and Figure 4 show
the results of these experiments.

Figure 2 shows the results of testing the machine learning
algorithms using the permissions features only at different

15478 VOLUME 11, 2023



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

TABLE 4. Accuracy of the random forest classifier for API co-existence in
the CIC_MALDROID2020 dataset at different co-existence levels and
different number of top relevant combinations.

TABLE 5. Accuracy of the random forest classifier for permission
co-existence in the CIC_MALDROID2020 dataset at different co-existence
levels and different number of top relevant combinations.

TABLE 6. Accuracy of the random forest classifier for permission-API
co-existence in the CIC_MALDROID2020 dataset at different co-existence
levels and different number of top relevant combinations.

levels of co-existence. As shown in the figure, Random For-
est, Decision Trees and SVM algorithms achieved the best
and similar results at all co-existence levels; all of them
achieved the highest accuracy, which is about 98%. More-
over, all algorithms achieved the best accuracy at the second
level of co-existence. Similarly, Figure 3 shows the results of
testing the machine learning algorithms using API features
only at different levels of co-existence. The best accuracy,
which is 95%, was achieved by Random Forest, Decision
Trees and SVM algorithms at level 2. Obviously, the achieved
accuracy using API features only is less than the accuracy
achieved by the same algorithms when using permissions
only co-existence. The results of testing machine learning
algorithms using permissions-API features at different levels
of co-existence are shown in Figure 4. As shown in the figure,
the best accuracy, which is 98%, was achieved by the same
algorithms at level 2.

Figure 5 summarizes the best achievements at different lev-
els of features co-existence, which were achieved by Random
Forest, Decision Trees, and SVM.The figure shows that the
performance of machine learning algorithms degrades when
increasing the co-existence level. In addition, it shows that
using either permissions only or permission-API features at
the second level of co-existence achieves the same accuracy,
and outperforms the accuracy of using APIs only. However,
it shows that the accuracy degrades sharply when increas-
ing the level of co-existing using either API features only
or permission-API only in comparison to using permission
features only.

FIGURE 2. The performance of different machine learning algorithms
using different combination levels of permissions features co-existence
in CIC_MalDroid2020 dataset.

FIGURE 3. The performance of different machine learning algorithms
using different combination levels of API features co-existence in
CIC_MalDroid2020 dataset.

The figures show that the second level of co-existence-
based detection outperforms other levels in all feature
categories: permissions, APIs, and permissions-APIs. There-
fore, level 2 has discriminative co-existence combinations
that differentiatemalware and benign applications. At level 2,
as the proposed system picks the top k frequent candidates,
it drills down to get the specified number of k, so the chance
increases to get more information and include combina-
tions with various frequencies, which has high discrimina-
tive power. Moreover, as the level increases, the frequency
of combination decreases as it exists in a small portion of
the dataset. Therefore, the model’s ability to detect malware
depends on the discriminative power of co-existence features
and on the combinations variations at a specific level.

C. RESULTS USING MALGENOME DATASET
This section discusses the results of testing themachine learn-
ing algorithms using different features co-existence that were
extracted from Malgenome Dataset. The experiments were
conducted at the different levels of co-existence 2,3,4 and 5.
The results are shown in Figure 6, Figure 7 and Figure 8.

VOLUME 11, 2023 15479



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

FIGURE 4. The performance of different machine learning algorithms
using different combination levels of permission-API features
co-existence in CIC_MalDroid2020 dataset.

FIGURE 5. RF, DT and SVM accuracy at different feature categories and
different levels using CIC_MALDROID 2020.

Figure 6 shows the performance of machine learning algo-
rithms at different co-existence levels using the permissions
features only. It shows that RandomForest, Decision Tree and
SVM achieved the highest accuracy, which is 98% at level 2.
Similarly, the same algorithms achieved the best results when
using API features only and permission-API features as
shown in Figures 7 and 8 respectively. Using API features
only, Random Forest, SVM and Decision tree algorithms
achieved an accuracy of about 97%, while using permissions-
API combinations enhanced the accuracy of these algorithms
to 98%. Figure 9 summarizes the results achieved by Random
Forest, Decision Tree and SVM algorithms usingMalgenome
dataset. Obviously, the best results were achieved at level 2
regardless the used features. The maximum achieved accu-
racy is when these algorithms used permissions features only
or permission-API features at level 2. However, the degrada-
tion in accuracy as the features co-existence level increases is
maximized when using permission-API features.

