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ABSTRACT Consensus algorithms that function in permissionless blockchain systems must randomly
select new block proposers in a decentralised environment. Our contribution is a new blockchain consensus
algorithm called Proof-of-Publicly Verifiable Randomness (PoPVR). It may be used in blockchain design to
make permissionless blockchain systems function as pseudo-random number generators and to use the results
for decentralised consensus. The method employs verifiable random functions to embed pseudo-random
number seeds in the blockchain that are confidential, tamper-resistant, unpredictable, collision-resistant, and
publicly verifiable. PoPVR does not require large-scale computation, as is the case with Proof-of-Work and
is not vulnerable to the exclusion of less wealthy stakeholders from the consensus process inherent in stake-
based alternatives. It aims to promote fairness of participation in the consensus process by all participants and
functions transparently using only open-source algorithms. PoPVRmay also be useful in blockchain systems
where asset values cannot be directly compared, for example, logistical systems, intellectual property records
and the direct trading of commodities and services. PoPVR scales well with complexity linear in the number
of transactions per block.

INDEX TERMS Consensus algorithm, decentralised consensus, permissionless blockchain systems, proof-
based consensus algorithms, proof-of-publicly verifiable randomness, pseudo-random number generation,
random number seeds, verifiable random functions, vote-based consensus algorithms.

I. INTRODUCTION
One of the fundamental concepts that were established when
Nakamoto [1] introduced the idea of Bitcoin was the ability
for individuals to transact without mediation or permission
from a central authority. Holotescu [2] coined the term
‘‘disintermediation’’ to describe the absence of a central
authority when applied to a blockchain system. Disintermedi-
ation is a requirement that springs from the distributed ledger
(blockchain) that is shared and maintained over a peer-to-
peer network [3]. Nodes in the peer-to-peer network share
responsibility for storing copies of the blockchain, transmit-
ting and verifying transactions and verifying the validity of
the transaction record contained in the blockchain [4], [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

The distributed and disintermediated nature of blockchain
systems requires a decentralised agreement protocol shared
between participants of a blockchain system that will allow
them to agree on the validity of the blockchain [6]. The
authors in [7] describe the process as a community of partic-
ipants that accept a set of digital governance rules or govern
the blockchain system. These rules, also called consensus
algorithms, provide a source of algorithmic trust [8] between
participants and must be transparent if parties are to agree
on the correctness of the blockchain [9]. This requirement
for transparency further necessitates that blockchain systems
operate on open-source principles [10]. Figure 1 shows how
all these aspects, namely disintermediation, a peer-to-peer
network, the distributed blockchain, algorithmic trust and
open-source principles interact so that blockchain systems
can function in a decentralised manner.
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FIGURE 1. The aspects of decentralisation in permissionless blockchain systems [8].

In addition to the interaction between the aspects of decen-
tralisation of a blockchain system, Figure 1 also illustrates
how each aspect supports the various purposes of a permis-
sionless blockchain system. These purposes of immutability,
non-repudiation, security, transparency and accessibility are
discussed in detail in II-B.

Decentralisation in permissionless blockchain systems
revolves around algorithmic trust that allow disintermediated
parties to maintain a distributed blockchain over a peer-to-
peer network in an open-source environment [8].

At the heart of each consensus algorithm that functions in
a decentralised blockchain system lies the goal of selecting
the party with the right to add a new block to the blockchain
at random [11]. It stands to reason, then, that ways must be
found whereby permissionless blockchain systems can act
as efficient pseudo-random number generators that produce
pseudo-random numbers for use in consensus algorithms that
select new block proposers. These pseudo-random numbers
must be embedded in the blockchain data structure for public
verification.

This study investigates decentralised blockchain consensus
from the point of view of its most fundamental principles;
as a problem in publicly verifiable randomness. In the back-
ground section, the authors strip the idea of permissionless
blockchain systems down to their primary constituents and
investigate what they intend to achieve (II-A to II-D). II-E and
II-F give a thorough overview of the consensus algorithms
that have so far been proposed and show that they are all

attempts to achieve random block addition that is publicly
verifiable. It also highlights the disadvantages inherent in
these approaches that warrant continued investigations in the
search for improvements. The subject of II-G is the myriad
of ways to approach problems in publicly verifiable random-
ness.

The main contribution of this paper (III) is to introduce a
generic approach to blockchain consensus, namely Proof-of-
Publicly Verifiable Randomness (PoPVR). PoPVR consists
of twomain elements. It first builds a pseudo-random number
generator to be incorporated into any blockchain system.
Second, it shows how to use the pseudo-random number
generator to select new block proposers in a confidential,
tamper-resistant, unpredictable, collision-resistant, and pub-
licly verifiable way. Blockchain designers can use PoPVR as
an open-source approach to design new blockchain systems
with a built-in consensus mechanism.

IV addresses the specific operational and security aspects
of PoPVR. The paper concludes with a summary and future
opportunities for further research.

II. BACKGROUND AND RELATED WORK
Blockchain technology is a way to keep the content of
replicated ledgers shared by multiple participants and syn-
chronised through community validation. Its inception was
with Nakamoto’s first cryptocurrency, Bitcoin, proposed
in 2008 [1]. While Bitcoin was the first workable solu-
tion to design a decentralised digital currency, the idea of
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decentralised digital money has been around since b-money
was proposed in 1988 [12], [13]. Blockchain is a ‘‘founda-
tional technology, that leads the shift from trusting humans,
to trusting machines and from centralized to decentralized
control’’ [14]. A detailed discussion of the terms blockchain
and blockchain system, the purpose of blockchain systems,
the environment in which permissionless blockchain systems
function and their components follow in A to D.

A. BLOCKCHAIN AND BLOCKCHAIN SYSTEMS
The literature about blockchain-related topics often con-
tains imprecise language related to the meaning of the term
blockchain. It is sometimes referred to as a data structure and
sometimes as a system. Some authors refer to blockchain as
a data structure containing a sequence of blocks. Every block
records a set of transactions, and blocks are cryptographi-
cally linked to create a tamper-proof historical transaction
record [14], [15], [16]. The data structure interpretation is
widely shared, described as an ordered list of blocks or a
distributed ledger of transactions; the idea stems from the
cryptographically linked, tamper-proof historical transaction
record constructed through a blockchain [12], [15], [17].
Other data structure descriptions include a distributed ledger
of transactions by [9], [18], and others. The authors in [19]
call blockchain ‘‘..an electronic ledger that records transac-
tions in discrete chunks, referred to as blocks. The blocks are
concatenated into a single immutable chain.’’.

Alternatively, blockchain may also mean a combination of
technologies, including distributed ledgers, cryptography and
consensus algorithms used in combination as components in
a decentralised transactional system. This interpretation then
refers not only to a data structure but to a system, the purpose
of which is to allow untrusted parties to agree on a single
valid transaction history [10], [20], [21], [22]. Other systems
type descriptions for blockchain that mean a combination of
existing technologies are, for example, Merkle tree hashing,
consensus algorithms and public-private-key encryption [10]
or decentralised consensus, maintaining a synchronised dis-
tributed ledger over a peer-to-peer network [23].

A blockchain system can also be understood as a replicated
state machine, a service replicated on many network nodes,
protecting the system against the failure of single nodes.
In this model, three components constitute the state machine.
The blockchain represents the system’s state, a peer-to-peer
network containing blockchain replicas, and a consensus
algorithm that runs as a distributed service to enable the nodes
to converge on a single correct state [24].

In this paper, we explicitly differentiate the meaning of the
terms blockchain and blockchain system and will use them as
such throughout:

• A blockchain is a data structure with characteristics
specifically designed to enable untrusted participants to
agree on a single transaction record. It is a tamper-proof
distributed ledger with cryptographically linked sequen-
tial blocks where each block contains a set of transaction

data. A blockchain is a component of a blockchain sys-
tem.

• A blockchain system means a combination of technolo-
gies, including cryptography, consensus algorithms, net-
work topographies and the stakeholders that produce,
consume or interact with blockchain-enabled services.

Blockchain systems fall into one of two groups. The first
relies on a central authority to establish consensus. Participa-
tion in the system is limited to permitted entities with known
identities only. These are called permissioned blockchain sys-
tems [6], [25] or sometimes private or enterprise blockchain
systems [26]. This study does not consider these types
of systems but focuses on permissionless or decentralised
blockchain systems (sometimes called public blockchain sys-
tems). They require no restrictions on participants and use a
probabilistic consensus mechanism to manage the addition of
new blocks to the blockchain [26]. Bitcoin is an example of a
permissionless blockchain system [6], [25].

