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ABSTRACT The discipline of Deep Learning has been recognized for its strong computational tools, which
have been extensively used in data and signal processing, with innumerable promising results. Among
the many commercial applications of Deep Learning, Music Signal Processing has received an increasing
amount of attention over the last decade. This work reviews the most recent developments of Deep Learning
in Music signal processing. Two main applications that are discussed are Music Information Retrieval, which
spans a plethora of applications, and Music Generation, which can fit a range of musical styles. After areview
of both topics, several emerging directions are identified for future research.

INDEX TERMS Deep learning, music signal processing, music information retrieval, music generation,
neural networks, machine learning.

I. INTRODUCTION
A. DEEP LEARNING IN MUSIC SIGNAL PROCESSING
Deep Learning (DL) [1], a sub-field of Machine Learn-

natural language processing (NLP) [3], bioinformatics [4],
medical diagnosis [5], speech recognition [6], image pro-
cessing (IP) [7], system identification [8], recommendation

ing (ML), has been established as a strong computational
toolbox, with applications in numerous tasks, like feature
extraction, classification, and pattern recognition. Such func-
tionalities enable the extraction of meaningful informa-
tion from raw data, and thus find applications in a wide
range of disciplines, including computer vision (CV) [2],
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systems [9], and more [10].

A research field where DL has emerged as a valuable
tool over the last decade is that of audio signal process-
ing (ASP) [11] and music signal processing (MSP) [12].
Music is a well-known art form that is a big part of the
most fun and educational human activities. As a result, the
music industry includes a wide range of organizations and
consumers. The application of DL tools in MSP has led
to a collection of successful commercial applications, the
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most famous of which is Music Recommendation Systems
(MRS) [13]. As shown in Fig. 1, the number of publications
indexed in Scopus under the keywords ‘““deep,” “learning,”
and “music” demonstrate the applicability of DL in music
processing. From 2014 to 2021, there are 638 publications,
a sharp increase each year. This shows that scientists are
becoming more interested in this field. The diversity of the
field is also made apparent when looking at the subject
area categorization of these works, with 567 being listed in
Computer Science, 296 in Engineering, 136 in Mathematics,
74 in Physics and Astronomy, 63 in Decision Sciences, 51 in
Arts and Humanities, and the rest covering disciplines such
as Materials Science, Medicine, Social Sciences, Energy and
more.

The broad field of DL in music-related applications could
be termed Music Deep Learning (MDL) and can be divided
into two categories, Music Information Retrieval (MIR) [11]
and Music Generation (MG) [14]. MIR refers to the extrac-
tion of characterizing information from music data. Such
information can then be exploited for a wide range of appli-
cations, such as genre classification [15], [16], music recom-
mendation [17], [18], music source separation [19], singing
voice detection [20], instrument recognition [21], music emo-
tion recognition [22] and transcription [23]. All of the above
applications aid in the digital preservation of music, by con-
structing and managing song databases, as well as the study
of different music genres.

MG, under the framework of DL, broadly refers to the
automatic generation of music content. This task is performed
by first extracting valuable information from music databases
using MIR techniques, and then building DL architectures to
generate original music content. This has several commercial
applications, like movie and game score generation. The
automatic generation of music content has spun discussions
on whether this new way to create art will eventually replace
musicians. However, the more realistic projection for the
future is that MG can serve as a valuable tool to musicians and
educators alike, to explore new approaches to composition
and teaching [24].

B. RELATED SURVEYS

There have been some reviews of the results so far in MDL.
In [11] a review of the (at the time) current DL techniques
for ASP is provided. Three types of audio are considered,
speech, music, and environmental sounds, with applications
like audio recognition, synthesis, and transformation. Several
reviews have also considered specific applications of MDL.
In [21], a tutorial on MIR is provided that is especially
useful to newcomers in the field [13], [25] reviews MRS.
Music Genre Classification (MGC) is reviewed in [26]. Drum
transcription is reviewed in [27], focusing on non-negative
matrix factorization and recurrent neural network architec-
tures. In [28], a review of the audio signal representations for
use with CNNs is given. A review of DL for speech recog-
nition is available in [6], though the focus is not on music
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FIGURE 1. Number of publications indexed under the common keywords
‘deep’, ‘learning’, and ‘music’ in Scopus.

signals. For singing information processing, [29] reviews
several aspects, like singing skill evaluation, singing voice
synthesis, singing voice separation, lyric synchronization,
and transcription. Specifically for singing voice detection, the
review in [20] investigates the traditional and deep learning
techniques available. DL for music emotion recognition is
reviewed in [22].

For MG, the extensive survey in [14] offers an in-depth
analysis, covering five key aspects of MG, the objective,
representation, architecture, challenge, and strategy. The
work [30] provides a systematic review of Al techniques in
MG with valuable information regarding publications, cita-
tions, geographical distribution, and many more. A review of
the composition tasks for various music generation levels is
provided in [31]. Finally, [32] talks about the challenges and
limitations of MG. These include, for example, the designer’s
creative limitations, the lack of structure, the extent of control
the designer has over the generated music features, and the
lack of direct user interaction. Moreover, it argues on how to
address these issues.

C. MOTIVATION
From the above, it is clear that different aspects of DL in MSP
have been surveyed, with many reviews being dedicated to
focused topics, thus providing highly detailed insights into
it. In this work, DL for both MIR and MG is discussed,
which to the authors’ knowledge are discussed for the first
time together. The purpose of this work is to provide a more
spherical overview of the current research in this field, which
could serve as a guide for identifying new research trends.
For that matter, after a review of recent results on both MIR
and MG, a section is dedicated to identifying future directions
on MDL. Specifically, four research directions are identified,
all of which can yield fruitful results in MDL. An earlier
version of this study was presented in [33]. The current work

VOLUME 11, 2023



L. Moysis et al.: MDL: DL Methods for Music Signal Processing—A Review of the State-of-the-Art

IEEE Access

extends [33] by expanding upon the literature review, and the
discussion on future topics of interest.

The main contributions of this work are summarized as
follows:

1) To complement previous surveys, emphasis is given
to works published in 2020 or later. In this way, the
evolution of MDL into a mature field is presented.

2) To the best of the authors’ knowledge, this is the
first time that MIR techniques and MG processes
are reviewed together, highlighting the interconnection
between the two research directions.

3) Attention is given to four areas, which are identified
as emerging research topics. These areas are hybrid
architectures, DL in traditional music genres, MDL in
medical applications, and DL for music generated from
dynamic systems.

The rest of the work is outlined as follows: In Section II, the
DL methods for Music Information Retrieval are presented.
In Section III the field of DL-based Music Generation is
discussed. Section IV identifies future research directions.
Finally, Section V concludes the work. For a list of Abbre-
viations, see Appendix A.

Il. DL METHODS FOR MIR
In this section, the application of DL for different MIR appli-
cations is reviewed. The section is divided into subsections
based on the DL architecture used, and the different applica-
tions are talked about in each subsection. Table 1, summarizes
all the reviewed works in MIR, organized by architecture.
First, a short description is provided of the various appli-
cations of MIR:

1) Music Recommendation Systems (MRS): MRS is the
most fundamental application of MDL. Its goal is to
successfully recommend new music tracks to users
based on their previous listening history. For new users
with no prior information, the problem is termed ““cold-
start MR.”

2) Music classification: The goal is to identify the musical
genre of a song, which is of fundamental importance in
MRS. A more general goal is to identify music from
other audio tracks, like speech, natural sounds, etc.

3) Emotion classification and prediction: The goal is to
identify the underlying emotions that can be triggered
by a song. This is again useful in MRS and music
therapy.

