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ABSTRACT The current pronunciation scoring based on Goodness of Pronunciation (GOP) uses posterior
probabilities of the Acoustic Models. Such algorithms suffer from generalization since they are utilized to
determine a score metric for each phoneme rather than on the completeness or comparison with the ideal
utterance of the words. This paper proposes a novel method to overcome such limitations by using combined
scores of prosodic, fluency, completeness, and accuracy. This is achieved using context-aware GOP in
conjugation with dynamic time warping (DTW) matching of the pitch contours of a weighted average of
the context tokens found in the audio file that is rich in mispronounced phonemes. The proposed work gives
flexibility in tuning the results according to different speech aspects based on a single hyperparameter. The
results achieved are encouraging and have been validated on the speechocean762 dataset, where Automatic
Speech Recognition (ASR) model has been trained on the Librispeech dataset. The resultant mean error of
the proposed approach is 3.38% and the value of the correlation coefficient achieved is 0.652.

INDEX TERMS Pronunciation scoring, goodness of pronunciation, hidden Markov model-deep neural
network, dynamic time warping, kaldi, speechocean762.

I. INTRODUCTION
English is a global language with complex grammatical lit-
erature. Since this language is used in so many documen-
taries and information exchanges, a lot of companies and
institutions need their employees to be able to speak it. This
language’s acquisition and understanding have become a
common issue, mainly focusing on the utterance of the words,
which doesn’t impair communication from the perspective of
the speakers or the listeners in any way [1]. Teaching this
language has many factors that make it difficult for teachers
to efficiently teach the learners due to the following reasons:

• Teachers concentrate on improving the grammatical
and vocabulary of learners so much that they become
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proficient in language reading and understanding skills
rather than pronunciation [2].

• Learners are often discouraged as their teacher is much
more proficient in the language and pronounces it
differently [3].

• Continuous monitoring of the learner’s pronunciation
growth is complicated to achieve.

Computer Aided Pronunciation Teaching (CAPT) over-
comes such disadvantages by developing a versatile model
that concentrates more on the fluency and prosodic aspects of
the speech, allows for easy progress monitoring, and provides
automatic pronunciation scoring at any time. To help non-
native English speakers, algorithms have been built for quick
self-assessment of their performance in phoneme pronuncia-
tion, stress, and fluency without relying on a second person.
A deep learning approach to generating a result that can
be evaluated based on the posterior probabilities of acoustic
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FIGURE 1. Block diagram of ASR System.

models in ASR systems and the modified probabilities of the
result describing the score for each phone of utterance will
benefit the learner.

A. GOODNESS OF PRONUNCIATION
Ameasure of the effectiveness of speech recognition systems,
specifically Automatic Speech Recognition (ASR) systems,
is called Goodness of Pronunciation (GOP). By putting a
number on how well an ASR system can detect and record
speech, it can be used to gauge how well it performs. The
GOP value is a numeric number between 0 and 1, where
1 denotes complete recognition and 0 denotes no recognition
at all. This is also known as pronunciation accuracy, and it
is often calculated as the ratio of the number of correctly
detected phonemes to the total number of phonemes in the test
speech signal. A detailed overview of GOP and its improved
versions is described in related works [13].

B. AUTOMATIC SPEECH RECOGNITION SYSTEM
Speech recognition is when a computer or software can take
phrases and words from spoken language and turn them into
a format that a machine can understand. It is also known
as computer voice recognition, speech-to-text, and automatic
speech recognition.

Modules for automatic speech recognition consist of five
stages.

• Audio Signal Detection
• Feature Extraction
• Acoustic Modelling
• Language and Lexical Modelling
• Training and Recognition

Fig. 1 shows the Automatic Speech Recognition System
block diagram. The various blocks used in the ASR model
are discussed in detail in the subsections below.

1) FEATURE EXTRACTION
The most crucial step in voice recognition is feature extrac-
tion since it separates one speech from another.