B. THE PURPOSE OF A BLOCKCHAIN SYSTEM
A blockchain system’s purpose is to record transactions.
In this sense, transactions are not necessarily financial and
may represent any type of electronic record. Examples
of transactions recorded include traceability data in logis-
tics [27], electronic voting data, decentralised domain name
records and the code needed to execute smart contracts [28].
Blockchain transactions share the properties of immutabil-
ity, non-repudiation, security, transparency and accessibilit
y [10], [17]. These properties have the following definitions:

• Immutability: No party can alter a transaction recorded
on the blockchain. A permissionless blockchain system
has a probabilistic consensus model. It is, therefore,
more accurate to say that a transaction can eventually
not be altered. It is because the transaction becomes
persistent as it is buried under a suitable number of new
blocks [10], [14], [22], [29].

• Non-repudiation stems from immutability. If no one
can alter a transaction, it cannot be undone, repudi-
ated or deleted [17]. Immutability and non-repudiation
are achieved by embedding cryptographic hash pointers
in the blockchain. It forms a tamper-proof sequential
record of transactions [26], [30].

• Security: In the context of blockchain systems, secu-
rity means three things. First, public-key cryptography
protects data ownership, which permits only the lawful
owner of a private key to transact with its data on the
blockchain [29], [31]. Second, cryptographic hash point-
ers act as a chain of links between blocks to create a
tamper-proof transaction record. It protects the integrity
of the blockchain [14], [30]. Third, a distributed consen-
sus model replaces centralised authorities. Copies of the
blockchain stored across many independent peers on a
peer-to-peer network provide redundancy and mitigate
single-point failure risk, improving fault tolerance [22].
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• Transparency: Guarantees that all transactions on
the blockchain are auditable by any stakeholder;
this means any party with access to the Inter-
net [10], [22], [26], [29].

• Accessibility: All participants have the same right to
transact on and participate in blockchain processes [17].
Transacting is limited to each owner’s data only, while
participation allows the inspection of data of all partici-
pants to, for example, verify transaction validity.

C. PERMISSIONLESS BLOCKCHAIN SYSTEMS AND THEIR
ENVIRONMENT
This study pertains to permissionless or public blockchain
systems. Understanding the permissionless environment
requires a distinction between distributed and decentralised
systems, which can be defined in the following way [32]:

• ‘‘Distributed system: A system with multiple compo-
nents that have their behaviour coordinated via message
passing. These components are usually spatially sepa-
rated and communicate using a network, and may be
managed by a single root of trust or authority.’’

• ‘‘Decentralized system: A distributed system in which
multiple authorities control different components, and
no single authority is fully trusted by all others.’’

Therefore, decentralised systems are distributed, but not
all distributed systems are decentralised. Permissionless
blockchain systems relate to these definitions in that they
function on a peer-to-peer basis, are not controlled by a
central authority and use a decentralised consensus algo-
rithm for the network to agree on the legitimate state of the
blockchain [9], [10], [21], [22].

Layers in a blockchain system
A permissionless blockchain system’s environment com-

prises three layers: external, primary, and secondary (Fig-
ure 2) [8].

The primary layer is central to a blockchain system. It pro-
vides the foundation for the mechanical operation of the
system and contains three sub-components, the blockchain,
a peer-to-peer network, and a consensus mechanism [9], [22],
[30]. A blockchain system can contain a secondary layer of
more sophisticated applications. These are constructed on
top of the primary layer and are accessed by embedding
autonomous instructions in blockchain transactions. These
instructions can execute automatic functions provided by the
primary layer, for example, create automated transactions
when certain conditions are met or perform additional ser-
vices on the secondary layer [21]. These autonomous instruc-
tions are called smart contracts, which have an expansive
meaning [22]. Note that the secondary layer components
cannot be accessed directly. They require that a transaction
is initiated on the primary layer to trigger an event or action
in a secondary layer component. Ethereum is an example of
a blockchain system that supports secondary layer function-
ality [33].

The primary and secondary layers of the blockchain envi-
ronment are technical. There exists an external social layer in
which blockchain systems are immersed. Blockchain systems
exist to fulfil a valuable function to consumers; they are main-
tained by developer communities and attract more and more
attention from regulators and lawmakers. These external layer
components include:

• Developers who create andmaintain the software related
to primary and secondary layer components [34], [35],
[36]. These developers may include volunteer commu-
nities or businesses that operate for profit [21].

• Consumers or participants that transact with the
blockchain system directly with the primary layer or
indirectly with the secondary layer. Participants are not
limited to individuals; theymay be organisations or other
systems, for example, IoT devices.

• Lawmakers are increasingly interested in blockchain
systems and constantly re-evaluate the requirements for
oversight in areas ranging from consumer protection and
tax evasion to money laundering [10].

Figure 2 shows how the secondary layer resides inside
the primary layer. The secondary layer cannot function with-
out the primary layer. The external layer does not have
direct access to the secondary layer. The primary layer
controls its access, and participants interact with the sec-
ondary layer by initiating transactions on the primary layer.
This paper focuses on a foundational infrastructure compo-
nent of permissionless blockchain systems, the consensus
algorithm. Figure 2 shows that blockchain consensus algo-
rithms reside in the primary layer of the blockchain sys-
tem. Accordingly, this primary layer needs more detailed
scrutiny.

D. PRIMARY LAYER COMPONENTS OF A
PERMISSIONLESS BLOCKCHAIN SYSTEM
The primary layer of a permissionless blockchain system
comprises three components: the blockchain data struc-
ture containing the transaction record, a peer-to-peer net-
work and a consensus algorithm. Each is now discussed
in detail.

1) BLOCKCHAIN
Before the advent of blockchain systems, the idea of tamper-
proofing a digital artefact when releasing it into the public
domain was dependent on a trusted third party. This method
was vulnerable to malicious acting by the third party until
it was solved by [37] using cryptographic hash functions
and public key digital signatures. These two cryptographic
primitives, namely cryptographic hash functions and public
key digital signatures (part of public key cryptography), form
the basis of the tamper-proofing characteristics of blockchain
systems. The cryptographic primitives that play an essential
role in blockchain systems and their implementation in the
construction of transactions and blockchain blocks are dis-
cussed in II-D 3.
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FIGURE 2. The layers in a blockchain system environment (Adapted from [8]).

a: CRYPTOGRAPHICALLY SECURE, COLLISION-RESISTANT
HASH FUNCTIONS
Cryptographic hash functions (hash functions for short) are
cryptographic primitives that take an arbitrary lengthmessage
and produce an output, called a message digest, of a fixed
length [38]:

Hash (message) → message_digest (1)

A well-known hash function is the SHA256 hash function
that returns an output of 256-bit length. Hash functions have
three important properties. First, they are one-way functions,
making it impossible to compute the input when the output is
known. Second, good hash functions have a computational
complexity of O(n) where n is the input length, and third,
good hash functions are collision-resistant [30], [39].

Blockchain systems use hash functions to create a ‘‘finger-
print’’, known as the block hash, of a block of data. Figure 3
illustrates the process of creating a block hash for a set of
transactions in a block.

Since a blockchain is a sequential series of data blocks,
subsequent blocks point to previous blocks using the last
block’s hash as a unique pointer (Figure 4), producing a
tamper-evident log of transactions.

In any attempt to alter the data in a transaction, the hash of
the block that contains the transaction will be a valid pointer
to the previous block.While the data structure of a blockchain
is, in reality, more complex, this tamper-evident log is the
fundamental idea of a blockchain (Figure 5) [9], [30].

b: PUBLIC KEY CRYPTOGRAPHY
Well-known public key primitives like RSA, Elgamal [38]
and Elliptic Curve Cryptography [40] facilitate five cryp-

tographic services used for data and communication secu-
rity [39]:

The key generation algorithm generates two outputs,
namely the public key and the secret key, for use in the four
other services [38]:

GenerateKeys() →Keypublic;Keysecret (2)

The public-key encryption algorithm inputs a public key and
plain text message. It returns an encrypted message that only
the owner of the corresponding private key can decrypt [38]:

Encrypt(Keypublic,Msgplain−text) →Msgencrypted (3)

The decryption algorithm recovers the plain text message
from the encrypted message using the secret key [38]:

Decrypt(Keysecret,Msgencrypted) →Msgplain−text (4)

Digital signature algorithms sign a plain textmessage using
a secret key to allow authentication of the message by any
party who knows the corresponding public key. Authentica-
tion means the message has not been tampered with and that
it originated from the owner of the public key [38]:

Sign(Keysecret,Msgplain−text) → Signature (5)

The signature verification uses the public key of the signer
and the plain text message, and the signature to produce a
boolean output to confirm authenticity [38]:

Verify(Keypublic,Msgplain−text,Signature) → Ver (6)

Public key cryptography plays a critical role in securing
transactions on the blockchain [22]. While transactions vary
between blockchain systems, they all share the same general
construction process.
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FIGURE 3. Constructing a block hash.