4) Instrument/voice identification: The goal is to identify
and separate the different instruments used to compose
a music track. This also applies to detecting singing
voices.

Several objective measures can be used to evaluate MIR
architectures. These include accuracy, precision, recall, f1-
score, mean absolute and square error, Area Under the
Receiver Operating Characteristic Curve (ROC-AUC), and
more. In the following, a note is made for each work on the
accuracy achieved, or the ROC-AUC score, when provided.
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The reader should refer to each work for an extensive pre-
sentation of the evaluation analysis. DL-based on the dataset
used for training and validation is also provided, for works
that used public datasets.

A. FULLY CONNECTED DEEP NEURAL NETWORKS
(FCDNN)

FCDNNS refer to the most basic type of deep neural net-
work, where multiple hidden layers are applied and all nodes
between consecutive layers are connected, as shown in Fig. 2.

For MR, in [18], an architecture termed HitMusicNet,
using an FCDNN was presented, for predicting the popularity
of a music recording, using inputs that incorporate text, audio,
and meta-data. The authors also construct a database termed
the SpotGenTrack Popularity Dataset (SPD), which unifies
information from the Spotify and Genius music and lyric
databases. Meta-data information that was considered was
the number of an artist’s followers, an artist’s popularity,
as well as market availability. The resulting system can reach
an 83% precision score. In [34], an FCDNN was used for
MR combining content-based and collaborative filtering in
its input. The dataset used was the Spotify Recsys Challenge
2018 million playlist dataset [35], reaching an 88% precision
score.

For emotion classification in [36], classification was per-
formed on the Music4All dataset [37], using valence, dance-
ability, and energy as features. The classification is binary,
with happy/sad classes. The model has a mean accuracy of
98.3%.

B. RECURRENT NEURAL NETWORKS (RNN)

RNNs are a class of neural networks used for processing
sequential data [10], and are thus suitable for time series input
signals. In contrast to the FCDNN architectures, RNNs are
composed of loops or cycles. RNNs also possess an internal
memory state, that is utilized to process long sequences.
There are many variants of such architectures, including Long
Short Term Memory (LSTM), Gated RNN (GRU), bidirec-
tional RNNs, Hopfield networks, etc. [10]. A simple RNN
structure is shown in Fig. 3.
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FIGURE 3. Recurrent neural network.

In [38], a tagging system is developed using RNN. A scat-
tering transform is used to extract features from the data. The
MagnaTagATune dataset [39] is used. The resulting architec-
ture achieves an average AUC-ROC score of 0.909. In [40],
a web application was developed that can take as input any
YouTube video song and classify its music genre, using four
different architectures. The classification is performed for
individual 10-second segments of the input track. The results
are visualized in a graph. The music genre samples from the
Audioset database [41] are used for training. The supporting
website, being highly visual, can offer great help to music
composers and students, and also has the potential to be used
for user feedback.

For emotion classification tasks, in [42] an RNN is pro-
posed that uses a two-note melody trend as a music fea-
ture. Five emotion classes were considered, aggressive, bit-
tersweet, happy, humorous, and passionate. Data files from
YouTube were used, and the accuracy is up to 75.4%. In [43],
emotion recognition is performed on classes of instruments.
Four instrument classes are considered: string, percussion,
woodwind, and brass, and four emotion classes are deemed:
happy, sad, neutral, and fear. The study shows that the system
recognizes more specific instrument-emotional pairings.

RNNs have also been employed for music recommenda-
tion. In [44], an RNN architecture was used, and the study
showed that song order does not significantly affect the qual-
ity of playlist recommendations. The AotM-2011 [45] and
8tracks [46] playlist datasets were used.

For singing voice separation, in [47], a curriculum learning
approach was considered, where the learning begins with
easy examples and the difficulty is steadily increased. Three
different databases were tested: MIR-1K [48], ccMixter [49],
and MUSDB18 [50], with the model yielding improved per-
formance with respect to the global normalized source to
distortion ratio measure.

A piano harmony automatic arrangement architecture is
proposed in [51]. The model performs three tasks, note detec-
tion, multibasic frequency estimation, and training. Apart
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from objective evaluation, the resulting tracks were evaluated
by human listeners and were positively received.

For Music Classification, Attention Mechanism (AM) has
proven to be a strong technique for improving performance
and is adopted in many architectures. An RNN with an atten-
tion mechanism is used with MIDI formatted input by [52].
Five classes are considered, classical, country, dance music,
folk, and metal. The accuracy achieved is 90.1%.

C. LONG SHORT-TERM MEMORY (LSTM)
Long Short-Term Memory networks (LSTM) [53] constitute
a special case of RNNs, which have found applications in
MIR. An LSTM unit is shown in Fig. 4.

An LSTM network can be mathematically represented as
follows. For a given input vector uy at time step k and N

hidden layers, the activation vector of the forget gate is f; €
0, DHNn,

fi = O'(Wfll]{ + qu,{_l + by) (H

where Wy and Uf are weight matrices, gx € (0, Ve is the

vector representing the hidden state, and by is the bias vector.

In addition, the activation vectors for the input/update gate

I; € (0, )™ and the output O; € (0, )™ are represented
similarly

I = oWl +Uiql_, +by) 2)
and
O = o(Woxj + Uoq}_; +bo) 3)

where I and O represent input and output, respectively,
whereas the rest of the symbols have the same meaning as
previous.

An LSTM unit also contains a cell input activation vector
denoted by Cy € (—1, 1N, expressed as

Ci = o(Weul + Ucq!_ +bc) )

Using the following principles, the cell state vector and the
hidden state vector are updated by combining the preceding
equations

Sk =FroSg_1 + I o Cy 5
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where o is the Hadamard product and Sop = 0 and gg = 0.
Finally,

qx = Oy o tanh(Sy) (6)

For music Classification, a model is proposed in [54],
where the segment features are the statistics of frame fea-
tures in each segment. The ISMIR database [55] is used,
which includes a collection of songs from different gen-
res. The model achieves an accuracy of 89.71%. In [56],
a complex architecture is used, combining a Bidirectional
Long Short-Term Memory (BLSTM) model with an attention
mechanism, paired with a Graphical Convolutional Network.
Three datasets are tested, GTZAN [57], ISMIR [55] and
MagnaTagATune [58]. An accuracy of 93.51% is achieved.

For emotion prediction, in [59] the valence-arousal (V-A)
emotion model was used to represent the dynamic emotion,
using a BLSTM network. The dataset used was taken from
the Emotion in Music task in MediaEval 2015 [60].

The problem of music source separation was studied using
a BLSTM network for instrument detection and identification
in [61]. Data augmentation was used during the training to
avoid overfitting. To improve performance, the BLSTM net-
work is combined with a feed-forward neural network, which
outperforms both individual networks. The SiSEC DSD100
dataset is cited [62].

For MR, an architecture was developed in [63] that ana-
lyzes the connection between dance moves and music to
recommend tracks. The database used is [64], which includes
samples of synchronized dance and music. The dataset con-
tains four classes of dance, waltz, tango, cha-cha, and rumba.
The accuracy can reach up to 91.3%.

For singing voice detection in [65], a Long-Term Recurrent
Convolutional Network (LRCN) was considered for elec-
tronic music. The architecture consists of a voice separation
step and a feature extraction step. The CNN layer extracts the
audio features, and the LSTM layer uses the CNN output to
differentiate between the singing and non-singing parts. The
Arcadium [66] and NCS [67] were used as sources to create
“Electrobyte,” a new copyright-free electronic music dataset.
The model was also tested in a pop dataset Jamendo [68],
yielding an accuracy score of 0.833 (Electrobyte) and 0.939
(Jamendo). In [69], an LRCN architecture was developed for
the vocal separation and temporal smoothing. The CNN layer
is again used for feature extraction, and the LSTM learns
the time-sequence relationship. The model was tested on five
datasets, RWC pop music dataset [70], Jamendo [68], Med-
leyDB [71], MIR-1K [48], and iKala [72], yielding accuracy
as high as 0.992.