D. RESULTS USING DREBIN DATASET
This section discusses the results of testing the machine
learning algorithms using different co-existed features that
were extracted from Drebin Dataset. Similar to the previ-
ous datasets, the experiments were conducted at the dif-
ferent levels of co-existence 2,3,4 and 5. The results are
shown in Figure 10, Figure 11 and Figure 12. As in using

FIGURE 6. The performance of different machine learning algorithms
using different combination levels of permissions features co-existence
in Malgenome dataset.

FIGURE 7. The performance of different machine learning algorithms
using different combination levels of API features co-existence in
Malgenome dataset.

CIC_MalDroid2020 and Malgenom Datasets, using Drebin
datasets, the Random Forest, Decision Trees, and SVM algo-
rithms achieved the best results using different co-existed
features at all levels of co-existence. However, the best
accuracy, which is 97%, was achieved when using the
co-existed permission-API features at level 2. This is dif-
ferent than what was achieved in the previous experiments
using CIC_MalDroid2020 and Malgenom Datasets, where
the best results were achieved using either permissions only
or permission-API combinations at level 2.

Figure 13 shows the summary of the performance of RF,
DT and SVM algorithms, which achieved the best results at
different levels of features co-existence. The figure shows that
the degradation in performance of the algorithms increases
as the level of combination (features co-existence) increases,
which is similar to the results achieved in previous sections.

E. API FREQUENCY
The previous experiments used the existence of API fea-
tures in creating the co-existence datasets. However, they

15480 VOLUME 11, 2023



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

FIGURE 8. The performance of different machine learning algorithms
using different combination levels of permission-API features
co-existence in malgenome dataset.

FIGURE 9. RF, DT and SVM accuracy for different feature categories at
different levels for Malgenome dataset.

FIGURE 10. The performance of different machine learning algorithms
using different combination levels of permissions features co-existence
in Drebin dataset.

did not consider the API frequencies. In this section,
the paper considers the API features frequencies in
CIC_MALDROID2020 to investigate its effectiveness in the
co-existence-based detection. This work classified the API
features in an APK into ‘‘existed (1)’’ or ‘‘not existed (0)’’
based on the API frequencies in the APK. For this purpose,
a predefined threshold value is set. Several random thresholds
were tested to evaluate their classification accuracy and
to select an appropriate threshold. The best results were

FIGURE 11. The performance of different machine learning algorithms
using different combination levels of API features co-existence in Drebin
dataset.

FIGURE 12. The performance of different machine learning algorithms
using different combination levels of permission-API features
co-existence in Drebin dataset.

FIGURE 13. RF, DT and SVM accuracy for different feature categories at
different levels for Drebin dataset.

achieved using the average of API calls frequencies as the
threshold value. In this experiment we relied on the average of
API frequencies as a threshold to convert API frequencies to
API features existences. That is, if an API frequency in some
APK is greater than or equal to the threshold value, this API
is considered as ‘‘existed’’ (its value is set to 1)in the APK,
otherwise, it is considered as ‘‘not existed’’(its value is set
to 0). After that, the API co-existence matrix was extracted,
and a classification based on the co-existence of features was
applied.

VOLUME 11, 2023 15481



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

FIGURE 14. Accuracy of features co-existence using different API thresholds.