FIGURE 4. Blocks linked by a hash pointer.

FIGURE 5. Simplified blockchain (Adapted from [9], [30]).

c: TRANSACTIONS
A blockchain needs not only to record financial assets. It may
record other objects, such as intellectual property informa-
tion, logistical and transportation data, executable smart con-
tract code, etcetera. Generically, a transaction can be seen as
an instruction or data inserted into a blockchain address. The
address may belong to a participant in the external layer (Fig-
ure 2), for example, a user, or an entity in the secondary layer
(Figure 2), for example, a smart contract [22], [33]. In reality,
blockchain transactions may involve multiple addresses. For
example, a cryptocurrency transfer may group amounts from
multiple addresses of an owner and pay portions to multiple

recipients. However, for simplicity, this paper will treat trans-
actions as if only single addresses apply. Transactionsmust be
atomical [16], meaning that they take place entirely or not at
all.

Transactions originate from or between components of the
external layer or external users, or components on the sec-
ondary layer, such as smart contracts or autonomous organi-
sations, may trigger them. As an example of the transaction
construction process, the case of an asset (i.e. cryptocur-
rency) transfer from a sender address to a receiver address
is used. An address is a public key from a public key cryp-
tography scheme. In practice, the receiver’s address is often
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represented by the hash of the public key, thereby enhanc-
ing its security and anonymity. It is only revealed once the
receiver transacts with the address [31]. The sender constructs
a transaction in a process consisting of three steps (Figure 6).

The first step is for the sender to specify the input address
that contains its assets and the output address of the receiver.
If the sender does not use all the assets in its input address,
it also specifies a new output address for itself to receive the
change. The reason for sending the change to a new address
is two-fold. First, it closes out the existing addresses, the data
of which can then be left out of the blockchain, keeping only
the hash of the transactions in the Merkle tree. The following
section discusses Merkle trees as part of the background on
transactions. It makes it possible to store a lighter version of
the blockchain in a process called ‘‘Reclaiming Disk Space’’
by [1]. Second, the new address enhances the security of the
sender’s remaining assets by using a new public-private key
pair hidden by its hash.

In the second step, the sender adds additional data such
as the amounts to be transferred, date and time information,
etcetera. The data depends on the specific design of each
blockchain system. Step two terminates by computing the
hash of all the transaction data. By the collision-resistant
property of hash functions, this hash serves as a unique
identifier of the transaction data.

In the third step, the sender signs the transaction’s hash
with its private key. Blockchain systems often allow multiple
parties to enter into transactions, in which case, the transac-
tion signature uses distributed key generation and threshold
signature schemes [41], [42]. Since a digital signature is
the same length as the signed message, it saves space to
sign the hash of the transaction identifier instead of all the
transaction data. The security that the signature provides
is two-fold. First, it proves that the public key owner (the
sender’s address) constructed the transaction and therefore
is the rightful owner of the assets to be transferred. Second,
it allows a verifier to check that the data in the transaction has
not been tampered with while in transmission by computing
the hash of the transaction data and using the public key
verification algorithm (6).

Since objects in the secondary layer of a blockchain system
may own addresses, they can automate the same three-step
transaction construction process [22], [33]. Merkle trees store
the transactions in each transaction block.

d: TRANSACTION BLOCK
A Merkle tree is a binary tree that builds in cryptographic
tamper-proofing with hash functions [43] (Figure 7). Trans-
action data is stored in the leaf nodes, identified by each
transaction identifier. Through a process of recursive hashing,
pairs of nodes are hashed together to terminate in a single
root hash. The root hash provides a tamper-evident signature
of all the transactions contained in the leaf nodes [44]. Any
attempt to change a single transaction will appear in the root
hash value [43]. Traversing the transactions in a Merkle tree

to search for a transaction has a computational complexity of
O(n) if the leaves are unordered and O(log(n)) when ordered.
Calculating the root hash has a computational complexity of
O(log(n)).

e: HEADER BLOCK
A blockchain block must contain, at a minimum, three ele-
ments (depending on the design of the blockchain system,
it may contain additional fields) to function as a tamper-proof
transactions log. The first is a transaction Merkle tree, the
second is a timestamp, and the third is a pointer to the pre-
vious block, also known as the previous block hash [18]. The
Merkle tree root hash, timestamp and previous block hash
constitute a header that can be hashed to produce an identifier
or pointer to the block from the subsequent block [1], [22].
Figure 8 shows the structure of an elementary block.

This section discussed the basic design elements of the
blockchain as the first primary layer component in a per-
missionless blockchain system. These elements include the
cryptographic primitives of hash functions, public key cryp-
tography and how they are used to construct transactions, and
the transaction block and header block. The transaction block
and header block, together with the block hash, make up a
block in the blockchain. Figure 9 shows a more complete
structure of a basic blockchain.

2) PEER-TO-PEER NETWORK
Message passing on a blockchain network takes place over
a peer-to-peer (P2P) network, which forms the second com-
ponent of the primary layer of a permissionless blockchain
system. P2P is a well-known network topology. Its details
are well described in the literature, for example, in [46]
and [47] (Figure 10). Other than to point out that P2P refers
to a decentralised topology [10] where nodes collaborate to
share resources and services without a central authority to
coordinate the processes, the details of P2P networks are
deferred to the reader.

Since messages take time to propagate across a P2P net-
work, it harms transaction processing times and the consensus
process of a blockchain system. This lag is known as network
latency and increases with network size [47].

3) CONSENSUS ALGORITHM
Consensus algorithms comprise the third component of the
permissionless blockchain system’s environment and exist
because of two implications that follow from the P2P nature
of permissionless blockchain networks. The first is the
absence of a single authority to reconcile different versions
of the blockchain that may exist between various participants
in the system. The second implication is the assumption that
not all nodes function correctly and that some may actively
undermine the system. Blockchain consensus algorithms fall
into two main categories: proof-based consensus algorithms
and vote-based consensus algorithms [48]. The following two
sections (E and F) give a thorough overview of the main ideas
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FIGURE 6. Generic steps in creating a blockchain transaction.

FIGURE 7. Transaction Merkle tree (Adapted from [43]).

FIGURE 8. A simple blockchain block.

in each category, but they are not exhaustive because of the
constant addition of new ideas.

E. PROOF-BASED CONSENSUS ALGORITHMS
Initially proposed for Bitcoin, proof-based blockchain con-
sensus algorithms have seen many variants [48]. In general,

proof-based consensus is probabilistic, meaning there is at
least some probability that more than one honest participant
may propose different but valid blocks. Refer to Appendix
D for a summary of the proof-based consensus algorithms
discussed in this section.

In Proof-of-Work (PoW), miners vote on the correctness
of a block by attempting to add a new block to the blockchain.
The block that most miners add onto eventually becomes
permanently embedded in the blockchain. A participant’s
voting power is proportional to its computational power as
a proportion of that in the network because it relies on a
process where participants solve a computationally hard puz-
zle to gain the right to add a new block [22]. Adding new
blocks requires physical resources, so it becomes increasingly
unlikely for an adversary to change a transaction in a block
buried under an increasing number of new blocks [49].

PoW solves the double-spending problem and enables
complete decentralisation [1]. However, it is computationally
expensive. Repetitive hash calculations are required to find
a valid block solution resulting in non-deterministic com-
putational complexity. The high cost of block production
protects the network from distributed denial of service attacks
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FIGURE 9. Structure of a basic blockchain.

FIGURE 10. Peer-to-peer consensus network topology [102].

(DDoS) [23]. The disadvantages include that it is only secure
under the assumption that most (51%+) of the computational
power controlled by miners is honest [22], [49], [50], results
in high energy consumption [9] and are vulnerable to miners
that collude. Large-scale collusion (pooling of resources) can
undermine the decentralised nature of PoW [51], [52]. PoW-
type blockchain systems have to trade off network delay and
block size. It is one reason for the limited adoption of Bitcoin
as a payment system [47].