D. CONVOLUTIONAL NEURAL NETWORKS (CNN)

CNNs are models that can operate on data with a grid-like
structure [10]. This is why they’ve had success with problems
involving IP, CV, NLP, and other technologies [73]. In MIR,
CNNs are often used to obtain information from music sig-
nals, which are mostly represented as two-dimensional time-
frequency data.
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A deep CNN model utilizes the convolution operation
instead of the general matrix multiplication in at least one
of its layers. In addition, the architecture consists of fully
connected layers and pooling layers. The purpose of the latter
is to reduce in a computationally efficient manner, the size
of the incoming data. Compared to a fully connected layer,
a convolutional layer is characterized by a neuron’s receptive
field. This receptive field indicates that every single unit
receives input from only a restricted area of the previous layer.
As an activation function, most CNNs in the current literature
use either the rectified linear unit (ReLU) function or some
kind of variant. ReLU is mathematically defined in [10] and
can be expressed by

g(x) = max(0, x). @)

A general CNN architecture is depicted in Fig. 5.

In audio Classification, an architecture was developed for
spatial audio location and classification between speech and
music in [74]. Two different microphone arrangements were
considered. The classification can achieve an accuracy of up
to 97.9%. Although audio location is not unique to music
signals, it can be especially useful in MIR, such as live audio
processing. In [75], different CNN architectures are used
for the classification of audio videos, using a wide class of
labels and a large dataset from YouTube, which is termed
YouTube-100M. The ROC-AUC can reach up to 0.926. The
Audioset [41] is also considered. In [76], a CNN is used for
sound representation learning, using sound from an unlabeled
video dataset, gathered from the Flickr website. To improve
its performance, the network is trained by moving knowledge
from networks that recognize images to networks that recog-
nize sounds.

For music classification, in [15] a CNN is tested on the
ISMIR dataset [55], a Latin Music Database (LMD) [77], and
an African ethnic database, provided by the Royal Museum
of Central-Africa (RMCA) in Belgium [78]. In all cases,
the CNN performed either equally well or better than other
architectures. In [16], the CNN input consists of eight music
features chosen in three music dimensions: dynamics, timbre,
and tonality. This outperforms the use of a spectrogram. The
GTZAN dataset [57] is used for the experiments, and an
accuracy of 91% is reached. In [79], sample-level CNNs
were used for auto-tagging using raw waveform data. The
term ‘‘sample-level” refers to learning representations from
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very small waveforms, like 2-3 samples. The MagnaTa-
gATune [39] and Million Song Dataset [80] were considered,
and an AUC of over 0.905 can be achieved. In [81], a 3D
convolutional denoising autoencoder architecture is built for
music classification, using MIDI input format. The model
gives out latent representations of the data, which are then
used to classify the data with a multi-layer perceptron net-
work. The Lakh MIDI dataset [82], [83] was used for testing,
with accuracy surpassing 88% and a ROC-AUC of over 0.86.

CNNs are used for note onset detection in audio record-
ings in the early work [84] for sound event recognition. The
use of a spectrogram as an input to the network instead of
the enhanced auto-correlation yields better detection perfor-
mance. The dataset used is combined from several different
sources. In [85], a simple CNN was proposed for event recog-
nition under noise, with only three layers: convolutional,
pooling, and softmax. The databases used are the Real Word
Computing Partnership (RWCP) Sound Scene Database in
Real Acoustic Environments [86], and the NOISEX-92
database [87]. The accuracy can reach up to 99%.

For singing voice separation, in [88], a CNN architecture
was successfully developed that utilized pixel-wise classifi-
cation on the spectrogram image. The model is trained using
the Ideal Binary Mask as the target label and cross-entropy
as the objective function. The iKala database [72] was used,
as well as the DSD100 dataset [62], [89].

For singing voice evaluation, in [90], a one-dimensional
CNN is used, that applies fractional processing node theory
for training, which reduces the training time. For the exper-
iment, 100 music major students were selected to provide
input. Accuracy can be as high as 86.3%.

For musical instrument identification, a CNN with a sim-
ple architecture is used for classification into 11 differ-
ent classes in [91]. The MedleyDB database is used [71],
and the accuracy surpasses 82%. In [92], three different
weight-sharing strategies for CNNs are considered, tempo-
ral kernels, time-frequency kernels, and a linear combina-
tion of time-frequency kernels which are one octave apart.
MedleyDB is used [71] for training and testing, with hybrid
models having the best overall performance. In [93], a Tem-
poral Convolutional Network was trained on a weakly labeled
dataset. The OpenMIC-2018 [94] dataset was used for train-
ing and testing, and the MUSDBI18 [50] for testing. The
model slightly outperforms an LSTM model with respect
to the ROC-AUC score, which indicates a strong candidate
for such problems. Attention-augmented CNNs are used for
instrument identification in [95]. When 25% of the filters
are assigned to attention, the resulting CNN outperforms
the attention-free ones. The datasets used were the London
Philharmonic Orchestra Dataset [96], and the University of
Iowa Musical Instrument Samples [97]. Judging from the
consistently positive outcomes, it only makes sense to assume
that in the future, AM-enhanced NN will be extensively used
for MIR. In [98], identification is performed for four instru-
ments: bass, drums, piano, and guitar. The model architec-
ture consists of four identical, independent sub-models, each
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catering to one instrument. The Slakh dataset is used [99],
and the AUC ROC measure reached an average of 0.96, with
the drums being easier to identify, and the guitar and piano
being the more difficult ones.

In [100], a CNN is developed for emotion classification
with 18 emotion tags, using time and frequency domain
information. The experiments make use of the CAL500 [288]
and CAL500exp [101] datasets. In [102], classification is per-
formed specifically for film music, with 9 emotional classes.
Each class is also associated with specific colors. The Epi-
demic Sound Online database [103] was used. The classifi-
cation is performed using 30-second excerpts of tracks.

In [104], a feature combination CNN architecture for auto-
matic playlist continuation is proposed, with collaborative
filtering integrating information from curated playlists as well
as song feature vectors. The databases used are Art of the
Mix [105] and 8tracks [46]. In [106], distance measuring is
used for the classification system, which is then used for the
recommendation system. The GTZAN database [57] is used
for training, and the Emotify music dataset [107] and Music
Audio Benchmark Dataset (MABD) [108] for testing. The
designed system can reach a good level of accuracy on the
10-best list. In [109], a CNN architecture is tested using the
MIREX database [110], along with the Baidu Music service.
The model has a ROC-AUC that can exceed 0.90.

For music transcription, a toolbox termed nnAudio
was developed for audio-to-spectrogram conversion using
one-dimensional CNNs in [111]. The MusicNet dataset [112]
is used for testing. The toolbox can significantly reduce
execution time compared to the existing librosa Python
library [113].

E. GENERATIVE ADVERSARIAL NETWORKS (GAN)

Despite the fact that RNNs and CNNs are the most popular
MIR architectures, there have been studies that look at alter-
native networks for MIR. GANs (Fig. 6) were first proposed
in the original version of [114]. A GAN consists of two
competitive agents: a generator and a discriminator. Starting
with a training set of real data, the generator is trained to
generate new samples that follow the distribution of the real
data, while the discriminator must identify the real from the
artificial samples.