For speech recognition, the Mel-frequency cepstral coef-
ficient (MFCC) is the most obvious and often used fea-
ture for the extraction method. The logarithmic placement
of the frequency bands here resembles the human system
reaction more than any other system. They are the result of a
Mel-frequency spectral analysis in which the frequency bands

FIGURE 2. Steps involved in MFCC Feature Extraction.

of the Mel scale are evenly spaced. The MFCC computation
method, which figures out theMFCC vector from each frame,
is based on short-term analysis. Using the given formula in
eq. 1, it is possible to calculate the MFCC.

Mel(f ) = 1127 log(1 +
f

700
) (1)

Fig. 2 lists the steps in the feature extraction process.
Firstly, the audio signal is converted from analog to digital
format. Preemphasis increases the magnitude of energy in
the higher frequency which improves phone detection. Then
the signal is broken into multiple pieces(windows) to extract
individual phones. The signal is then converted from the
time domain to the frequency domain by applying Discrete
Fourier Transform. The received signal is mapped according
to human perceived levels using themapping formula given in
eq. 1 and logarithm function is applied to the Mel frequency
output. The Inverse discrete Fourier transform (IDFT) block
performs an inverse transform of the output from the previous
step. The MFCC model takes in the first 12 coefficients of
the signal after applying the IDFT operations, also taking the
energy of the signal as a feature. Along with these 13 features,
the MFCC technique will consider the first-order derivative
and second-order derivatives of the features thus constituting
a total of 39 features [4].

I-Vectors or identity-vectors are a more simplistic speaker
recognition model that were presented in [5], they do away
with the dichotomy between speaker and channel variability
subspaces and describe both in the ‘‘total variability space,’’ a
common limited low-dimensional space. Particularly in ASR
models, they are used to get the uniform dimension of every
datapoint of audio feature [6].

2) ACOUSTIC MODELING
The foundational component of the ASR system is acoustic
modeling [7]. In acoustic modeling, the relationship between
the acoustic data and phonetics is formed. The acoustic model
is vital to system performance and oversees the computational
burden [8]. The relationship between the fundamental speech
units and the acoustic observations is established by training.
The systemmust be trained by using one or more patterns that
match speech sounds from the same class to make a pattern
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that represents the features of the class. Several models may
be used for acoustic modeling. The Hidden Markov Model
(HMM) is a popular technique since it is effective for both
training and recognition [9].

a: HIDDEN MARKOV ACOUSTIC MODELLING
Hidden Markov Acoustic Model is a finite state Markov
model where several output distributions serve as signals
for a hidden Markov model. The output distribution model
parameters are spectral variability whereas the alteration
parameter in the Markov chain models is temporal variabil-
ity. The capacity to recognize speech depends on these two
forms of variability. Compared to a template-based method,
hidden Markov modeling is more versatile and has a strong
mathematical foundation. HMMmakes it simpler to incorpo-
rate knowledge sources into structured architecture than the
knowledge base method. A drawback of HMM is that it does
not offer much insight into the recognition process. Analyz-
ing system failure is done to enhance the performance of the
HMM system, but it is a challenging task. However, careful
knowledge inclusion has greatly enhanced the HMM-based
system [11].

b: HMM-DNN BASED ACOUSTIC MODELLING
A Hidden Markov Model (HMM) and a Deep Neural Net-
work (DNN) are combined to form an HMM-DNN model.
The DNN is used to model the intricate patterns in the data,
whereas theHMM is used tomodel the temporal relationships
in the data. Due to its ability to combine the benefits of the
HMMwith theDNN, this model is highly suited for situations
involving sequential data with intricate patterns [10] where
the HMM-DNN model uses the HMM as prior knowledge to
direct the training of a DNN and enhance voice recognition
performance [16].

3) LANGUAGE MODELS
The likelihood of a word sequence is calculated by the
Language Model (LM) component. By adding linguistic
knowledge from big text corpora, LMs help acoustic models
be more accurate. Implicitly learned syntactic and semantic
criteria are employed by LMs to re-score the acoustic model
hypotheses. Using a pronunciation dictionary, a series of
phonemes is translated into words to match the phonetic
transcriptions produced by the acoustic modeling with the
raw text utilized in language models [12].