Proof-of-Stake (PoS) consensus algorithms were intro-
duced to resolve the high energy consumption of PoW [19],
[22]. It defers decision-making power for adding blocks to the
blockchain in the proportion of assets owned (stake) by the
participants [19], [49], [52]. During a block round, one of the
existing coins in existence is chosen randomly, and the owner
of the coinmay add a new block to the blockchain. Stakehold-
ers that own more coins are more likely to be selected [49],
[52]. To increase the unpredictability, some additional form
of randomisation may apply. For example, by considering
the number and age of the assets [9], [53]. Computational
complexity is not reported, but a popular algorithm for choos-
ing a random coin, known as Follow the Satoshi, requires
traversing the blockchain or portion thereof to establish the
current owner of a minted coin; this process is linear in the
number of blocks in the blockchain.

The advantage of PoS is that it solves the energy use
problem of PoW [9], and it contains an inherent security
measure since a participant that undermines the blockchain
undermines its own assets [49], [52]. The staking process
is automated and does not require the active involvement of
participants to vote for block producers [26].

Disadvantages are its vulnerability to low-cost attacks
because it is easy to create invalid blocks [9], which may
lead to the Nothing-at-Stake problem, where participants per-
petuate multiple forks on the blockchain, delaying ultimate
consensus. Furthermore, when block proposers are selected
based on both size of their stake and the age of coins, it may
open the door to coin age accumulation attacks [53]. The
fair initial distribution of coins may be problematic because
participants that act rationally will seek unfair distribution
of digital assets [49]. Similarly to mining pools in PoW,
participants in PoS can collude by creating staking pools
that may undermine system security [49], [52]. Individual
participants may buy assets to increase their probability of
proposing new blocks, causing shocks in the market, plac-
ing upward pressure on coin values [52] and ultimately
reducing the participation of small asset holders in the
block creation process. This type of wealth accumulation
may lead to a degree of centralisation around large asset
holders [54].

To address the challenges in transaction processing
times of PoW and PoS, Delegated Proof-of-Stake (DPoS)
responds by selecting a small subset of participants as wit-
nesses to validate new blocks. This smaller validation pool
can act more efficiently than the whole group of stakehold-
ers [55]. DPoS blockchain systems do not assign the right to
mine a block directly in proportion to a participant’s share of
ownership of assets but instead assign the right to elect dele-
gates who must construct and validate new blocks on behalf
of all participants [50], [52], [56]. DPoS blocks are created
at set maintenance intervals by a committee of witnesses who
serve for that interval. New witnesses are selected for each
new maintenance interval, during which each witness has a
turn to create a new block [57].

The advantages of DPoS are that it addresses the incom-
plete decentralisation found in PoS because of the cumulative
influence of small stakeholders. No one is, therefore, wholly
excluded from participation, making DPoS more democratic
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than PoS [26], [56]. Large transaction volumes are possible
with DPoS because the creation of new blocks is scheduled
and needs little computational power [50], [54]. The small
sub-section of participants required for consensus allows a
higher transaction throughput, which makes DPoSmore scal-
able than PoW and PoS [26]. DPoS provides a mechanism
for changing the algorithm in the same way block creation
happens. A committee selected, based on their proportion of
stake, can also propose changes on behalf of the network [54].

The disadvantages of DPoS are, first, that the influence
of participants ultimately stems from their stake and does,
therefore, not completely improve on PoS [26] and second,
DPoS relies on the owners of the digital assets to take a more
active interest in governing the system [26], [54].

Proof-of-Elapsed-Time (PoET) depends on a trusted exe-
cution environment (TEE) to ensure sequential block cre-
ation. The TEE assigns participants a waiting time, and they
announce blocks as soon as their waiting time expires [48].
When participants submit a new block, they also publish the
random waiting time received from the TEE for verification
by other parties [22], [58].

PoET has the advantage of energy efficiency because very
little computation is required to add new blocks. While not
reported, the bulk of computation will presumably result from
constructing and verifying blocks with complexity linear in
the number of transactions per block. The random waiting
times are assigned fairly so that each participant has an equal
chance of proposing new blocks.

The main disadvantage of PoET is its reliance on a trusted
third party which makes it unsuitable for permissionless
blockchain systems [26], [54]. The authors in [58] have also
shown that PoET is vulnerable to a relatively small proportion
of colluding participants (O[log log n

/
log n] where n is the

number of participants).
Nonlinear Proof-of-Work (nlPoW) [59] improves PoW

by recognising that PoW assigns the same computationally
hard puzzle to each participant in the blockchain network.
nlPoW randomly gives a unique puzzle to each miner during
each block round,making the probability of successfullymin-
ing a block nonlinear to its proportion of the computational
power in the network. By disrupting the ability of participants
to estimate their expected income from investment in compu-
tational resources, it aims to prevent the computational arms
race that is currently found in, for example, Bitcoin.

nlPoW still requires repetitive hashing to find valid block
solutions resulting in non-deterministic computational com-
plexity.

PoW with a Cuckoo Hash Function [60] aims to find
cycles of a specific length in a graph to produce a hash value.
This process relies on Random Access Memory (RAM)
rather than computational power as a resource for the mining
process. The RAM usage scale with graph size and adjusts
according to the historical block solution rate, similar to the
difficulty adjustment of PoW. The advantage is that RAM
does not benefit from the same economies of scale as pro-
cessing power and should therefore dampen the competition

between participants to invest in more infrastructure. The
disadvantages are that one resource (electricity) is exchanged
for another (RAM), and resource use is non-deterministic.

King [61] proposed the concept of PoW by Searching
for Prime Chains. The argument is that PoW computations
could operate for scientific gain, giving them real-world value
[57]. He proposed that participants must search for prime
chains instead of hash values to be stored on the blockchain
and used for further research bymathematicians [62]. Like all
PoW algorithms, it still needs a guess and test strategy, which
is non-deterministic and inefficient.

Proof-of-Luck (PoL) [63] is an extension of PoET by
using a TEE to require that a fixed amount of time must
pass, duringwhich participants may produce new blocks. PoL
includes a parameter called luck, a random value generated
by the TEE. Participants broadcast their new blocks when the
waiting time expires, and the network selects the blockchain
with the most significant sum of luck over all the blocks as
the valid chain. The waiting time allows the propagation of
the latest valid chain through the network. PoL’s reliance on
a TEE requires a trusted third party to provide the TEE and
is, therefore, unsuitable for decentralised consensus systems.
Computational complexity is not reported but presumably
results from constructing and verifying blocks with complex-
ity linear in the number of transactions per block.

The authors in [64] proposed Proof-of-Human-Work
(PoH), a cryptographic puzzle that humans can solve with
moderate effort but is very hard for computers. It is similar
to the CAPTCHA (Completely Automated Public Turing test
to tell Computers and Humans Apart) concept. However,
advances in artificial intelligence (AI) may compromise the
algorithm.

Proof-of-Burn (PoB) [65] requires that participants buy
participation rights by sending some of their digital assets to
a burn account from which they are unretrievable. The prob-
ability of the right to mine a block is related to the number
of assets burned. Every burn transaction creates a hash, and
the ‘‘best hash’’ (smallest) created during a block creation
interval earns the right to add a new block. Participation,
therefore, comes at a cost to the participant but does not
require large amounts of electricity to be wasted. However,
resources in the form of digital assets still go to waste. It also
skews participation towards participants who can afford to
employ more assets [66].

Proof-of-Space (PoSpace) [67] uses the same idea as
PoW but requires that participants commit hard disk space
instead of computational power. Attacking the blockchain,
therefore, incurs a cost. The probability of adding a new block
is proportional to the amount of disk space the participant can
allocate. PoSpace trades one resource use (electricity in PoW)
for another (disk space), which makes it difficult to assert that
one consensus algorithm is better than the other.

Proof-of-Importance (PoI) [68] is similar to PoS. It uses
the ownership of digital assets to select the participant to add
a new block. It adds additional constraints on the partici-
pant’s stake, like the period of ownership of the digital asset
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and the transaction activity of the participant. PoI does not
require a large amount of computational power and limits
the advantages of coin hoarding, which is a drawback of
PoS. However, participants can still choose strategies which
skew the probability of influencing block creation to their
advantage.