Figure 14 shows the results of the experiment using dif-
ferent threshold values, where the average of API frequen-
cies is 9 in this experiment. The experiment was conducted
using Random Forest algorithm and the CIC_MalDroid2020
dataset. Obviously, the accuracy of co-existence detection
approach based on API frequencies varies at different thresh-
old values. The results show that the accuracy based on the
thresholds greater than the average of API frequencies is
smaller than the accuracy achieved when using the average
of API frequencies as a threshold. This is due to the fact
that increasing the threshold value decreases the number
of API features used in detection sharply, which negatively
affect the classification process. Similarly, the accuracy does
not change or decreases when decreasing the threshold val-
ues below the average of API frequencies. Decreasing the
threshold value will achieve the same results when not using
API frequencies. This proves that using the average of API
frequency as a threshold value achieves the best results.

Figure 15 compares between the accuracy achieved by
applying Random Forest algorithm on the co-existed API fea-
tures dataset extracted from the CIC_MalDroid2020 dataset,
and that achieved by applying Random Forest algorithm
using co-existed frequent API features dataset (using API
frequency) extracted from the same dataset. Obviously, using
API frequency achieves better accuracy than using API exis-
tence only. This may refer to the assumption that frequent
call of an API reflects the importance of this API to the APK.
That is, this approach filters insignificant API features that
may negatively affect the classification process.

F. A COMPARISON WITH THE STATE-OF-THE-ART
In this section, a comparative evaluation between the
proposed approach and a state-of-the-art co-existence
permission-based detection technique. Arora and Peddoju

in [44] proposed the Perm-Pair detection technique, which
uses permission pairs to detect Android malware. The
authors used three different malware datasets: Genome [17],
Drebin [13], and Koodous [45]. The method depends on
extracting permission pairs from each application and con-
necting those pairs using the graph structure for malware
detection. The unique permissions for each app were repre-
sented by a vector V, and a pair of permissions was connected
using a weighted edge. The weight of an edge increases
with the existence of the same permission pair from different
applications in the dataset. After processing all apps in the
dataset, the edge weights were divided by the number of
applications in the dataset to normalize weights across differ-
ent dataset graphs. After generating separate Genome (GG),
Drebin (GD), and Koodous (GK) graphs, they were merged
into a single graph (GM) to represent the malicious graph.
The final model consisted of two graphs: a malicious graph
and a normal graph. In the detection phase, for every testing
application, its permissions pairs were extracted, then two
scores were calculated: a malicious score and a normal score,
by searching every permission pair in GM andGN and adding
the corresponding weights. Therefore, if the malicious score
is greater than the normal score, the application was classified
as malware and vice versa. The graph merging process of the
three malware graphs included two types of edges: disjoint
and common. All the disjointed edges were added to GM
directly. The weighted sum method was used for determining
a single weight of common edges because common edges
have three different weights. Finally, the system finds the
maximal set of irrelevant edges that do not affect the detection
results and removes them.

The authors focused only on permission pairs because
there were so many permission patterns when analyzing
groups of more than two features. However, the proposed

15482 VOLUME 11, 2023



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

FIGURE 15. The accuracy of conducting RF algorithm using the API
existence dataset and the API frequency dataset at different levels of
co-existence.

TABLE 7. Drebin and malgenome datasets size in PermPair and the
proposed approach.

FIGURE 16. Accuracy comparisons between the proposed approach and
the PermPair method.

approach in this paper utilizes the FP-growth method to
analyze the co-existence of features from level 2 to level 5.
Furthermore, the proposed approach considers different fea-
ture categories, permissions, APIs, and API frequency when
determining the best feature category for co-existence-based
detection using machine learning techniques.

The PermPair used the scoring technique to detect Android
malware using Drebin and Malgenome datasets. Meanwhile,
the proposed approach achieved its best accuracy using
Random Forest algorithm. Table 7 shows the size of the
common datasets in the proposed work and the Perm-Pair
technique. Figure 16 shows the comparisons between both
approaches using the same datasets at the second level of
features co-existence. The results show that the proposed
approach achieved an accuracy of about 98% and 95%
using Malgenome and Drebin datasets respectively, while the
PermPair technique achieved an accuracy of about 87% and
93% using the same datasets, respectively.

