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ABSTRACT Medical image segmentation is a crucial way to assist doctors in the accurate diagnosis of
diseases. However, the accuracy of medical image segmentation needs further improvement due to the
problems of many noisy medical images and the high similarity between background and target regions.
The current mainstream image segmentation networks, such as TransUnet, have achieved accurate image
segmentation. Still, the encoders of such segmentation networks do not consider the local connection between
adjacent chunks and lack the interaction of inter-channel information during the upsampling of the decoder.
To address the above problems, this paper proposed a dual-encoder image segmentation network, including
HarDNet68 and Transformer branch, which can extract the local features and global feature information
of the input image, allowing the segmentation network to learn more image information, thus improving
the effectiveness and accuracy of medical segmentation. In this paper, to realize the fusion of image feature
information of different dimensions in two stages of encoding and decoding, we propose a feature adaptation
fusion module to fuse the channel information of multi-level features and realize the information interaction
between channels, and then improve the segmentation network accuracy. The experimental results on
CVC-ClinicDB, ETIS-Larib, and COVID-19 CT datasets show that the proposed model performs better in
four evaluation metrics, Dice, Iou, Prec, and Sens, and achieves better segmentation results in both internal
filling and edge prediction of medical images. Accurate medical image segmentation can assist doctors in
making a critical diagnosis of cancerous regions in advance, ensure cancer patients receive timely targeted
treatment, and improve their survival quality.

INDEX TERMS Deep learning, medical image segmentation, transformer, HarDNet, feature fusion.

I. INTRODUCTION
Medical images have become an essential source of infor-
mation for physicians in medical activities such as disease
diagnosis, surgery planning, and post-operative evaluation.
Medical image segmentation can extract critical information
from specific tissue images. The segmented images are pro-
vided to physicians for quantitative and qualitative analysis,
helping them understand diseased tissues’ location and struc-
tural characteristics more intuitively and comprehensively to
develop better treatment plans and improve treatment results.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kumaradevan Punithakumar .

Clinicians often segment and annotate images manually or
semi-manually, which is not only expensive and tedious but
also adds a significant burden to the work of clinicians. More-
over, medical images are prone to problems such as unclear
edges and inconspicuous contrast, resulting in inaccurate
image segmentation results. Image segmentation of lesion
regions by deep learning techniques has been the research
focus for many years. It has been applied to many organ
tissues, such as retinal vessels [1], lung nodules [2], [3], liver
tumors [4], brain tumors [5], etc.

The earliest application of deep learning in the field
of medical images is the fully convolutional networks
(FCN) [6]. FCN leads to serious information loss due to the
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inconsistent structure of upper and lower sampling layers.
With the advent of FCN, Ronneberger proposed the U-Net
network’s classical image segmentation algorithm [7].

Zhou et al. [8] designed an encoder-decoder network
structure UNet ++, which employs an intensely supervised
training approach that allows supervised learning of the
model’s multi-branch output. The model applies more jump
connections between high-dimensional and low-dimensional
information and reduces the feature error between semantic
information. Li et al. [9] proposed a segmentation network
using an attention mechanism to obtain multiple dimensions
of medical image feature dimensional information. Tang et al.
and Manal et al. [10], [11] proposed segmentation networks
with dense blocks replacing the convolutional layer in U-Net,
improving segmentation accuracy and parameter efficiency.
Luo et al. [12] proposed an attention dense Unet (ADUnet),
which incorporates dense connections on top of convolutional
layers for fine vessel image segmentation.

He et al. [13] replaced the convolutional layer of U-Net
with a residual neural network (ResNet). The residual net-
work replaced the jump connection using residual connection
paths and codecs. Lu et al. [14] added a circular residual
module to the U-Net network to enhance the network’s ability
to extract feature information for solving pancreatic image
segmentation. Gu et al. [15] used a ResNet-34 residual block
to replace the original U-Net encoder block as a fixed fea-
ture extractor. Liu et al. [16] further optimized the Res-Unet
structure by improving the residual modules in encoding and
decoding and increasing the number of layers in the segmen-
tation network. Wang et al. [17] and others added residual
connections to each layer of convolution in the segmentation
network to deepen the network depth and added attention
models to improve the segmentation accuracy.

Aamer et al. [18] proposed Attention Residual Unet,
an architecture that integrates the residual attention module
and the convolutional block of theUnet network. Yu et al. [19]
used the ResNet-34 structure for the encoding part of the
U-Net structure to deepen the model depth and training
speed to improve the segmentation network performance.
Hari et al. [20] replaced the encoding part of the U-Net
structure with the ResNet-50 structure for automatic detec-
tion and segmentation operations of brain tumor images. Cui
et al. [21] used a multiscale input structure in the coding layer
and a multiscale attention module at the jump connections
to effectively improve the accuracy of heart segmentation.
Li et al. [22] used a multiscale input module to obtain global
feature information of the image.