VOLUME 11, 2023



L. Moysis et al.: MDL: DL Methods for Music Signal Processing—A Review of the State-of-the-Art

IEEE Access

For emotion classification, a GAN is proposed in [115]
that utilizes a double-channel fusion strategy to extract local
and global features of an input voice or image. There are
five emotion classes considered: sad, happy, quiet, lonely,
and miss. The information used in the experiments comes
from a number of websites, such as Kuwo Music Box, Baidu
Heartlisten, and others. The recognition rates achieved are
between 87.6% and 91.2% for all emotions.

In [116], an architecture combining computer vision and
note recognition is proposed for music notation recognition.
The experiments make use of several datasets, including the
JSB Chorales [117], Maestro [118], Video Game [119], Lakh
MIDI [82], [83], and another MIDI dataset. The recognition
accuracy ranges from 0.88 to 0.92 for all the datasets. The
proposed model’s intended application is music education.

For Singing voice separation, in [120], a GAN with a
time-frequency masking function is used. The databases
MIR-1K [48], iKala [72], and DSD100 [62], [89] are used in
the experiments, and the model outperforms a conventional
DNN.

F. CONVOLUTIONAL RNNs (CRNN)

Complementary to standard models, more complex ones
have been developed that utilize couplings between different
architectures, often in a series interconnection, to combine
their characteristics and improve performance. Convolutional
RNNs (CRNNSs) are one of these examples.

For music classification, a CRNN was considered in [121],
which is a CNN network with the last layers replaced by
an RNN. The CNN part is used for feature extraction and
the RNN part as a temporal summarizer. The Million Song
Dataset [80] is used for training, to predict genre, mood,
instrument, and era. The model outperforms other architec-
tures with respect to AUC-ROC.

For MR, a CRNN is used in [122] for classifying and
recommending music, in the categories of classical, elec-
tronic, folk, hip-hop, instrumental, jazz, and rock music. The
database used is the Free Music Archive [123]. The system
was tested on a group of 30 users, and the best architecture
was the one that implemented a cosine similarity, along with
information on music genre.

G. CNN-LSTM

Similarly to CRNNs, some works combine the architectures
of CNNs with LSTMs. For emotion classification, a model
in [124], consisting of a 2d input through a CNN-LSTM and a
1d input through a DNN, combines two types of features and
improves audio and lyrics classification performance. Four
classes are considered, angry, happy, relaxed, and sad. The
dataset used is the Last.fm tag subset of the Million Song
Dataset [80], with an average accuracy of 78%. In [125],
a novel database of Turkish songs is constructed for exper-
imentation. The model uses a CNN as the feature extractor
and an LSTM with a DNN as the classifier. An accuracy of
over 99% is obtained. In [126], the model extracts features
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from the lyrics, combining a word vector and a CNN-LSTM
architecture, with a word frequency weight vector along with
a DNN. The outputs of the two architectures are combined
on a matching attention mechanism to derive the text emotion
classification. Four classes are considered, happy, sad, heal-
ing, and calm. The classification accuracy for all emotions
ranges between 0.809 to 0.903.

For music score recognition, the proposed architecture
takes as input an image of a music score and outputs the
duration, pitch, and coordinate for each note in [127]. Data
from Muse Score [128] were used for the experiments, and
the model outperforms other architectures, with respect to all
accuracy measures.

For sound event recognition, [129] considers polyphonic
sounds, for a wide family of 61 classes, including music,
taken out of a dataset of ten different daily contexts, like a
sports game, a bus, a restaurant, and more [130]. The model
achieves an average f1 score of around 65%.

H. ARCHITECTURE OVERVIEW

From the above review, it is clear that the ‘“classical”” DL
models perform well in a variety of MIR tasks. However,
the models under consideration need to be appropriately
designed, so that they can achieve good results for their
set problem. Thus, (and accordingly to the no free lunch
theorem) there is no architecture that can be considered
holistically better than the rest. On the contrary, complex
architectures that incorporate layers of different types are the
most promising, since they combine the best characteristics
of each DL module, as discussed in Section IV.

lIl. DL METHODS FOR MUSIC GENERATION

In this section, the application of DL in MG is reviewed.
Automatic MG utilizes the MIR techniques mentioned in the
previous section to generate novel music scores of desired
characteristics, like genre, rhythm, tonality, and underlying
emotion. The resulting output can either be a music track in
the form of audio, so it can be directly listened to, or it can
be in a symbolic notation form. Along with the generation
of novel tracks, some tasks can be considered adjacent to
MG. One such application is Genre Transfer (GT). This
refers to preserving key content characteristics of a music
score and applying style characteristics that are typical of a
different genre. An example would be transforming a pop
song into its heavy metal cover. Another application is Music
Inpainting (MI), which refers to filling a missing part of a
music track, using information from the rest of its content.
Again, the section is divided into subsections based on the DL
architecture used. The public databases used in each work are
also mentioned. Table 2, summarizes the reviewed works for
MG, categorized by their architecture.

The MG architectures can be evaluated both objectively
and subjectively. Objective evaluation refers to using math-
ematical and statistical tools, to measure the similarity of
the generated music tracks to the training dataset, as well as
other characteristics that can measure their similarity to real

17037



IEEE Access

L. Moysis et al.: MDL: DL Methods for Music Signal Processing—A Review of the State-of-the-Art

TABLE 1. Deep learning methods for music information retrieval.

Architectures | Applications Research Work

FCDNNs Recommendation [18], [34]
Emotion Classification [36]

RNNs Music Classification [38], [40], [52]
Emotion Classification [42], [43]
Recommendation [44]

Singing voice separation [47]
Harmony arrangement [51]

LSTMs Music Classification [54], [56]
Emotion prediction/recognition [59]
Instrument detection/identification | [61]
Recommendation [63]

LRCN Singing voice detection [65], [69]

CNNs Audio Classification [74]-[76]
Music classification [15],[16],[79], [81]
Sound event recognition [84], [85]
Singing voice separation [88]

Singing voice evaluation [90]

Musical instrument identification [91]-[93], [95],
[98]

Emotion Classification [100], [102]

Recommendation [17], [104], [106],
[109]

Music transcription [111]

GAN Emotion Classification [115]

Music notation recognition [116]

Singing voice separation [120]

CRNN Music Classification [121]
Recommendation [122]

CNN-LSTM | Emotion Classification [124]-[126]
Recognition [127]

Sound event recognition [129]

music. For objective evaluation, there are several measures,
including the loss and accuracy of the training process, the
empty bar rate, polyphonicity, note in a scale, qualified note
rate, tonal distance, and note length histogram, among others.
Most studies consider a subset of these measures or similar
ones, so the reader can refer to each work for details.

For subjective evaluation, a test audience is usually given
a collection of DL-generated tracks from different architec-
tures, along with human compositions, and is asked to rate
them with respect to different aspects, usually on a five-point
Likert scale. Variations of this include comparing pairs of
tracks and choosing which one they prefer the most or being
asked to decide if a track is computer or human-made. In the
following sections, we point out which works have conducted
subjective evaluations, as the positive audience perception
of AI music tracks is essential for the future applicability
of MDL. The reader can again refer to each work for the
extensive presentation of the evaluation results.

As a closing note, it is worth mentioning an issue that
emerges from the field of Al-based MG, that of copyright-
ing [131], [132]. As AI methods use different software and
sample databases, legal problems may arise when claiming
authorship of the final musical product. It is thus important
that legislators update the existing policies, to avoid rising
such issues in the future.