4) FORCED ALIGNMENT
Automatic speech recognition (ASR) uses a forced alignment
technique to line up the words in transcription with the associ-
ated audio. A huge dataset of speech and transcripts is used to
build an acoustic model as the first step in forced alignment.
The acoustic model gains the ability to forecast the possibility
that certain sounds will appear at various locations during the
spoken stream. Once the model has been trained, it may be
used to match the words in a transcription with the audio by

identifying the sound sequence that, given the words in the
transcription is most likely to have produced the audio.

In this paper, inspired by the posterior calculation of GOP
and objective comparison of signals with DTW, we propose
a new pronunciation scoring equation that combines both
features using a hyparameter. In our approach, context-aware
log posterior probabilities extracted by any Acoustic model
of an ASR system are averaged together for each utterance
of a speaker. Thus, the posterior features only represent
the prosodic features of a speech. The DTW then extracts the
fluency, andword level accuracy of the speech separately, The
scores of both the extracted scores are added by a weighted
average to get a total score. Compared with other acoustic
model-based scoring, our model gave better results without
even biasing or fine-tuning the acoustic model on the pro-
nunciation dataset.

II. RELATED WORK
An algorithm developed by Witt et al. [13] used native
acoustics modeling which relied on the Gaussian mixture
model-hidden Markov model (GMM-HMM) to define the
Goodness of Pronunciation and thus calculated a score from
the formulatedGOP. Improvements weremade to this method
by most of the works released afterward either by suggesting
modifications to the GOP-based formulation or by enhancing
the parameters of the original acoustic models. In the prior
work of Zhang et al. [5], the score was calculated using scaled
log posteriors instead of posteriors. Using the chosen state
sequence acquired from the forward-backward technique,
Luo et al. [14] formulated the GOP. The GOP concept put
forward by Witt et al. [13] was employed by Wang et al. [15]
with erroneous pattern detectors in the process of diagnosing
phoneme mispronunciation, but these works only focused on
the detection of the phoneme in a frame by forced alignment
of phonemes and only took the prosodic score into consid-
eration. Sudhakara et al. [16] introduced context-aware GOP
which takes both senone and transition state probabilities into
consideration. Ryu et al. [17] inferred that pronunciation scor-
ing must combine phone level as well as articulatory-level
diagnoses such as voicing, place of articulation, and man-
ner of articulation on consonants. Lin et al. [18] used the
acoustic model and replaced the forced alignment layer with a
self-attention layer to get an utterance score based on transfer
learning, but the results greatly depend on fine-tuning the
scores of datasets. Cheng et al. [19] suggested the problems
of GOP-based scoring and proposed an ASR-free scoring
method based on I-vector, Normalization Flow (NF), and
Discriminative Normalization Flow (DNF) for improvements
in GOP and the better performance of the combination of
both the approaches (GOP andASR-free score). Bugdol et al.
[20] stated that rather than checking the probability of finding
the presence of phonemes in sequential order in an audio
file, another approach is to use the Dynamic Time Warp-
ing (DTW) algorithm on the vectors of the amplitude or
Mel-Frequency Cepstral Coefficients (MFCC) of the utter-
ance in the frame between the ideal file to compare with and
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TABLE 1. Comparing the related works.

the file to test. The problem arises when the voice of these
two speakers differs a lot in pitch and frequency, also the
algorithm is quite slow for large audio files. An optimized
version of this algorithm was proposed by Salvador et al. [21]
called FastDTW which constraints the matching paths calcu-
lated by constraining the calculations on a band rather than
the whole mesh grid. Permanasari et al. [22] suggested a
method to reduce the Euclidian distance in DTW between
audio files using the volume and different pronunciation
times. Miodonska et al. [23] proposed a combined approach
that uses phone-level mispronunciation detection usingDTW,
but the comparison approach always demands an ideal file
to get a metric for distinction. Karhila et al. [24] used the
Connectionist temporal classification (CTC) layer model to
predict the phone sequence in the audio file and compared
it to the ideal base file using Levenstein edit distance to
calculate the difference between the sequence and predict the
pronunciation score.