Proof-of-Responsibility (PoR) [69] is a PoW-type con-
sensus algorithm that relies on trusted third parties to detect
and intervene when identifying suspicious behaviour from
participants. It depends on third parties to define suspicious
behaviour and does not promote decentralisation.

Proof-of-Authority (PoA) [26] is a blockchain consensus
algorithm that defers transaction validation and block addi-
tion to trusted, publicly verified parties. The argument is that
a large enough network of trusted parties can overcome an
attack by a compromised minority. PoA is efficient and can
scale easily, but it is not decentralised. The computational
complexity varies according to the implementation of the
algorithm. If a single machine is to be trusted, it only needs
to verify the transactions, resulting in linear complexity in the
number of transactions per block. If multiple authorities need
to vote on blocks, it may result in quadratic complexity in the
number of authorities.

Dfinity [70] uses a built-in pseudo-random number gener-
ator to select participants that may add new blocks. It divides
block addition into a fixed number of block additions, called
epochs. Each epoch opens with a special block where partici-
pants interested in joining the block addition process register
their intent to participate. The registration process includes a
distributed key generation protocol with threshold signatures,
allowing registered participants to operate a pseudo-random
beacon for the duration of the epoch [71]. Dfinity can
be described as a semi-permissionless blockchain system.
It combines the security gains of permissioned blockchain
systems with some degree of decentralisation, characteristic
of permissionless blockchain systems.

F. VOTE-BASED CONSENSUS ALGORITHMS
Voting-based consensus algorithms require that participants
in the verifying network are all known. These algorithms
ensure that the system functions even if some participants
malfunction, for example, when they crash or act mali-
ciously [48], [72]. In [48], the authors distinguished two types
of fault tolerance. First, crash-resistant fault tolerance lets
the network function if a proportion of the participants are
unresponsive, presumably crashed. Second, Byzantine fault
tolerance functions even if some participants act maliciously.

Crash-Resistant Fault Tolerance was proposed by [73]
as the Paxos protocol that remains operational as long as
(N

/
2) + 1 participants functions correctly [74]. [75] sim-

plified the consensus proses (Paxos is notoriously complex)
in an algorithm called Raft, which is easier to understand.
Initially, Paxos and Raft were used in distributed database
systems.

Raft works across a network of independent participants by
establishing an election process for a leader that serves for a
designated time interval.While the leader remains functional,
it dictates the consistent state of the system, and all other
participants (called followers) replicate the leader’s state.
Once its term expires or if it malfunctions, another leader is
elected [75]. In blockchain consensus, the leader constructs
the new blocks and sends them to the followers. Blocks are
indexed so followers can request an updated sequence of
blocks if it misses parts of the communication (go offline).
If (N

/
2) + 1 followers confirm that the block received from

the leader is valid, the leader will commit the block to the
blockchain and instruct the followers to do the same [48].

Practical-Byzantine-Fault-Tolerance (PBFT) [76] is a
practical method to achieve consensus in asynchronous dis-
tributed systems when at least [(2

/
3)N + 1] participants are

honest. It therefore allows that some participants are mali-
cious. It relies on the election of a leader that controls the
consensus process until its term expires or it malfunctions
[22], [76]. The consensus process requires the transaction
gathering and validation and the commit phases. During
transaction gathering and validation, followers gather and
validate transactions and then send them to the other par-
ticipants, including the leader. Once the leader has enough
transactions, or after a set interval, it constructs a block. The
leader then broadcasts the new block to the followers, who
store and forward it to others. Each follower that receives
identical blocks from two-thirds or more other followers will
announce that it is ready to commit the block. If it again
gets the same commitment from two-thirds or more of the
other followers, it will commit the block [48]. Transactions
are confirmed immediately when recorded on the blockchain.
Consensus in PBFT is, therefore, explicit, with no need to
wait for more new blocks to increase confidence in a transac-
tion’s validity [26].

Federated Byzantine Agreement (FBA) [77] is applica-
ble for networks where joining is not restricted. Subsets of
participants that trust each other may cooperate exclusively
in groups called slices to validate transactions among each
other. Global consensus will emerge as long as the slices
of participants overlap so that all participants are eventually
connected.

Delegated Byzantine Fault Tolerance (dBFT) [57] func-
tions on the principle of two participant types, ordinary partic-
ipants and bookkeeping participants. Block addition defers to
bookkeepers that act on behalf of ordinary participants. The
blockchain is appended if a large enough proportion of the
bookkeepers agree on a new block.

G. PUBLICLY VERIFIABLE RANDOMNESS
This paper focuses on permissionless blockchain systems that
require a decentralised consensus mechanism. It is a prob-
lem for which the proposed solution strategies lie within the
proof-based group of consensus algorithms.While consensus
algorithms may differ in execution, they all share the same
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underlying principle: they try to make the block addition
process random [11]. Permissionless blockchain consensus
can, therefore, fundamentally be viewed as a problem in
publicly verifiable randomness. The consensus algorithm in
a permissionless blockchain system can be seen as a pseudo-
random number generator for selecting new block proposers.

Constructing systems that produce publicly verifiable ran-
dom numbers is fundamental to blockchain systems [78]. The
authors in [78] note that there are five desirable properties
that publicly verifiable random numbers must satisfy. First,
they must be unpredictable in the sense that no party must
be able to know anything about a generated number before
it is revealed. Second, the correctness of a random number,
when published with verifying information, must be publicly
verifiable by any party. Third, they must be tamper-resistant,
meaning that the generation process must not be subject to
interference from any party. Fourth, the generation process
must be scalable, ideally not exceeding O(n) where n is the
number of participants in the system. Last, the generated
number must be uniformly distributed if the generation pro-
cess has at least one honest participant (the honest minority
property).

Many methods exist for constructing publicly verifiable
random number generators. As studied by [79], the output of
cryptographic hash functions in PoW blockchain systems
produces random public beacons. PoW algorithms, however,
complete in non-deterministic polynomial time, which from
a scalability perspective, makes them unsuitable.

Scrape is a protocol proposed by [80], which uses a dis-
tributed ledger and publicly verifiable secret sharing [81]
to produce a random beacon between a set of participants.
Scrape scales badly with cubic computational complexity.

RandHound [82] provides unique, publicly verifiable ran-
dom numbers to each member of a group of participating
stakeholders. It is based on a commit/reveal scheme that uses
publicly verifiable secret sharing [81] and threshold signa-
tures [42]. RandHerd, also by [82], is a further development
of RandHound. It provides a stream of publicly verifiable but
non-individualised random numbers to function as a random
beacon. RandHound and RandHerd are both quadratic in their
computational complexity.

HydRand is a protocol by [83] designed to function in a
permissioned environment and produces a publicly verifiable
random beacon. It uses publicly verifiable secret sharing [81]
and random leader selection to operate and has quadratic
computational complexity.

Dfinity is a blockchain consensus protocol by [70] with a
built-in pseudo-randomnumber generator that forms the basis
for selecting new block proposers. It employs distributed
key generation and Boneh-Lynn-Shacham (BLS) threshold
signatures [84] to create a random beacon. Participants are
allowed to join or leave the network but must register their
intention to participate for a specific epoch. A special open-
ing block at the beginning of each epoch allows would-be
participants to register their intention to join or depart from
the block addition process. According to [41], the distributed

key generation protocol at the start of each epoch exhibits
quadratic computational complexity. However, the repeated
signature process for random number generation throughout
the rest of the epoch is linear [70].

Randao is a protocol that leverages the Ethereum
blockchain system to deliver a publicly verifiable random
beacon [85]. The random number generation process func-
tions in rounds where participants share the hash values of
locally produced seeds on the blockchain. The seeds them-
selves are known only to each participant and are secret.
A round ends when all the seed hashes are registered. Partici-
pants then reveal their seeds, which are combined to produce
a single random value. Randao is linear in computational
complexity but vulnerable to look-ahead attacks.

Ginar allows individual participants to generate a ran-
dom number in cooperation with a group of independent
participants on a blockchain system [78]. Every participant
uses a verifiable random function [86] to determine if they
meet an eligibility threshold to participate in the generation
process of the requesting individual. Eligible participants
encrypt a secret with the requester’s public key and store
it on a blockchain. The requester decrypts the sum of the
encrypted secrets through the homomorphic property of Elga-
mal encryption. The decrypted sum constitutes the requester’s
random number. Ginar exhibits linear computational com-
plexity [78].