A. RNNs
As with MIR, RNNs have proved popular for MG tasks.
For works on classical music, the model termed Sam-

17038

pleRNN [133] generates one audio sample at a time, with the
resulting signals receiving positive evaluation from human
listeners. Three different datasets were considered, one con-
taining a female English voice actor, one containing human
sounds like breathing, grunts, coughs, etc, and one con-
taining Beethoven’s piano sonatas, taken from the Internet
Archive [134]. The models were evaluated by a human
group, with the samples of the 3-tier model gaining the
highest preference. In [117], an RNN model termed Deep-
Bach is designed, for generating hymn-like scores mimicking
the style of Bach. The dataset is taken from the music21
library [135]. The model offers some control to the user,
allowing the placement of constraints like notes, rhythms,
or cadences to the score. The model was evaluated by human
listeners of varying expertise, who were given several sam-
ples, and had to guess between Bach or computer generated.
Around 50% of the time, the computer tracks were passed
as real samples, which is a very satisfying result for such
complex music. The work was expanded in [136], with an
architecture termed Anticipation-RNN which again offered
control to the user to place defined positional constraints. The
music21 library [135] was used once again.

In [137], a Graphical User Interface (GUI) system termed
BachDuet was developed for promoting classical music
improvisation training through user and computer interaction.
The JSB chorales data from the music21 dataset [135] is used
for training. The GUI was warmly received by test users, who
found the improvisation interaction easy to use, enjoyable,
and helpful for improving their counterpoint improvisation
skills. Additionally, a second group of participants were asked
to listen to music clips, rate them, and also decide whether
they resulted from a human-machine improvisation using
BachDuet, or human-human interaction. Both types of tracks
received similar scores, and the listeners were also unable
to differentiate between the duets, as they wrongly classified
them around 50% of the time.

In [138] the model produces drum rhythms for a
seven-piece drum kit. Natural language translation was used
to express the hit sequences. An online interface was designed
and evaluated by users, who gave an overall average to posi-
tive score.

In [139], the effects of different conditioning inputs on the
performance of a recurrent monophonic melody generation
model are studied. The model was trained on the FolkDB
dataset [140] and a novel Bebop Jazz dataset. The valida-
tion Negative Log Likelihood loss (NLL) can be as low as
0.190 for the pitch and 0.045 for the duration.

In [141], the problem of inpainting was considered, which
combines a VAE that takes as input past and future context
sequences, with an RNN that takes as input the latent vectors
from the VAE, and as output a latent vector sequence that is
passed through a decoder, to create the inpainting sequence.
A folk dataset from The Session [142] is used for testing. The
model outperforms others with respect to the NLL measure.
The architecture was also tested by users, who were given
pairs of segmented sequences, and had to choose among
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excerpts that fit. The model performance was on the same
level as other architectures.

B. LSTMs

LSTMs have been considered for several scenarios. In [143],
data preprocessing has been applied to improve the quality of
the generated music, and also reduce training time.

In [144], BLSTM networks are used for chord generation.
The database used was Wikifonia, which is now inactive,
that included sheets for several music genres [145]. The user
evaluation showed a preference for the BLSTM model over
others, although the original music still received the highest
score.

In [146], BLSTM is used for chord generation. The model
consists of three parts: a chord generator, which uses some
starting chords as input, a chord-to-note generator, which
generates the melody line from the generated chords, and a
music styler, which combines the chords and melody into
a final music piece. Multiple music genres were used as a
training database, including Nottingham [147], a collection
of British and American folk tunes, Wikifonia [145], and the
McGill-Billboard Chord Annotations [148]. The model was
evaluated by listeners, which gave a score ranging from neu-
tral to positive, taking into consideration harmony, rhythm,
and structure.

In [149], a combination of two LSTM models, termed
CLSTMS, is used to build chords that can match a given
melody. One sub-model is used for the analysis of measure
note information, and the other is used for chord transfer
information. Wikifonia is used with data taken from [144] and
[145].

In [150], a variation of Biaxial LSTM was used, and a
model termed Deepl was developed for MG. The model was
tested on three types of music, baroque, classical, and roman-
tic, with test participants being able to successfully categorize
the generated samples most of the time. The Piano-MIDI
dataset [151] was used. The model is also capable of mixing
musical styles by tuning the values of a single input vector.

In [152], a two-stage architecture is proposed that utilizes
BLSTM, where the harmony and rhythm templates are first
produced, and the melody is then generated and conditioned
on these templates. The Wikifonia dataset is used [145]. In the
subjective evaluation, participants were given a collection of
tracks and were asked to rate them according to how much
they found them pleasing and coherent, and whether they
believe they were human or Al-generated. The highest scores
were achieved by the model where the melody generator is
conditioned on an existing chord and rhythm scheme from a
real song. This melody is also perceived as human-made by
many participants. The authors also noted that there are high
standard deviations in all answers, and slightly more so in the
models rated positively, indicating that there is a much wider
perception of what is considered good-sounding music, than
a bad one.

In [153], an architecture combining LSTM with a Recur-
rent Temporal Restricted Boltzmann Machine is designed.
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Experiments were conducted in MuseData [154], a classical
music dataset, and JSB chorales [155] dataset. The model out-
performs other architectures with respect to Log-likelihood
(LL) and frame-level accuracy (ACC%) measures.

In [156], variations of the LSTM are discussed, termed
Tied Parallel LSTM with a neural autoregressive distribution
estimator (NADE), and Biaxial LSTM. The model was tested
on the datasets of JSB Chorales [155], MuseData [154],
Nottingham [147], and Piano-MIDI [151], a classical piano
dataset. The architectures perform well concerning the Log-
likelihood measure. The architectures also have translation
invariance.

In [157], an RNN-LSTM architecture is proposed, using
the Meier cepstrum coefficients as features. The dataset con-
sists of folk tunes collected by the author. The model achieves
an accuracy of 99% and a loss rate of 0.03.

In [158], a model termed Chord conditioned Melody
Transformer (CMT) is proposed, which generates rhythm and
pitch conditioned on a chord progression. The training has
two phases, first, a rhythm decoder is trained, and second,
a pitch decoder is trained based on the rhythm decoder.
The model was trained on a novel K-Pop dataset. In addi-
tion to various measures, like rhythm accuracy, the model
was also evaluated by listeners, with respect to rthythm, har-
mony, creativity, and naturalness. The model outperforms the
Explicitly-constrained conditional variational auto-encoder
(EC2-VAE) [159], with respect to rhythm, harmony, and natu-
ralness. The model also has a higher score for creativity than
the real dataset tracks, meaning that it can indeed generate
novel melodies.

In [160], an LSTM specifically for Jazz music was
designed, using a novel Jazz music dataset in MIDI format,
and the Piano-MIDI [151]. The model can also generate
music using only a chosen instrument. The model can achieve
a very low final loss value.

In [161], a BLSTM network with attention is considered
for Jazz MG. The architecture consists of a BLSTM network,
an attention layer, and another LSTM layer. The Jazz ML
ready MIDI dataset [162] is considered. The model outper-
forms simpler architectures like LSTM without attention and
the attention LSTM without the BLSTM layer.

In [163], a piano composer is designed, that uses
information from given composers to generate music.
The datasets used were Classical Music MIDI [164] and
MIDI_classic_music [165], from which tracks of Beethoven,
Mozart, Bach, and Chopin were considered. The model was
evaluated through a human survey, where participants had
to choose the real sample among the computer-generated
and composer ones. Around half the time, people mistook
the model-generated music for the human-composed track,
meaning that the model can generate music that is relatively
indistinguishable from real samples. The generated tracks can
also be perceived as fairly interesting, pleasing, and realistic.

In [166], an architecture, comprising of an LSTM paired
with a Feed Forward layer, can generate drum sequences
resembling a learned style, and can also match up to set
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constraints. The LSTM part learns drum sequences, while
the feed-forward part processes information on guitar, bass,
metrical structure, tempo, and grouping. The dataset was
collected from 91 1tabs [167], and broken into three parts, for
80s disco, 70s blues and rock, and progressive rock/metal,
with the model being effective in all styles.