The former approaches discussed are based only on the
pronunciation scoring based on the likelihood of individual
phones in sequential order, hence is limited to phone-level
features extraction of the audio file to test [13], [14], [15],
[16], [17], [18], [19]. The latter checks for a minimum dis-
tance for comparing different length time series or MFCC or
LPC for audio comparison [20], [21], [22]. Both approaches
compute independent tasks, but the combined effect can be
informative for the scoring of the overall quality of speech of
a person’s audio [23], [24]. A high-level score representing
the percentage score is preferred by many speakers i.e., the
overall grade they scored in terms of probability or percent-
age, therefore we integrated both these methods to get a score
representing the presence of phones, accent, and prosodic
scores and calculating the output as only a probability score.
An overview of the methods discussed above is tabulated in
table 1.

A. BASIC GOP FORMULATION
The GOP score is defined as the posterior probability of a
target phone p, given a sequence of acoustic features O, from
among a set of phones Q. The GOP score is heavily based on

Bayesian statistics and was developed by Witt et al. [13].

GOP(p) = P(p|O) =
P(O|p)P(p)∑

qϵQ
P(O|q)P(q)

(2)

B. REVISED GOP FORMULATION
Eight years after the introduction of the first GOP formulation
by Witt et al. [13], in 2008 Zhang et al. [5] came up with the
revised approach for GOP formulation which incorporated
logarithmic scaling, using the absolute score value and nor-
malization done with a number of frames (NF) for a specific
phone.

GOPR(p) =

∣∣∣∣ P(O|p)P(p)
max
qϵQ

P(Op|p)

∣∣∣∣ (3)

C. DEEP NEURAL NETWORK GOP
TheGOP devised byHu et al. [25] replaced theGaussianmix-
ture model (GMM) with Deep Neural Network (DNN). This
was achieved by replacing the use of likelihood probability
P(p|O), which was done in the face of GMM. Using a DNN
in place of a GMM resulted in the enhanced capability for
discrimination in the phoneme models.

However, using the DNN model to get acoustic features
for GOP formulation has significant shortcomings, by using
Multilayered Perceptron (MLP), structural locality arises
since feature distance is not captured because of the fully con-
nected characteristic of the DNN. Long short-term memory
(LSTM) networks work better at modeling long-term depen-
dencies of speech signals but due to dependencies between
the time-frames being processed in an RNN, parallelization
cannot easily be exploited to the same extent as in feedfor-
ward networks [38], [40], which greatly increases the training
as well as inference time which is not preferred for real-
time CAPT. Time Delay Neural Networks(TDNN) have been
shown to effectively learn the temporal dynamics of the signal
even from short-term feature representations and work better
in GOP computing [16].
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FIGURE 3. Pronunciation Scoring Framework.

III. PROPOSED APPROACH
This section explains the proposed workflow using
context-aware GOP and DTW of pitch contours as well as
the combined score for CAPT.

A. MODEL AND WORKFLOW
As shown in Fig. 3. The experimental setup is divided into
two sections, section I contains the following components:
the wav file, MFCC extraction, passing through a trained
DNN-HMM Acoustic model, calculating the modified GOP
scores, and calculating the posterior score from the proposed
formula 7 and 8. Section II contains the same wav file as
input, calculating the adjacent difference in pitch contour
vectors of the same spoken words from the wav file as well
as a comparison file from google text to speech API, then the
vectors are passed through optimized DTW from which the
compare scores are calculated, finally, the output is calculated
as the weighted average of the 2 section scores. A detailed
explanation of the two sections is discussed in section C.

Posterior Probability workflow is shown in Fig 4 [16],
the DNN-HMM model posterior probabilities and senone
probabilities are used to generate an equation for context-
aware GOP, and the details are discussed in sections B and C.