V. CONCLUSION AND FUTURE WORK
The paper has proposed a novel approach for detecting
Android malware using the FP-growth algorithm, which is an

association rule mining technique that is used to extract the
frequent patterns of features at different feature co-existence
levels. Moreover, the paper has created three datasets of
co-existed features, which are co-existed permissions fea-
tures only, co-existed API features only and co-existed
permissions and API features. Furthermore, the paper has
created the features co-existence at four levels, which are
level two, level three, level four and level five. To test the pro-
posed approach, several machine learning algorithms were
used, which are Random Forest, Decision Trees, Logistic
Regression, SVM and KNN. The experiments have shown
that Random Forest, DT and SVM algorithms achieved the
best accuracy of about 98% at level 2 of co-existence using
permission-API co-existence in the CIC_MALDROID2020
dataset. Furthermore, the experiments have shown that all
machine learning algorithms achieved the best results at the
second level of features co-existence. Moreover, the experi-
ments have shown that using the frequent API co-existence
is better than using API features in Android malware detec-
tion. That is, extracting API frequencies from each APK,
converting frequencies to existence based on an average of
API call frequencies as a threshold, and then applying the
co-existence technique achieved better accuracy than using
API co-existence without considering API calls frequencies.
In addition, the paper has compared the proposed approach
with the state-of-the-art model PermPair and has shown that
the proposed approach has outperformed the state-of-the-art
model (PermPair), which achieved an accuracy of about 93%
and 87% using Drebin andMalgenome datasets, respectively.
Meanwhile, the proposed approach Achieved an accuracy of
about 95% and 98% using the same datasets. The results
have shown that using the features co-existence is an effective
method to detect Android. As a future work, we plan to
evaluate the features co-existence approach using dynamic
features.

REFERENCES
[1] H. Menear. (2021). IDC Predicts Used Smartphone Market Will

Grow 11.2% by 2024. Accessed: Oct. 30, 2022. [Online]. Available:
https://mobile-magazine.com/mobile-operators/idc-predicts-used-
smartphone-market-will-grow-112-2024?page=1

[2] D. Curry. (2022). Android Statistics. Accessed: Oct. 30, 2022. [Online].
Available: https://www.businessofapps.com/data/android-statistics/

[3] O. Abendan. (2011). Fake Apps Affect Android Os Users. Accessed:
Oct. 30, 2022. [Online]. Available: https://www.trendmicro.com/
vinfo/us/threat-encyclopedia/web-attack/72/fake-apps-affect-android-os-
users

[4] C. D. Vijayanand and K. S. Arunlal, ‘‘Impact of malware in modern
society,’’ J. Sci. Res. Develop., vol. 2, pp. 593–600, Jun. 2019.

[5] M. Iqbal. (2022). App Download Data. Accessed: Oct. 30, 2022. [Online].
Available: https://www.businessofapps.com/data/app-statistics/

[6] K. Allix, T. Bissyand, Q. Jarome, J. Klein, R. State, and Y. L. Traon,
‘‘Empirical assessment of machine learning-based malware detectors for
android,’’ Empirical Softw. Eng., vol. 21, pp. 183–211, Jun. 2016.

[7] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characterization and
evolution,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012, pp. 95–109.

[8] J. Scott. (2017). Signature Based Malware Detection is Dead.
Accessed: Oct. 30, 2022. [Online]. Available: https://icitech.org/wp-
content/uploads/2017/02/ICIT-Analysis-Signature-Based-Malware-
Detection-is-Dead.pdf

VOLUME 11, 2023 15483



E. Odat, Q. M. Yaseen: Novel Machine Learning Approach for Android Malware Detection

[9] Q. M. Y. E. Odat. Accessed: Dec. 27, 2022. [Online]. Available:
https://github.com/esraa-cell28/a-novel-machine-learning-approach-for-
android-malware-detection-based-on-the-co-existence

[10] S. R. Tiwari and R. U. Shukla, ‘‘An Android malware detection technique
based on optimized permissions and API,’’ in Proc. Int. Conf. Inventive
Res. Comput. Appl. (ICIRCA), Jul. 2018, pp. 258–263.