Single Secret Leader Election (SSLE) by [87] enables the
selection of a random block proposer (leader) in a blockchain
system. It uses threshold fully homomorphic encryption [88]
to obscure the leader’s identity until it reveals itself. Obfus-
cation protects the leader from a denial-of-service attack by a
malicious party. SSLE requires a public randomness beacon,
which the authors do not specify. The leader selection process
consists of two phases. The first is a setup phase, where
participants register their intention to participate. The second
phase consists of repeated election rounds that continue until
there is a change in participants [87]. The authors do not
discuss the computational complexity, but most of the com-
putational load lies in registering the participants during the
setup phase. Presumably, this phase has quadratic complexity,
but the initial computational cost is amortised over many
election rounds.

Verifiable Delay Functions (VDFs) [89] solve the prob-
lem of forced failure by an adversary in multi-party com-
mit/reveal schemes. It calculates an output using a sequential
set of steps that is time-consuming and cannot be executed
in parallel. In random beacon construction, it may be used
as a technique to force all parties to reveal their commit-
ments before being able to calculate the outcome of the final
random value. The correctness of the output can, however,
be verified efficiently. VDFs use three algorithms, namely,
setup, evaluate and verify. Setup determines the environment
for evaluation of the VDF. Evaluate sequentially computes
the output and its proof of correctness. Verify confirms that
a prover completed evaluate correctly. As shown by [90],
VDF evaluate is linear in the output’s bit-length and verify
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is constant in time complexity. However, it is unclear how to
run setup in a distributed manner efficiently and may require
a trusted source that does not participate in the consensus
process [90].

Verifiable Random Functions (VRFs), first proposed
by [91], are an application of public-key cryptography that
allows a prover to compute a pseudo-random number together
with proof of its correctness from a publicly known input,
using a secret key. The correctness of the pseudo-random
number can be verified by a verifier using the prover’s public
key, the pseudo-random number and the proof. The pseudo-
random number has good random number properties, and
the probability of distinguishing it from a random number is
negligible [78].

B-Rand [92] and Transient Random Number Seeds
(TRNS) [93] are methods for embedding random number
seeds into blockchain transactions. Participants can then use
these random number seeds in pseudo-random number (PRN)
generators for blockchain processes that require publicly
verifiable random selection, for example, selecting a new
block proposer. B-Rand assigns the random number seed to
the sender (creator) of the transaction using hash functions,
homomorphic encryption and public-key signatures. TRNS
assigns the random seed to the transaction recipient using
hash functions and public-key signatures. Random number
seeds embedded in blockchain transactions using B-Rand
and TRNS are confidential, tamper-resistant, unpredictable,
collision resistant and publicly verifiable. Both methods scale
well and are linear in the number of transactions per block.

III. PROPOSED APPROACH
We now propose a method for using permissionless
blockchain systems as pseudo-random number generators
and apply the results to obtain a consensus algorithm named
proof-of-publicly verifiable randomness (PoPVR). PoPVR
randomly selects new block proposers from the participants
in the blockchain system. The method uses verifiable ran-
dom functions (VRFs), discussed in II G, to embed pseudo-
random number seeds in blockchain transactions deployed
by transaction recipients during each block round in a block
selection lottery to ‘‘win’’ the right to propose a new block.

A. BLOCKCHAIN SYSTEMS AS PSEUDO-RANDOM
NUMBER GENERATORS
Pseudo-random number (PRN) generators are deterministic
random number generators. They produce a sequence of
pseudo-random numbers that are deterministically dependent
on an initial seed value [94]. Figure 11 shows the generic
structure of a PRN generator.

According to [94], PRN generators must have three essen-
tial properties. First, the output must have good statistical
properties that resist replay and correlation-based attacks.
Second, an attacker must not be able to compute predecessors
or successors from a known series of outputs of a PRN gener-
ator. Third, an attacker must be able to determine a previous
random number or previous seed of a PRN generator.

The properties are achieved through two transformation
functions, as shown in Figure 11. The first function, 9, uses
the current seed value, also known as the internal state of
the PRN generator, to produce a pseudo-random number.
The second function, 8, transforms the current internal state
(current seed value) into a new internal state (new seed value).
As required by the third property, if 8 is a one-way function,
its input cannot be determined from its output, as is the case
with, for example, hash functions. This one-way property
prevents an attacker from calculating the last seed, preventing
replay attacks. If 9 and 8 are one-way functions, attackers
cannot compute the internal state from any random number
or previous internal states. [94] notes that hash functions,
discussed in II-D 1, are good candidates for 9 and 8 as long
as they are not the same function because that would imply
that the internal state of the PRN generator is the same as the
last output.

9 ̸= 8
implies
−→ rn ̸=Sn+1 (7)

To build a blockchain pseudo-random number generator
(BPRN generator) that produces publicly verifiable random
numbers, we adapt the generic PRN generator from Figure 11
using ideas from TRNS and VRFs discussed in the previous
section (Figure 12).

For illustration, we consider the verifiable random function
RSA-FDH-VRF-SHA256 as defined by [95]. A VRF is a
family of algorithms, namely, generate for key generation,
prove for producing a pseudo-random output and its proof
(representing 9 in Figure 12) and verify for establishing the
correctness of the output. The combination of the VRF and
the SHA256 hash function (representing 8 in Figure 12)
make up the components of the BPRN generator. The output
from the BPRN is used to construct a consensus algorithm
(PoPVR) for adding new blocks to the blockchain. POPVR
consists of four functions: seed, propose, verify, and chain
selection. These functions are discussed individually in III-A
1 to III-A 3.

1) SEEDING THE BPRN GENERATOR
Each recipient of a blockchain transaction generates the
seed information it will require for the future production
of publicly verifiable random numbers and new block pro-
posals. The seed information consists of two components.
The first component is an RSA key pair from the RSA
cryptosystem. The RSA key pair is generated by the VRF’s
generate algorithm that returns the public and private keys
(VRF − Keypublic,VRF − Keysecret ).

VRFgenerate () → Keypublic,Keysecret (8)

The RSA cryptosystem here is the RSA-FDH-VRF-SHA256
above, but there are also other constructions for VRFs, for
example, from elliptic curve cryptosystems [95].

The second component of the seed information is a local
random value (S0) obtained from the output of a seeded
SHA256 hash function. S0 serves as public ‘‘salt’’ for the
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FIGURE 11. Generic design of a pseudo-random number generator [94].

FIGURE 12. Adapted blockchain pseudo-random number generator.

BPRN generator to make dictionary attacks against the secret
key of the VRF more difficult because, while S0 is public,
it is collision-resistant by the properties of hash functions
and, therefore, different for each recipient. Note that S0 is
produced locally by the participant. Its production method
is unenforceable by any authority, but it is in the interest of
each honest participant to produce an S0 indistinguishable
from random. The construction of S0 can be adapted from the
method proposed by Rivest in [96] for seeding a hash func-
tion. We propose and tested the following method whereby
recipients can obtain S0: A string of 100 characters was
generated by rolling a 26-sided die (each side representing
a character from a to z) 100 times using a simulation in C#.
The string is concatenated onto the system date and time at
the moment of the 100th roll of the die. The SHA256 hash of
the string gives S0.

S0 = SHA256 (concatenate(string, dateTime)) (9)

The method for obtaining S0 was subjected to tests for
both randomness and conformity to the uniform distribution.
Randomness was tested using the US National Institute of
Standards and Technology’s (NIST) Statistical Test Suite
for Random Number and Pseudorandom Number Genera-
tors for Cryptographic Applications (NIST Test Suite) [97]
(Appendix A). For testing the randomness of the proposed
S0 generator, each S0 was converted to a 32-bit unsigned
integer to give S ′

0. 100 bitstreams containing 3125 S ′

0 seeds
was produced so that each bitstream contained 100 000 bits.
The number and length of the bitstreams were based on the
recommendations of Rukhin et al. for use in the NIST Test
Suite. From the results in Appendix A, we conclude that the
adapted Rivest method provided a good source of randomness
for S0. Likewise, by transforming each of the 100 samples
of 3125 S ′

0 seeds to decimal values on the interval (0,1), the
Kolmogorov-Smirnov Goodness of Fit Test (KS-Test) [98],
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was applied to test for uniformity. The results in Appendix B
show that the output from the Rivest method can be regarded
as uniformly distributed.