B. POSTERIOR PROBABILITIES CALCULATION
The definition of GOP-NN is a bit different from the
GOP-GMM.GOP-NNwas defined as the log phone posterior
ratio between the canonical phone and the one with the high-
est score [25]. Firstly, we define Log Phone Posterior (LPP):

LPP = logP(p|O; ts, te) (4)

Then we define the GOP-NN using LPP:

GOP(p) = LPP(p) − max
qϵQ

LPP(q) (5)

LPP could be calculated as:

LPP(p) =
1

te + ts + 1

te∑
t=ts

log p(p|Ot ) (6)

p(p|Ot ) =

∑
sϵp

p(s|Ot ) (7)

where s is the senone label, s|s ∈ p are the states belong-
ing to those triphones whose current phone is p. Normally
the classifier-based approach achieves better performance
than the GOP-based approach. Being different from other
GOP-based methods, an extra supervised training process
is needed. The input features for supervised training are

phone-level and segmental features. The phone-level feature
is defined as:

[LPP(p1), . . . ,LPP(pm),LPP(p1|pi), . . . ,LPP(pj|pi)]T (8)

where the Log Posterior Ratio (LPR) between phone pj and
pi is defined as:

LPR(pj|pi) = log
p(pj|O; ts, te)
p(pi|O; ts, te)

(9)

This formula calculates the ratio of two phonemes and
returns a value less than 0, where a high negative value
indicates the audio segment of this phone should be a mis-
pronunciation.

C. PROPOSED FORMULATION
The theory discussed in equations 4 to 9 set up the basis of the
accumulated utterances’ phone-level score, followed by the
compare score and combined total score of the pronunciation.

1) PHONE-LEVEL FEATURE
The log phone posterior ratio accumulated for a specific test
audio file is taken and let p be the vector representing the
phone set in series and LPR(pj|pmax) defines the score that
is the ratio of canonical phone and the one with the highest
score in sequencewith vector p as defined in eq. 9. Let f (pi) =

LPR(pi|pmax) then the overall phone score is formulated as:

S =

k∑
i=1

m∑
j=1

f (p)1
{
pj = pi

}
m

m∑
j=1

f (p)1
{
pj = pi

}
max
jϵm

(f (p))
m∑
j=1

1
{
pj = pi

} (10)

where k is the number of phonemes in the language, m is
the size of the vector p and 1{pi=pj} is an indicator function
that returns a value of 1 when the respective phones in the
condition are matched. The value S defines the probability of
bad pronunciation given the set of LPR scores for an audio
file. This probability score is passed through a nonlinear
function defined as:

p(O) =
2e−3S

1 + e−3S (11)

where s is the cumulative probability from eq. 10, eq. 11 and
gives a probability score of goodness in the overall phone
matching, this function doesn’t allow the scores to be at the
margins.

2) COMPARE SCORE
The audio file is passed through an ASR model to get the
words spoken corresponding to the timestamps of each spo-
ken word. Words that contribute to a significant amount
regarding the context of the speech are randomly sampled,
the sampled signal is represented as:

x = [x1, x2, . . . , xA−1, xA] (12)

where A is the sample count of the signal. The vector in
eq. 12 is further processed as follows:
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FIGURE 4. Posterior Score: Flow Diagram of GOP calculation using pre-trained weights of HMM-DNN acoustic model [16].