[11] (2018). Dex2jar—Tools To Work With Android.dex &
Java.Class Files. Accessed: Oct. 30, 2022. [Online]. Available:
https://kalilinuxtutorials.com/dex2jar-android-java/

[12] Androzoo. Accessed: Jul. 30, 2022. [Online]. Available:
https://androzoo.uni.lu/

[13] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Android malware in your pocket,’’
in Proc. NDSS, Feb. 2014, pp. 23–26.

[14] Virusshare. accessed: Jul. 30, 2022. [Online]. Available:
https://virusshare.com/

[15] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, ‘‘Discriminative frequent pattern
analysis for effective classification,’’ in Proc. IEEE 23rd Int. Conf. Data
Eng., Apr. 2007, pp. 716–725.

[16] M. Parkour.ContagioMini-Dump. accessed: Jul. 30, 2022. [Online]. Avail-
able: http://contagiominidump.blogspot.it/

[17] Malgenome Project. accessed: Jul. 30, 2022. [Online]. Available:
http://www.Malgenomeproject.org

[18] C.-F. Tsai, Y.-C. Lin, and C.-P. Chen, ‘‘A new fast algorithms for min-
ing association rules in large databases,’’ in Proc. IEEE Int. Conf. Syst.,
Man Cybern. San Francisco, CA, USA: Morgan Kaufmann, Oct. 1994,
pp. 487–499.

[19] A. Lab. (2017).AmdDataset. Accessed: Oct. 30, 2022. [Online]. Available:
https://www.kaggle.com/datasets/blackarcher/malware-dataset

[20] V. Avdiienko, ‘‘Mining apps for abnormal usage of sensitive data,’’ in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 426–436.

[21] Y. Aafer, W. Du, and H. Yin, ‘‘Droidapiminer: Mining api-level features
for robust malware detection in android,’’ in Security and Privacy in Com-
munication Networks, T. Zia, A. Zomaya, V. Varadharajan, and M. Mao,
Eds. Cham, Switzerland: Springer, 2013, pp. 86–103.

[22] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and
P. L. De Geus, ‘‘Identifying Android malware using dynamically obtained
features,’’ J. Comput. Virology Hacking Techn., vol. 11, no. 1, pp. 9–17,
2015.

[23] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, ‘‘DroidScribe: Classifying Android malware based
on runtime behavior,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2016, pp. 252–261.

[24] H. Cai, N. Meng, B. G. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019.

[25] A. F. A. kadir, N. Stakhanova, and A. Ghorbani, ‘‘An empirical analysis of
Android banking malware,’’ Tech. Rep., Nov. 2016.

[26] M. Sun, M. Zheng, J. C. S. Lui, and X. Jiang, ‘‘Design and implementation
of anAndroid host-based intrusion prevention system,’’ inProc. 30th Annu.
Comput. Secur. Appl. Conf.NewYork, NY, USA: Association for Comput-
ing Machinery, 2014, pp. 226–235, doi: 10.1145/2664243.2664245.

[27] Google Play Store. Accessed: Jul. 30, 2022. [Online]. Available:
https://play.google.com/store/games

[28] D. Son. (2019). Apktool—Tool For Reverse Engineering Android
Apk Files. Accessed: Oct. 30, 2022. [Online]. Available:
https://securityonline.info/apktool-reverse-engineering-android-apk-
files/

[29] Mcafee. Accessed: Jul. 30, 2022. [Online]. Available:
https://www.mcafee.com/

[30] G. Baldini and D. Geneiatakis, ‘‘A performance evaluation on distance
measures in KNN for mobile malware detection,’’ in Proc. 6th Int. Conf.
Control, Decis. Inf. Technol. (CoDIT), Apr. 2019, pp. 193–198.

[31] Y. Zhang, Y. Yang, and X. Wang, ‘‘A novel Android malware detection
approach based on convolutional neural network,’’ in Proc. 2nd Int. Conf.
Cryptogr., Secur. Privacy, Mar. 2018, pp. 144–149.

[32] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and S. Anwar,
‘‘Static malware detection and attribution in Android byte-code through
an end-to-end deep system,’’ Future Gener. Comput. Syst., vol. 102,
pp. 112–126, Jan. 2020, doi: 10.1016/j.future.2019.07.070.