Finally, in [168], the MI problem was considered by com-
bining half-toning and steganography, and various methods
were compared using a dataset of various instruments, with
satisfying results for the considered models.

C. CNNs

For CNN architectures, in [169], the architecture comprises
an LSTM as a generator, a CNN as a discriminator, and a con-
trol network that introduces restriction rules for a particular
style of music generation. The matching subset of the Lakh
MIDI dataset (LMD) [82] and Piano-MIDI dataset [151]
was used. The model was evaluated by music experts, with
respect to melody, rthythm, chord harmony, musical texture,
and emotion. The model is rated higher than other ones in all
of the above aspects.

In [170], a CNN with a Bidirectional Gate Recurrent Unit
(BiGRU) and attention mechanism is used for folk music
generation. The ESAC dataset [171] is used for testing. The
results were evaluated by listeners, who gave overall positive
ratings, although lower than the real ones. There were also
some exceptions of low scores, meaning that the model gen-
eration may have some inconsistencies in its performance.

In [172] a Convolution-LSTM for piano track generation is
considered. The CNN layer is used for feature extraction, and
the output is fed into the LSTM for music generation. Piano
tracks from Midiworld [173] were used for training. The
model was evaluated by listeners, who were given 10 music
segments, and had to decide whether they were human-made
or computer generated. In most cases, the segments were
correctly identified, but the Convolution-LSTM model per-
formed better than the simple LSTM.

D. GANs

Symbolic music is stored using a notation-based format,
which makes it an easier-to-use input for training NNs.
For symbolic music generation, a GAN model is proposed
in [174] for piano roll generation, equipped with LSTM layers
in the generator and discriminator. The generated files were
evaluated by participants with respect to melody and rhythm,
and the proposed model received a higher score than files
generated from other architectures.

In [175], an inception model conditional GAN termed
INCO-GAN is proposed that can generate variable-length
music. This complex architecture consists of two phases,
that of training and generation, and each phase is bro-
ken into three processes: preprocessing, CVG training, and
conditional GAN training for the training stage, and CVG
executing, phrase generation, and postprocessing for the
generation phase. The Lakh MIDI dataset is used for the
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experiments [82]. The model achieves high cosine similarity
with the human-composed music for the frequency vector.

In [176], the problem of symbolic music GT was studied
using CycleGAN, a model consisting of two GANs that
exchange data and are trained simultaneously. The model
was evaluated using genre classifiers, verifying the successful
style transfer.

In [177], DrumGan is proposed, an architecture for gen-
erating drum sounds (kick, snare, and cymbal). The model
offers user control over the resulting score, by tuning the
timbre features.

In [178], the authors generated log-magnitude spectro-
grams and phases directly with GAN to produce more coher-
ent waveforms than directly generating waveforms with
strided convolutions. The resulting scores are generated at a
much higher speed. The NSynth dataset [179] is used, which
contains single notes from many instruments, at different
pitches, timbres, and volumes. The human audience rated the
audio quality of the tracks, and the model was received as
slightly inferior to the real tracks.

In [180], a GAN equipped with a self-attention mechanism
is used to generate multi-instrument music. The self-attention
mechanism is used to allow the extraction of spatial and
temporal features from data. The Lakh MIDI [82] and Million
Song [80] datasets were used here.

In [181], a GAN was designed for symbolic MG, along
with a conditional mechanism to use available prior informa-
tion, so that the model can generate melodies either starting
from zero, by following a chord sequence, or by conditioning
on the melody of previous bars. Pop music tabs from Theory-
Tab [182] were used. The resulting system, termed MidiNet,
is compared to Google’s MelodyRNN and performs equally,
with the test audience characterizing the results as being more
interesting.

In [183], multi-track MG was considered using three dif-
ferent GAN models, termed the Jamming, Composer, and
Hybrid. The Jamming model consists of multiple indepen-
dent generators. The Composer consists of a single gener-
ator and discriminator, and a shared random input vector.
In the Hybrid model, the independent generators have both
an independent and a shared random input vector. The models
were trained on a rock music database and used to generate
piano rolls for bass, drums, guitar, piano, and strings. The
database is termed Lakh Pianoroll Dataset, as it is created
from the Lakh MIDI [82], by converting the MIDI files to
multi-track piano rolls. A subset is also used with matched
entries from the Million Song dataset [80]. Additionally to
using the training database, the model can also use as an
input a given music track from the user and generate four
additional tracks from it. The model was evaluated by profes-
sional and casual users and received overall neutral to positive
scores.

In [184], Sequence Generative Adversarial Net (SeqGAN)
is proposed, which applies policy gradient update. The Not-
tingham folk dataset [147] is used in the experiments. The
model outperforms a maximum likelihood estimation (MLE)
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FIGURE 7. Self-attention mechanism.

trained LSTM with respect to the mean squared error and
other measures.

In [185], sequence generative GANs were considered
for polyphonic music generation. The method condenses
the duration, octaves, and keys of melodies and chords
into a one-word vector representation. The Nottingham
dataset [147] was used. The results were well received by
a test audience, with respect to pleasantness, realism, and
interest.

In[186], a conditional GAN is proposed for long inpainting
up to a few seconds. The model was trained on datasets of
increasing complexity, like the Lakh MIDI [82] and Million
song [80], the Maestro dataset [118], recordings of grand
pianos, and free music archive dataset [123], and exten-
sive audience experiments were performed to evaluate the
model. The inpaintings were generally detectable, especially
in tracks with higher complexity, but were considered slightly
or non-disturbing.

E. TRANSFORMERS

Transformers constitute a relatively recent architecture [187],
which has found popularity in NLP. A key aspect of trans-
formers is self-attention, which refers to the process of
weighting the relevance between different positions of a sin-
gle sequence. Transformers process sequential input data, but
not necessarily in order.

The transformer’s architecture is basically an encoder-
decoder scheme. The encoder maps the sequence of
inputs (x1,...,xy) to a sequence of vector representations
(z1, .-, zn)- The decoder then takes this vector representa-
tion and generates a sequence of outputs (y1, ..., yu), one at
a time.

Let W2, WX, W" be the three parameter matrices that are
trained. These matrices are used to define the following
parameters:

e Query: g = Wix;

o Key: k = Wky;

o Value: v = W'x;

The self-attention score is calculated as follows: For every
input, our desire is to calculate how it attends to all the tokens
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in the sequence. To achieve this, the query vector is used and
since every token becomes the query for once, we calculate

eiquikj, withi,je{l,...,N}. ®)

To have more stable gradients, normalization is performed as
€jj
Nijk = Sij i3 )
dk

The final step is to calculate the self-attention score as

w=> %W. (10)
o7 2u1=1 exp (sin)

In practice, the aforementioned procedure is performed in
matrix form and is depicted in Fig. 7.

Modifications of the simple transformer are proposed in
various works. In [188], a relative attention mechanism is
used to generate minute-long compositions, with reduced
intermediate memory requirements from quadratic to linear.
The JSB chorales dataset [155] and Piano-e-Competition
dataset [189] were used. The model was evaluated by listen-
ers, who were asked to rate pairs of musical excerpts. The
model outperformed other architectures and was seconded
only by the real music tracks.

In [190], an adversarial transformer is proposed to generate
single-track or multitrack music. The results were positively
received by a test audience, who rated tracks with respect to
being human-like, harmonious, rhythmic, structured, fluent,
and overall quality. The model scores better compared to
another architecture, and much closer to the real track scores.