a: PITCH EXTRACTION
The modified Auto-Correlation function-based pitch detec-
tion is defined as:

r(τ ) = x ⊗ x(τ ) =

q+N−1∑
i=q

x(i)x(i+ τ ) (13)

where q is the current frame, N is the frame length, τ is the
lag index, and x(i) is the current sample of the audio signal.
The main peak in the auto-correlation function is at the

zero-lag location (τ = 0). The location of the next peak gives
an estimate of the period, and the height gives an indication
of the periodicity of the signal, this estimate is given by:

f̂0 =
1

τmax
, r(τmax) = max

τ
r(τ ) (14)

where τ > 0.
Applying equations 13 and 14 on the audio signal gives a

frame-wise pitch array given by:

x = [f̂1, f̂2, . . . , ˆfn−1, f̂n] (15)

where n is the number of frames in the ideal speech sig-
nal. The auto-Correlation method is used for pitch detection
instead of other methods because of its better performance
on audio speech signals elaborated in the discussion section.
In order to compare the frames of the signals it is often
more informative to analyze the overall transition of the pitch
track than the absolute value. Therefore delta of the obtained
frame-wise fundamental frequencies is taken as follows to
obtain a new signal vector as follows:

1k = fk − fk−1 (16)

where fk is any arbitrary frequency in the new array in eq. 14,
the new array after applying eq. 15 gives:

1x = [10, 11, . . . ,1n−1, 1n] (17)

An ideally pronounced speech of the sampled audio Y is
then generated using Google Text to Speech (GTTS) library

and pitch is extracted similarly to the sampled audio in eq. 12
represented as:

1y = [10, 11, . . . ,1m−1, 1m] (18)

where m is the no. of frames in the ideal speech signal.

b: DTW MATCHING
LetW be the mesh grid of each point in 1x and 1y given by
(i, j), then the FastDTW algorithm by Stan et al. [21] is used
to define a warping path and corresponding DTWdistance as:

Dmin (ik , jk)= min
ik−1, jk−1

Dmin (ik−1, jk−1)+d (k, k−1) (19)

where k is an arbitary point in the meshgrid W and d is the
Euclidean distance given by:

d (i, j) = ||f (i) − f (j)||2 (20)

overall path cost:

D =

d∑
k

(ik , jk) (21)

The path cost D is changed to a probability score using a
threshold value for comparison i.e., 750, and passed through
a smoothing function to change it in the scale of zero to one
as:

p (d) = e
t−d
t (22)

where t = 750 (threshold value) The flow diagram of the
extraction of compare scores is shown in fig. 5.

3) TOTAL SCORE
Finally, the total score is calculated as a combination of phone
feature score and audio pitch difference comparison score as
a weighted average where the weights are hyperparameters
that can be tuned by the examiner or learner according to the
preference of one score over another as:

p (t) = αp (o) + (1 − α) p (d) (23)

Here α is a hyperparameter and 0 < α < 1.
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FIGURE 5. Compare Score: DTW of difference of pitch contours of ideal and test waveforms a) Waveform b) Pitch Contour Difference c) DTW with L2 norm
metric.

IV. EXPERIMENTS
This section discusses the datasets used for themodel and also
discusses how the hyperparameter tuning was carried out.

A. DATASET
The speechocean762 speech corpus is designed for pronun-
ciation assessment use, consisting of 5000 English utterances
from 250 non-native speakers, where half of the speakers are
children [26]. Five experts annotated each of the utterances at
the sentence, word, and phoneme levels. The sentence-level
scores by experts are used as the proposed equations calculate
utterance level mispronunciation whereas high sentence-level
scores rely on a consistently ‘‘good’’ word and phoneme
pronunciation. The sentence-level scores of the dataset are
further divided into Accuracy, Prosody, Fluency, and Com-
pleteness. The mean score of completeness and prosody is
measured by eq. 11 and sentence-level Accuracy and Fluency
are measured by eq. 15. For the Acoustic model, the Lib-
rispeech dataset was used which consists of approximately
1000 hours of English speech derived from audiobooks [32].

B. TRAINING SETUP
The Kaldi ASR toolkit contains recipes to aid ASR
researchers, WSL2 Ubuntu Terminal Environment is used to
set up the dependencies of Kaldi which mostly runs on bash
script files. The Kaldi nnet3-chain recipe has some specific
properties:

• Fixed transition probabilities are used in the HMM.
• 3 times lower frame rate is used at the output of the neu-
ral network, which dramatically reduces the amount of
processing necessary during testing and makes real-time
decoding considerably simpler.