In practice, the seeding information must be generated
by the recipient simultaneously with its receiving address.
In addition to its receiving address, the recipient uses its
wallet application to generate the RSA key pair for its VRF
and S0. The recipient then gives the sender, which will be the
creator of the transaction, its address, VRF − Keypublic, S0
and the signature (5) of S0 with its private key:

Sign
(
Keysecret,S0

)
→ Signature0 (10)

When the sender constructs the transaction, it adds the
VRF − Keypublic, S0 and Signature0 to the transaction fields
before signing and broadcasting it on the blockchain network.
Figure 13 shows the BPRN seeding process.

While key generation runs in linear time to key size, hash
functions run in linear time to input size, and signature
algorithms run in linear time to the message length, these
three processes can be regarded as constant time processes
because all recipients use the same key size and input size for
computing S0. The sender can create the seeding information
in the transaction in constant time.

The seeding process described above imparts the following
properties on each participant’s BPRN seed: First, the seed is
confidential because the private key of the VRF is confiden-
tial; only the recipient knows it. Second, the seed is tamper-
resistant, as it is encoded in the recipient’s transaction on the
blockchain; therefore, no party, including the recipient, can
alter it. Note also that the requirement to include Signature0 in
the transaction, allows any party to verify that the sender has
correctly recorded VRF − Keypublic and S0 as received from
the recipient, using (6). Furthermore, since pseudo-random
number generators depend deterministically on their seeds,
these properties of confidentiality and tamper-resistance are
also eventually valid for the pseudo-random numbers gener-
ated.

2) PROPOSING NEW BLOCKS
With each new block round, a recipient can act as a block
proposer if it estimates that it possesses a lottery ticket with
a high probability of winning the round. It does so by calcu-
lating a lottery ticket (rn) using the VRF’s prove algorithm
(9). The VRF-prove algorithm requires two inputs, namely
a secret key (VRF − Keysecret ) and an input value (Sn) and
returns a random value (rn) and a proof of correctness (pn).
In the case of using the prove algorithm from the RSA-FDH-
VRF-SHA256 function, (rn) is a 256-bit binary number.

VRFprove(Keysecret, Sn) → rn, pn (11)

Furthermore, an adversary cannot compute the output
without knowing the secret key. Knowing the recipient’s
public key VRF − Keypublic, input value (Sn), output (rn) and
proof (pn) allows any verifier to be satisfied that the recipient
executed the VRF correctly and that the lottery ticket is
indistinguishable from random [78], [91]. The input value to

the VRF (Sn) is the concatenated values of S0 and the hash of
the block the proposer intends to extend (Hashpreviousblock ).

The proposer adds four fields to the block header when
publishing a candidate block. First, a reference to the transac-
tion in which it received its VRF public key and S0 from the
sender (the reference transaction). Second, its lottery ticket
(rn). Third, the proof (pn) and last, the running mean (rn) of
the lottery tickets of the previously successful blocks. This
last requirement is essential in the chain selection process,
and while it can be calculated directly from the blockchain,
storing it in the header of each block saves computation.
Figure 14 shows the generic block structure.

Note that Sn is not published. It is calculated from S0 and
the previous block hash. Sn changes for every proposer with
each new block round. Therefore, if proposers publish candi-
date blocks that do not survive on the blockchain, an attacker
can only launch a dictionary attack on the secret key of each
proposer individually and not on all the proposers in a single
attack.

From the perspective of the block proposer, computing
and adding the lottery information to the block header is a
constant time operation. Block construction, however, still
requires that all the transactions are added to the transaction
Merkle tree and therefore is linear in the number of transac-
tions per block.

Lottery tickets have two important properties. First, they
are unpredictable for the proposer of the new block and any
other party. The reason is that the lottery ticket can only be
computed by the proposer, as it owns the VRF secret key,
and only after the previous block hash becomes known. It is
helpful to think of every new block round as an update of the
internal state of the BPRN generator. Second, lottery tickets
are collision-resistant since the output of VRFs is collision-
resistant.

3) VERIFYING LOTTERY TICKETS
By inspecting each proposed new block, a verifier can retrieve
the proposer’s VRF public key and S0 (from the reference
transaction), the previous block hash and the proof from the
block header. Verification is a two-step process of recon-
structing Sn and computing VRF-verify with Sn, the proof and
the proposer’s VRF public key:

Step1

Concatenate
(
S0,Hashprevious block

)
→ Sn (12)

Step2

VRFverify
(
Keypublic, Sn, rn, pn

)
→ true/false (13)

Verification requires that the verifier checks the proposer’s
seed information in the reference transaction. This process
is linear in the number of transactions per block. However,
the VRF-verify algorithm can be considered O(1) because
Keypublic, Sn, rn and pn are of the same size for all partici-
pants. In addition to the previous properties of confidentiality,
tamper-resistance, unpredictability and collision resistance,
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FIGURE 13. Seeding process for BPRN in PoPVR.

FIGURE 14. PoPVR block construction.

the verification process adds public verifiability to the lottery
ticket.

4) CHAIN SELECTION
Nodes in the blockchain network select each new block to
extend the blockchain from the candidate blocks proposed by
the participating proposers for the applicable block round.
From the set of candidate blocks, the block producing the
lowest running mean of all the tickets in the blockchain (the
lowest running mean rule):

Selection rule
select for
−→ min(r̄n) (14)

Comparing the running means of multiple blocks are linear
in the number of candidate blocks a node receives, but this
includes the verification of each lottery ticket and its com-
plexity as per III-A 3.

Consider the samples of random numbers generated in
Appendix B as simulations of the lottery tickets of new
block proposers. It is possible because they share the same
properties of the output from the VRF prove algorithm.
In practice, the lottery tickets will be 256-bit pseudo-random
numbers. However, the simulation substitutes 256-bit values
for their decimal approximations as they provide a more
intuitive understanding of the block selection process, albeit
with some loss of resolution. Each sample summary contains

the minimum value produced for the sample. Assuming that
all 3125 sampled random values represent lottery tickets
from newly proposed blocks, the blockchain network selects
the block with the smallest lottery ticket. Appendix C sum-
marises theminimum values (representing lottery tickets) and
the running mean, represented graphically in Figure 15.
In a sample run of 100 samples with 3125 seeds per

sample, the running mean equals 0,0003125337. Extend-
ing the sampling process to 100 samples with 10000 seeds
each, the running mean decreases to 0,0000558115. This
downward trend can be seen in Figure 15 when the run-
ning mean sequence stabilises from around sample number
65 onward. The running mean asymptotically tends towards
zero.

IV. ANALYSIS
Analysing the functionality of PoPVR requires a few assump-
tions about the blockchain environment. These include some
behaviours expected from honest nodes and the proportion of
honest nodes in the network. These minimal assumptions are
required to infer the possibility for an adversary to undermine
the operation of the blockchain system. Up to now, the terms
recipient, block proposer and node have been used somewhat
interchangeably. Formally, a node maintains a blockchain
replica and possesses the functionality to validate transactions
and candidate blocks. Since the ability to propose a candidate
block is limited to recipients of blockchain transactions, all
nodes in a PoPVR blockchain systemmust be recipients. Fur-
thermore, once a transaction is spent, the VRF seed expires
so that only the active stakeholders in the blockchain system
may act as nodes. While there is no way to force partici-
pation in a decentralised setting, and it is conceivable that,
in practice, not all eligible parties may act as nodes, it is
conceptually still useful to think of nodes as recipients with
unspent transaction outputs.

From a participation standpoint, PoPVR function like a
PoS blockchain network, with the notable difference that the
size of asset ownership of the node does not skew the proba-
bility of successfully proposing a new block. It makes PoPVR
useable in blockchain environments where blockchain assets,
such as logistical or intellectual property recording systems,
may not be objectively comparable.
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FIGURE 15. Sample minimum values and running mean of sample minimum values.