[33] M. Lindorfer, M. Neugschwandtner, and C. Platzer, ‘‘MARVIN: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,’’ in Proc. COMPSAC, vol. 2, Jul. 2015, pp. 422–433.

[34] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM: Effec-
tive and efficient behavior-based Android malware detection and pre-
vention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, pp. 83–97,
Jan./Feb. 2018.

[35] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, ‘‘StormDroid: A streamin-
glized machine learning-based system for detecting Android malware,’’ in
Proc. 11th ACM Asia Conf. Comput. Commun. Secur. York, NY, USA:
Association for Computing Machinery, May 2016, pp. 377–388, doi:
10.1145/2897845.2897860.

[36] (2020). CIC_MALDROID2020 Dataset, Canadian Institute for
Cybersecurity. Accessed: Oct. 30, 2022. [Online]. Available:
https://www.unb.ca/cic/datasets/maldroid-2020.html

[37] S. Y. Yerima and S. Sezer, ‘‘DroidFusion: A novel multilevel classifier
fusion approach for Android malware detection,’’ IEEE Trans. Cybern.,
vol. 49, no. 2, pp. 453–466, Feb. 2019.

[38] H. L. Thanh, ‘‘Analysis ofmalware families onAndroidmobiles: Detection
characteristics recognizable by ordinary phone users and how to fix it,’’
J. Inf. Secur., vol. 4, no. 4, pp. 213–224, 2013.

[39] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer: Auto-
matic framework for Android malware detection using deep learning,’’
Digit. Invest., vol. 24, pp. 48–59, Mar. 2018.

[40] Z. Aung andW. Zaw, ‘‘Permission-based Android malware detection,’’ Int.
J. Sci. Technol. Res., vol. 2, no. 3, pp. 228–234, 2013.

[41] P. Branco, L. Torgo, and R. P. Ribeiro, ‘‘A survey of predictive modeling
on imbalanced domains,’’ ACM Comput. Surv., vol. 49, no. 2, pp. 1–50,
Aug. 2016.

[42] M. Kavitha and S. T. Selvi, ‘‘Comparative study on Apriori algorithm
and Fp growth algorithm with pros and cons,’’ Int. J. Comput. Sci. Trends
Technol., vol. 4, 2016.

[43] D. Gong. (2022). Top 6 Machine Learning Algorithms for
Classification. Accessed: Dec. 4, 2022. [Online]. Available:
https://towardsdatascience.com/top-machine-learning-algorithms-for-
classification-2197870ff501

[44] A. Arora, S. K. Peddoju, and M. Conti, ‘‘PermPair: Android malware
detection using permission pairs,’’ IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 1968–1982, 2020.

[45] Koodous: Collective Intelligence Against Android Malware. Accessed:
Jul. 30, 2022. [Online]. Available: https://koodous.com/

ESRAA ODAT received the B.Sc. degree in com-
puter information systems and the M.Sc. degree in
data science from the Jordan University of Science
and Technology, Jordan in 2020 and 2022, respec-
tively. Her research interests include machine
learning, deep learning, and cybersecurity.

QUSSAI M. YASEEN received the B.Sc. degree
in computer science from Yarmouk University,
in 2002, the M.Sc. degree in computer science
from the Jordan University of Science and Tech-
nology, in 2006, and the Ph.D. degree in computer
science from the University of Arkansas at Fayet-
teville, AR, USA, in 2012. His research interests
include malware analysis, insider threat, and com-
puter networks security. He has published many
papers in network security, insider threat, the IoT

security, machine learning with cybersecurity (security analytics), and spam
filtering. Moreover, he has served as a chair/TPC member/reviewer for
many events, conferences, and journals in this field and other information
technology fields.

15484 VOLUME 11, 2023

http://dx.doi.org/10.1145/2664243.2664245
http://dx.doi.org/10.1016/j.future.2019.07.070
http://dx.doi.org/10.1145/2897845.2897860