• TDNN is used as neural nets as it is faster in short
sequences and easier to tune.

The ASR system is about 3 times faster at decoding and train-
ing time is also reduced, the workflow is depicted in Fig. 5.
The recipe is pre-trained on the Librispeech dataset [32] and
is used to get the log posterior ratio (LPR) from the utterances
of the speechocean762 dataset [26]. The GOP score is calcu-
lated using equations 10 and 11 for the extracted LPR from
Kaldi.

The LPR score is used to differentiate the words that have
incorrect phonemes, such words are extracted at random from
the dataset utterances and compared with the same word
uttered ideally by google text-to-speech (GTTS), both the
files are then converted into their pitch contours and sub-
tracted with their adjacent values, using Praat Parselmouth
library in python with the following the pitch settings:

• Audio Sampling Rate: 22050 samples per second.
• Pitch Floor: 75 Hz - below this frequency will not be
recruited.

• Pitch Ceiling: 600 Hz - above this frequency will be
ignored.

• Silence threshold: 0.03 - frames that do not contain
amplitudes above this threshold are probably silent.

The DTW scores with L2 norm are calculated and fed into
eq. 15 to obtain compare score. Both results are combined
using eq. 16 to get the total score.

V. RESULTS
This section details the evaluation process of the pro-
posed approach on the LibriSpeech and the Speechocean762
dataset. The proposed approach is evaluated on different
settings and is further compared with other pronunciation
scoring methods.

Fig. 6 shows the different values of Mean Absolute Error
(MAE) and Pearson Correlation Coefficient (PCC) metrics,
it can be noticed that as the value of hyperparameter α

changes from 0 to 1 the error in the total score decreases
and then increases linearly. Similarly, the PCC graph first
increases then decreases drastically, this implies that the Pos-
terior Score alone is not effective in conveying the overall
Pronunciation score, conversely, the compare score alone
cannot determine the same, thus a combination of both these
aspects, when taken into consideration, provides a much bet-
ter result.

Table 2 shows corresponding values of MAE and PCC for
different values of hyperparameter α. The maximum value of
the total score is obtained at α = 0.5, further shifting its value
affects the total score.

The graph of deviation for the first 90 speakers with
20 utterances each in comparison with the proposed approach
with the general weighted average with hyperparameter as it

VOLUME 11, 2023 15491



K. Sheoran et al.: Pronunciation Scoring With Goodness of Pronunciation and Dynamic Time Warping

FIGURE 6. Plot of PCC vs α and MAE vs α in range 0 to 1.

TABLE 2. Mean absolute difference of the total score, posterior scores,
and compare scores for different values of α.

FIGURE 7. Graph of the absolute difference between the Total Score,
Posterior Score and Compare Score for α = 0.5.

approaches 0.5 is shown in fig. 7. The percentage difference
in total score between the proposed method predictions and
the dataset is plotted, it can be seen that although the total
score gives less difference, the posterior score and compare
score individually give a high difference error. To check the
individual scores in comparison with the dataset score on
the utterance level pronunciation, we sampled 10 different
speakers’ recordings with their respective total scores from
5 experts from the dataset, their average score, and their
corresponding scores generated by our system taking the
value of α = 0.5 (for general results), as tabulated in table 3.

Table 3 compares the scores given by experts to the
predicted scores. It can be clearly seen that the proposed
approach matches the average score given by the 5 experts.
Expert1 and expert2 scores are lenient whereas expert5
scores are strict but taking an unbiased estimate of pronun-
ciation scores gives us an expected score for a speaker’s
pronunciation.

The mean difference error for the total score of the ideal
expert scores and the proposed approach is shown in fig. 8.
The horizontal axis shows the speaker number from the

TABLE 3. All expert scores and their average score compared with the
predicted score.

FIGURE 8. Graph of Total Score for expert average scores and model
predictions.

TABLE 4. Pearson Correlation Coefficient scores compared with different
methods.

dataset and the vertical axis shows the total score of the
speaker in percentage.