A. OPERATIONAL ASSUMPTIONS
The operation of a blockchain consensus algorithm is always
subject to certain assumptions about the proportion of nodes
functioning correctly as opposed to those which may mal-
function or act maliciously. These assumptions are called
trust assumptions or security assumptions [6], [48]. PoPVR
assumes that at least 50% of nodes function correctly (are
honest). In addition to the proportion of honest nodes, PoPVR
also assumes the following specific properties about honest
nodes:

i. An honest node forwards all valid transactions and
blocks (messages) received from senders or other nodes
immediately. Specifically, they do not withhold valid
messages from other nodes or transactions from block
inclusion.

ii. Honest nodes resolve forks at any point in the blockchain
by following the route of the lowest running mean of
lottery tickets.

iii. Honest nodes forward valid messages on average to at
least two other honest nodes. It does not mean that nodes
trust each other or that they have knowledge of the
honesty of other nodes; it simply means that given that
at least 50% of all nodes are honest, the probability of a
message reaching other honest nodes grow (and reaches
on average two honest nodes) as the number of nodes a
message is passed to, grows.

iv. New messages (transactions or blocks) that enter the
blockchain network are initially distributed evenly over
all nodes. For example, if the network contains N nodes

and M messages enter the network in a given interval,
each node receives M

N messages.
v. A final assumption is that there is a finite time interval

(partial latency) li duringwhich an honest node receives a
message from another honest node and also a finite total
time interval or total latency,

L = l1 + l2 + . . . + lT (15)

in which a message reaches all honest nodes in the
network. Again the honest node does not have to trust
the sending node; it must simply receive a large number
of messages and evaluate the validity of each message.

These assumptions allow two additional inferences about
the evolution of information on the blockchain network (IV-B
and IV-C).

B. EXPONENTIAL DECAY OF CANDIDATE BLOCKS
Suppose every proposer attempted to submit a candidate
block to the blockchain network with each new block round.
In that case, the valid new block (smallest lottery ticket) will
be accepted by each honest node in a finite time interval,
provided that the valid block was submitted to at least two
honest nodes. The intuition for this statement comes from
the exponential function [99] and the assumptions above.
The number of honest nodes receiving the message with
the smallest lottery ticket will grow exponentially with each
partial latency interval. For example, if the rate of spread or
growth rate (r) is at least two (each node messages two other
nodes), then the number of nodes reached (N ) after a finite
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TABLE 1. Exponential spread of messages.

TABLE 2. Adversary’s probability of success during successive block
rounds.

TABLE 3. Honest nodes’ probability of success during successive block
rounds.

number of partial latency intervals (L) is given by:

N = (1 + r)T (16)

Table 1 shows an example of the exponential spread of
messages among honest nodes for the first 15 partial latency
intervals. Note, however, that in theory, the possible number
of partial latency intervals is unbounded.

It stands to reason that if the P2P network contains a finite
number of nodes, all candidate blocks are eventually ignored
in favour of the valid new block. The rate at which candidate
blocks will decay is exponential. In practice, this idea is borne
out by research from [100] that shows that new Bitcoin
blocks are received by 90% of the nodes on the Bitcoin
network in less than three seconds after being announced by
the successful miner.

The number of candidate blocks among the network of
honest nodes decreases as higher lottery tickets are ignored,

and only the lowest lottery ticket is stored and forwarded. The
total number of partial latency steps (L), which is also the
total network latency time, required for the smallest ticket to
propagate through the network is:

L = logbN , where b = r + 1 (17)

C. SECURITY CONCERNS
Like PoS blockchain systems, there are inherent problems
associated with the low cost of block construction in PoPVR.
Unlike PoW, where an adversary has to expend resources to
construct a valid block, PoPVR is designed not to be resource
intensive. This author [52] identifies two problems with the
low cost of block construction in PoS blockchain systems that
also apply to PoPVR.

The first problem is the nothing-at-stake problem, where
all nodes submit candidate blocks with every new block
round, even if the probability of success (where the proposer
has a large lottery ticket) is negligible. It increases the number
of forks on the blockchain, and the situation worsens as each
fork grows. The ultimate cost to the blockchain system is that
it delays consensus and creates uncertainty about the finality
of transactions [52].

The previous section has shown that unsuccessful candi-
date blocks will decay exponentially over the network and
that all the honest nodes in the blockchain network will
become aware of the candidate block with the smallest lottery
ticket that satisfies the lowest running mean rule in time L.
While L grows with the number of nodes in the network,
it does so only logarithmically to N .

The second problem identified by [52] is the double-
spending attack. Imagine an attacker sending a transaction
to the network representing a payment to a merchant for a
physical good. Once the merchant delivers the goods, the
attacker attempts to replace the block containing the trans-
action, thereby never relinquishing its asset.

For the attacker to be successful, it must create a block
that successfully replaces the one containing its payment.
If an attacker controls 49.9% of the nodes in the network,
it will have a 49.9% chance of replacing the latest block in
the blockchain.

Suppose the merchant was to wait for the transaction to
be buried under several blocks before releasing the goods.
In that case, the attacker must construct a chain of successful
blocks to replace the block containing its transaction and the
successive blocks.

Table 2, however, provides the merchant with the proba-
bility that the attacker can consecutively overwrite a series
of blocks versus the likelihood that the honest portion of the
network will prevent it.

Table 2 shows that an attacker that controls 49.9% of
the nodes will have a slightly higher than 3% chance of
successfully overwriting five consecutive blocks. In compar-
ison, the probability that the honest proportion of nodes will
interrupt its attempt by one or more blocks is almost 97%
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TABLE 4. Results for the uniformity of p-values and the proportion of passing sequences.

(Table 3). Thewaiting time for themerchant to reach this level
of certainty is five times L.

As in other blockchain systems, the probability of deleting
a transaction from the blockchain becomes vanishingly tiny
when buried below an increasing number of blocks.

D. FAIRNESS AND TRANSPARENCY
The Introduction (I) noted the importance of blockchain
systems operating on open-source principles, as identified
by [8]. It supports the purpose of transparency of the
system and ensures that participants do not have to trust
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TABLE 5. Results for Kolmogorov-Smirnov (KS) goodness of fit test (uniform distribution).
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TABLE 6. Minimum observations and running mean of minimum observations.

so-called ‘‘black-box’’ components when interacting with the
blockchain.

An essential feature of PoPVR is that the internal work-
ings of every component are public knowledge. The BPRN
is transparent and uses hash functions and VRFs as sub-
components. The details of hash functions and VRFs, which
utilise public-key cryptographic primitives found in the
RSA or elliptic curve cryptosystems, are public knowledge.
Finally, the blockchain contains each block proposer’s lottery
ticket and the required information for public verification.

In addition to the operational transparency of PoPVR, each
recipient (address holder) has an equal chance to participate
in the consensus process. The only strategy for an asset
holder to increase the probability of a winning lottery ticket
is to redistribute its assets to multiple addresses, essentially
paying itself multiple times in, for example, a cryptocurrency
blockchain system. This type of behaviour will attract trans-
action costs to its detriment.

V. CONCLUSION
This paper proposed a method to use permissionless
blockchain systems as pseudo-random number generators to
produce publicly verifiable pseudo-random numbers that are
confidential, tamper-resistant, unpredictable and collision-
resistant. It also showed how to use these pseudo-random
numbers to construct a consensus mechanism (PoPVR) that
can operate without the disadvantages of algorithms that rely
on economic tokens, for example, PoS and DPoS. PoPVR
does not require large amounts of computation as with PoW
and scales well, with computational complexity linear in the
number of transactions per block as needed for verifying
lottery tickets. Appendix D summarises the characteristics of
proof-based consensus algorithms discussed in II-E and adds
the properties of PoPVR.

Under reasonable operational assumptions (IV-A), security
risks such as denial-of-service, nothing-at-stake and double-
spending attacks, which are of concern in other consensus

algorithms that also enable low-cost block creation, can be
mitigated by PoPVR

The main implementation details not yet investigated
revolve around participation limits, for example, requiring
that a potential block proposer must source its reference
transaction from a block within a specific age range. These
parameters are related to the problem of block finality. For
example, to ensure that a block proposer does not find a valid
block and holds on to it indefinitely (presumably with the
intent to create a fork in the blockchain), Bitcoin requires
that miners ignore blocks older than two hours when first
received [101]. It is unknown precisely how many multi-
ples of the blockchain network’s total latency intervals are
required before a block can be considered final. Both these
problems require a different research approach, such as the
setup and live testing of PoPVR, which require additional
study.

PoPVR is a generic approach to decentralised consensus,
adaptable to the needs of a specific blockchain implementa-
tion. It allows the preservation of all aspects of decentralisa-
tion in permissionless blockchain systems referred to in the
introduction.

APPENDIX A∗

See Table 4.

APPENDIX B
See Table 5.

APPENDIX C
See Table 6.

APPENDIX D
See Table 7.
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TABLE 7. Summary of proof-based consensus algorithms.
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TABLE 7. (Continued.) Summary of proof-based consensus algorithms.
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