In [191], sparse factorization was applied to the attention
matrix, which reduced the memory and time requirements
from quadratic to sub-quadratic. Five-second-long samples
were generated. A piano recording dataset from [192] was
used for training.

In [193] a model termed Pop Music Transformer is pro-
posed to generate pop piano music. The model uses a
beat-based music representation. The generated tracks were
evaluated by experts and casual listeners and were preferred
by both groups over other architectures.

In [194] a model termed Jukebox can generate music along
with vocals in various musical styles. The model uses mul-
tiscale Vector Quantization - Variational Autoencoders (VQ-
VAE) to compress the raw audio input to discrete codes. Then
the output is generated using an auto-regressive transformer.
The architecture provides lyric conditioning, to control the
singing part. The Maestro dataset was used [118] for training,
and the LyricWiki (now closed) to gather metadata, among
others. The model can generate music in any chosen style by
supplying conditioning signals during training.

In [195], a model for symbolic MG for Mandarin pop is
proposed, where the transformer training considers the condi-
tioning sequence as a thematic material. The POP909 dataset
is used [196]. The model was evaluated by participants, on the
aspects of theme controllability, repetition, timing, variation,
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and overall structure and quality. The proposed model outper-
forms others in all metrics.

In [197], conditional drum generation is considered,
inspired by [166]. A BLSTM encoder receives the condition-
ing parameter information, and a transformer-based decoder
with relative global attention generates the drum sequence.
A subset of rock and metal songs from the Lakh MIDI
dataset is used [82]. For subjective evaluation, participants
were given a set of three tracks, two being the accompanying
or condition tracks, and the third being the drum track to
be evaluated. They were asked to rate the drum tracks with
respect to thythm, pitch, naturalness, groove, and coherence.
The tracks generated from the proposed model outperform
another baseline model and are even rated higher than real
compositions with respect to naturalness, groove, and coher-
ence. The users were also asked their opinion on whether
the given drum tracks each time were real compositions or
computer generated. The drum tracks from the model were
perceived as computer generated only 39% of the time, indi-
cating the natural feel of the tracks.

In [198], the problem of melody harmonization was
considered. The model maps lower-level melody notes
into semantic higher-level chords. Three architectures are
proposed using a standard transformer, variational trans-
former, and regularized variational transformer. The Chord
Melody [199] and Hooktheory Lead Sheet [200] datasets are
used. In the human evaluation conducted, participants, com-
prising casual music listeners and professionals, were asked
to rate samples with respect to harmonicity, unexpectedness,
complexity, and preference. The standard model achieved
the highest scores in harmony and preference, whereas the
variational model achieved the highest in unexpectedness and
complexity.

F. ARCHITECTURE OVERVIEW

As with the case of MIR, it is clear that there is no single
architecture that can outperform the rest in MG tasks. Multi-
layered architectures though can be a path for building better
models, especially when additional objectives are set, like
conditioning the generated music to desired features.

IV. FUTURE STUDIES IN MDL
In this section, future research directions in MDL are identi-
fied and discussed.

A. MIXED ARCHITECTURES
So far there have been multiple approaches and different
architectures to address key problems in MDL. However,
despite most works reporting positive results, due to the com-
plexity of the applications under study and their peculiarities,
there is no dominant method that should be followed for a
given task. Thus, there is no overall superior architecture that
is guaranteed to outperform all others for any given MDL
problem.

On the other hand, results indicate that the best approach
to constructing holistically better models, which can consis-

17042

TABLE 2. DL methods for MG.

DL Architectures | Applications Research Work
RNNs MG (Classical) [117], [133], [136],
[137]
MG (Drums) [138]
MG (Folk) [139]
MG (Jazz) [139]
SG (Speech) [133]
SG (Human vocal sounds) | [133]
MI [141]
LSTMs Multiple genres [143], [144], [146],
[149], [152]
MG (Classical) [150], [153], [156]
K-Pop [158]
Folk [156], [157]
Jazz [160], [161]
Piano [156], [163]
Drums [166]
MI [168]
CNN MG Classical [169]
Folk [170]
Piano [172]
GANs Symbolic MG [174]-[178], [180]
MG (Pop) [181]
MG (Rock) [183]
MG (Folk) [184], [185]
MI [186]
Transformers MG (Longer sequences) [188], [190], [191],
[193], [194]
MG (Mandarin Pop) [195]
MG (Drums) [197]
Melody harmonization [198]

tently yield improved results is to consider combined archi-
tectures, like CRNNs [121], [122] or LRCNs [65], [69]. Such
approaches can harness the individual characteristics of each
model to surpass their counterparts. Attention mechanism
enhanced architectures is one such example [56], [95], [126],
[161], [180], with more being developed [201], [202], [203],
[204]. Such approaches will surely lead the advances in the
MDL field.

Apart from hybrid architectures, MDL will be significantly
benefited from the use fusion of diverse input modalities. This
would increase performance, as the conjunction of differ-
ent modalities can help build connections between different
features. For example, in [76] sound signals were extracted
from unlabelled video sources. In [205], the combination of
singing signals along with laryngoscope images was com-
bined for voice parts division. In [206], a system that com-
bined heart rate measurements and facial expressions was
composed to detect drowsiness in drivers, which is accompa-
nied by a music recommendation system used as a counter-
measure to avoid accidents. In [63] and [64], a synchronized
music and dance dataset were used for recommendation.
In [207], music emotion classification is performed for four
emotional classes, combining features from lyrics and acous-
tics. These are indicative examples of an emerging trend of
bridging the gap between different modalities.

For the above techniques, an all-present problem is
the computational cost of training [208]. The increase in
hardware requirements creates practical issues with energy
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consumption and environmental footprint, which under the
scope of the global energy and environmental crisis, are
mandatory to address. Addressing the above will require the
performance improvement of current architectures, or the
consideration of different ones [209]. Understandably, any
improvements in the computational cost will, by extension,
also boost the commercialization of MDL applications.

B. TRADITIONAL MUSIC

Most of the existing works use widely available training
databases, which mainly include western music genres, like
classical music, pop, rock, metal, jazz, blues, etc. Using
widely established music genres make sense, due to their
popularity, but it is highly important to enrich and diversify
the training databases by including more genres. So, while it
is essential to consider new and emerging genres, especially
ones that are computer-based, like electronic, synth-wave,
and vaporwave [65], [210], [211], [212], another trend that
is gaining popularity is the application of MDL and MG for
traditional and regional music. Traditional music refers to
music originating from a specific country or region and is
closely tied to its culture [213]. Examples include the recita-
tion of religious excerpts like the Holy QurBan [214], and
traditional music from different regions, like Byzantine [215],
Greek [216], [217], [218], Persian [219], Chinese [220],
[221], Indian [222], [223], and many more.

In the development of MDL for regional and traditional
music, several challenges may appear, as a result of the dis-
tinct nature of the topic. One issue is the dataset availability,
which in contrast to western popular music, is in many cases
hard to gather, especially in large amounts, which are required
for optimal training. In most cases, the research groups take it
upon themselves to build their own dataset, due to the lack of
existing ones, so hopefully, in the future, more authorities will
help towards building free databases [77], [78], [142], [196],
[221], [224], [225], [226]. For this task, recording difficulties
may arise, especially for recordings made outside a music stu-
dio, with varying acoustics, for example in religious singing.
Coming along with the problem of dataset collection is that
of appropriate feature tagging of the tracks. This is strenuous
work that requires time, and often the collaboration of music
experts, for tasks like the annotation of music features, and
testing audiences, for more ambiguous characterizations, like
the emotion that a track evokes.