Table 4 compares the proposed approach with various
other approaches using different datasets such as Spee-
chocean762, TIMIT, LibriSpeech, and more. Latest models
such as HuBERT [35] and Wav2Vec2 [36] were also com-
pared. It should be noted that our model was not fine-tuned
whereas all other models were fine-tuned before getting these
results.

VI. DISCUSSION
The results show that there is a deviation of 3.38% from
the actual mean total score of the professionals from the
speechocean762 dataset. This result is relatively close to the
actual labels as leniency is not taken into consideration, but
changing the value of α in eq. 4 will fine-tune the predictions
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to minimize the mean difference error between the two data
vectors, which can be seen from the second rowwhere biasing
the total score to compare the score by 10% decreases the
error by 0.75%.

A. AUTO-CORRELATION FOR PITCH EXTRACTION
Pitch Extraction is done with the help of the Auto-Correlation
function, there are many improved methods for the extraction
of the pitch but this method is adaptable to noise as the
local maxima generated on the auto-correlation of the speech
signal in the time domain is unaffected by the addition of
slight noise. The main limitation of using this method is the
presence of auto-correlation peaks that exceed the peaks cor-
responding to the pitch period. As a result, we get ‘picking’
of peaks, and consecutively incorrect pitch evaluation can
occur, but as speech signals don’t follow a pattern in a frame
unlike musical signals, the limitation is not effective in this
case [37].

B. TOTAL SCORE DEPENDENCY ON THE TYPE OF
ACOUSTIC MODEL
A large variety of Acoustic models are used in related works,
but the proposed method does not focus on a specific type
of acoustic model as the model is not fine-tuned on the
pronunciation dataset, any trained Acoustic model of an
ASR system can be used to calculate the Phone-level fea-
tures, and although it will decrease the percentage error of
the Posterior Score in proposed eq. 11, the total score per-
centage error will not decrease as shown in Fig. 7. Here
DNN-HMM model with TDNN layers is specifically used
as its low inference time gives real-time scores in CAPT,
although it has low phone score accuracy than other LSTM
and transformer-based Acoustic models, it performs better on
short utterances.

C. PROBLEM WITH FINE-TUNING MODEL ON DATASET
The graphs plotted in Fig 7 depict that without fine-tuning the
Posterior Scores, which are purely dependent on the output
of the Acoustic model show a percentage difference of up to
15%, this indicates that the models used in related works [16],
[19], [24] produced results which were biased due to some
extra feature extraction in the model to fit the scores of the
specific dataset used, and are not generalized. Adding the
compare score solves the high prosodic score dependency as
the mispronounced words are compared with their ideal utter-
ance to generate a different score which deals with the stress,
Accuracy, and Fluency of the spokenword. Themethods used
in this approach use a single hyper-parameter α to tune the
total score of the dataset which resolves the issue of biasing.
The compare score percentage error can also be improved by
changing the threshold value in eq. 22 from a constant scalar
value to another hyper-parameter that is proportional to the
number of phonemes in the word to maximize the compare
score’s contribution.

VII. CONCLUSION
Considering the basic GOP approach and distinct length
vector comparison using DTW, we derive two formulas
to calculate the pronunciation score of an audio file. The
first calculates the accumulated posterior probabilities of
the acoustic model, and the second randomly clips some
of the words spoken in it to get vectors to compare with
the ideal pronunciation of those specific words using DTW.
These two scores are combined together using a weighted
average. The results are evaluated with the total scores of the
speachocean762 dataset, each scored by 5 professionals. The
suggested method significantly resembles the average expert
score from the dataset and offers results that can be tailored
for both beginners and experienced learners. A limitation
of the proposed approach is that the result of the prosodic
score cannot be tuned according to the level of the learner
and is entirely dependent on the accuracy of the acoustic
model used. Future plans include providing more flexibility
to the prosodic score and concentrating more on constructing
a corpus for gender and region-based score calculation.
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