Moreover, many musical instruments, like the guitar and
piano, are present in almost all music genres, so it is eas-
ier to adopt MG architectures for a specific instrument to
many different styles. This may not be the case for regional
instruments, which are only used for playing a region’s tradi-
tional music. So, for preserving and learning musical styles
through DL, it is essential to build datasets for specific instru-
ments [221]. Finally, many traditional music styles have a dis-
tinct musical notation, like Mensural notation, Chinese Gong-
che, and Organ tablature, meaning that MDL architectures for
transcription, pattern recognition, and symbolic MG would
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TABLE 3. List of DL studies focused in traditional music.

Genre Applications Research Work
African Classification [15]

Arabic Classification [214]
Byzantine Music recognition [215]

Chinese Song recognition [220]

[227]-[229]
[230]-[232]

Instrument recognition
Classification

Drum MG [233]
Folk MG [170], [234]
Pop MG [195]
Feature extraction [235]
Croatian Transcription [236]
Ethiopian Classification [237]
Greek Classification [216]-[218]
Indian Classification [222], [238]-
[244]
Transcription [223]
Melodic framework conversion | [245]
Irish Player recognition [246]
MG [247], [248]
Korean Classification [249]
MG [158]
Persian Classification [219]
Composition [250]
Source Separation [251]
Scandinavian-like Folk | MG [248], [252]
Scottish MG [253]
Thai Transcription [254]
Turkish MG [255]-[257]
Classification [258], [259]
Emotion recognition [125]
Vietnamese Classification [260]

have to be adjusted to fit the characteristics of each genre.
This again requires the existence of appropriate databases for
different musical notations.

Overall, it seems that there are still several practical chal-
lenges to fully developing DL for traditional music. These are
steadily addressed by the efforts of several research groups
over the world. Table 3 lists the recent works that study
Traditional Music Deep Learning (TMDL), categorized by
music type. These works offer great service to the preserva-
tion of history, culture, and art, as the digitization, study, and
generation of traditional music will help open it up to new
generations of listeners and also promote thematic (music,
religious) tourism. Thus, it is expected that more research
groups will contribute to regional MDL in the future, and
hopefully, such research endeavors will also receive govern-
mental support and recognition.

C. MEDICAL APPLICATIONS

The field of Music Therapy (MT) lies at the intersec-
tion of Medicine and Music. MT is an evident-based
approach for treating a plethora of pathological condi-
tions, including, among others, anxiety, depression, substance
abuse, Alzheimer’s, eating disorders, sleep disorders, and
more [261], [262], [263]. Naturally, DL can prove a valuable
tool to therapists and patients, as a complement to existing
treatments. Table 4 summarizes the recent applications of
DL in music therapy, categorized by architecture. The con-
ditions that have been addressed include music remixing to
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TABLE 4. DL methods for music medical applications.

TABLE 5. List of abbreviations.

DL Architectures | Applications Research Work

DNNs Cochlear implant [264], [265]

RNNs Anxiety [266]
Cochlear implant [267]

LSTMs Alzheimer’s [268]
Tinnitus music therapy [269]
Depression treatment [270]
Multi-Voice Music Generation | [271]
music therapy

Support  vector | Anxiety Prediction [272]

machine (SVM)

CNN Vocal art medicine [205]
Mood transformation [273], [274]
Depression [275]
Anxiety [276]

GAN Control of heart rate variability | [277]

improve cochlear implant performance, effective MRS and
MG for mood transformation, including anxiety and depres-
sion, MG for stimulating the musical memory in patients
with Alzheimer’s, MG for relieving Tinnitus, and voice parts
classification for vocal art medicine. Existing architectures of
DL for tasks like music recommendation and emotion classi-
fication can be adapted to fit many of the above conditions.
For example, music recommendation systems can be updated
to make suggestions based on emotion and mood, using a
collection of patient inputs, like facial expressions, and other
physiological signals, like heart rate, temperature, respiratory
rate, EEG signals, and more. By designing appropriate user
interfaces [40], [117], [137], MDL architectures could also
be used as an entertainment and educational tool, especially
for interventions with children. Finally, it would also be
interesting to see if knowledge transfer could be applied to
models developed for treating conditions with overlapping
symptoms, for example, anxiety and depression.

MT is a field that is constantly developing, with medical
researchers turning to it as a method for effectively treating,
or reducing the symptoms of many conditions. By developing
proper training databases and MIR and MG architectures,
DL will help in establishing open-access tools that can be
used by anyone alike, without the need for increased medical
expenses. Moreover, tools like MRS for mood transformation
can be directly available to patients, providing daily help
coverage. Overall, there are many promising future directions
to be considered by researchers.

D. MUSIC GENERATED FROM DYNAMICAL SYSTEMS

Another field that would also be interesting to consider is that
of chaos-based music generation [278], [279], [280], [281],
[282], [283]. In this interdisciplinary field, which bridges MG
with the rich area of chaos theory, the time series solution
of a chaotic system is used as a high entropy source for
music generation, in tuning parameters like the extraction of
musical pitches, the duration of a musical note, the amplitude,
and the velocity. Chaotic systems are characterized by non-
periodicity, and sensitivity to parameter changes, meaning
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Term Abbreviation
Area Under Receiver Operating Characteristic Curve AUC-ROC
Attention Mechanism AM
Audio Signal Processing ASP
Bidirectional Gate Recurrent Unit BiGRU
Bidirectional Long Short Term Memory BLSTM (BiLSTM)
Computer Vision CV
Convolutional Neural Network CNN
Convolutional Recurrent Neural Network CRNN
Deep Learning DL
Fully Connected Deep Neural Network FCDNN
Generative Adversarial Networks GAN
Genre Transfer GT
Image Processing 1P
Long Short Term Memory LSTM
Long-Term Recurrent Convolutional Network LRCN
Multi-layer Perceptron MLP
Music Deep Learning MDL
Music Genre Classification MGC
Machine Learning ML
Music Generation MG
Music Information Retrieval MIR
Music Inpainting MI
Music Recommendation Systems MRS
Music Signal Processing MSP
Music Therapy MT
Natural Language Processing NLP
Recurrent Neural Network RNN
Singing Voice Detection SVD
Speech Generation SG
Traditional Music Deep Learning TMDL
Vector Quantization - Variational Auto-encoders VQ-VAE

that two solutions of the same system, starting from almost
identical initial configurations, will quickly diverge from
each other, yielding two different, non-periodic time series.
This feature can thus be exploited in MG, as it can aid in the
generation of non-repeating musical patterns. So exploring
DL methods in this area could give rise to applications in
numerous fields, including medical treatment [284], [285],
and possibly secure communications [286], and system iden-
tification [287].

V. CONCLUSION

MDL has evolved into a very active field, with an increasing
number of contributions each year, addressing its vast appli-
cations. This work provided a review of the recent develop-
ments in Music Deep Learning. The review was divided into
two main categories, Music Information Retrieval, and Music
Generation. After reviewing each field, future research trends
were identified.

The future of MDL lies in developing hybrid architec-
tures to improve performance, while applications span a
plethora of commercial, conservational, medical, and exper-
imental applications being developed. Of these, applying
DL for studying and preserving the cultural heritage of
each country is of high importance. So is the exploitation
of MDL for medical applications. The integration of MDL
and chaos seems much more experimental, but its multi-
disciplinarity will surely lead to new developments in both
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fields. For all of the aforementioned applications, bringing
together research groups consisting of heterogeneous and
complementing researchers, like computer scientists, physi-
cists, mathematicians, musicians, audio engineers, and med-
ical practitioners, is the key to success. The authors hope
that the present work can be of service to these researchers,
by providing a clear overview of recent and emerging devel-
opments in the field.

APPENDIX A
LIST OF ABBREVIATIONS
Table 5 lists the abbreviations used throughout the text.
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