Almasni et al. [23] andWang et al. [24] used pyramid pool-
ing modules to fuse global contextual feature information at
multiple spatial scales to enhance the detailed representation
of the network encoder. Hu et al. [25] used inflated convolu-
tion to replace the original convolution and expand the range
of convolution layers to improve the model segmentation
accuracy and segmentation effect. Ge et al. [26] combined
maximum pooling with inflated convolution in the UNet

bottleneck layer, intermittently using inflated convolution to
obtain image feature information to improve network seg-
mentation. Lan et al. [27] proposed a new image segmentation
network that uses lightweight hybrid attention blocks in the
encoder to effectively enhance image features and suppress
scattered noise in the encoding stage.

Li et al. [9] introduced attention gates between upsam-
pling and downsampling to improve the model segmen-
tation performance by the attention module to merge the
image feature information of different hierarchical dimen-
sions. Gu et al. [28] proposed a segmentation network based
on an attention mechanism module that focuses on different
regions of image feature information. Wang et al. [29] placed
the channel attention model in the jump path of the U-Net
network to ensure that the segmentation network obtains
channel feature information and improves the segmentation
effect. Wang et al. [17] added a channel attention mechanism
in the jump connection for accurate and efficient medical
image segmentation.

Although the improved U-Net network structure can effec-
tively capture the local and global feature information ofmed-
ical images, the continuous downsampling operation causes
the loss of image location information and global depen-
dencies between pixels, which affects the medical image
segmentation accuracy [30].

Therefore, medical image segmentation should focus on
the extraction of global feature information of images and the
fusion of different levels of image feature information in the
encoding and decoding stages.

Transformer structure can construct global contextual
information, widely used in natural language process-
ing [31]. Dosovitskiy et al. [32] first proposed the Vision
Transformer (ViT) structure and applied the Transformer
module to the image processing field with good results.
Chen et al. [33] combined Transformer and U-Net structures
and used them for medical image segmentation aspects.
Li et al. [34] proposed the X-Net structure to use the Trans-
former as an encoder for the backbone segmentation net-
work. Zhang et al. [35] proposed the TransFuse network
with a parallel CNN and Transformer feature extraction mod-
ule designed. Tang et al. [36] proposed a self-supervised
pre-trained segmentation model based on the Swin Trans-
former and proposed the Swin UNETR. Zhou et al. [37]
proposed the nnFormer network, where the Transformer
and CNN are used alternately in the network. The fea-
ture information at each scale is extracted for multi-scale
supervised learning to ensure that the multi-scale feature
representation is as accurate as possible. Wu et al. [38]
proposed the D-Former network, which consists of a Local
Scope Module and a Global Scope Module for the cavity
transformer.

Luo et al. [39] and Lin et al. [40] used the U-Net network
and the Swin Transformer together as the coding part of the
backbone network. Hatamizadeh et al. [41] proposed Unetr,
which consists of a pure Transformer to form an encoder that
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extracts sequences from different layers of the encoder and
captures global multiscale features. Li et al. [42] proposed
UConvTrans, a two-branch U-shaped network, which splices
the output of CNN branches with Transformer branches to
achieve an interactive fusion of global and local features.
Zhang et al. [43], by fusing two parallel CNN branches and
Transformer branches, the images’ global dependencies and
local detail features can be obtained by a shallower number
of layers.

In the above Transformer-based encoding process, there
needs to be more information interaction of images within
local regions, and geometric features such as lines, edges, and
shapes of images are ignored in the process of image slice
recombination. In image decoding, the encoded features are
upsampled and stitched with high-resolution features without
considering the correlation between the two channels and
positions.

In the coding stage, the HarDNet68 module is used in
this paper. The HarDNet68 module is a harmonic dense
connectivity network proposed by Chao et al. in 2019 [44].
Compared with structures such as ResNet and DenseNet [45],
HarDNet reduces the number of connections between layers
and increases the channel width to improve themodel training
speed and accuracy, considering that the amount of computa-
tion and memory access can affect the model performance.

Considering the problems of Transformer structure,
we propose to integrate two modules, HarDNet68 and Trans-
former, for extracting local and global features of medical
images, respectively, and then fuse the two feature informa-
tion before using them for medical image segmentation. Also,
to facilitate the fusion of image features with different dimen-
sions in both the encoding and decoding stages, we propose
the feature adaptation fusion module.

We perform model validation on three public datasets,
CVC-ClinicDB [46], ETIS-Larib [47], and COVID-19
CT [48] datasets, and analyze them in comparison with other
classical segmentation networks.

The main innovations of this paper are as follows.
(1) We adopt the image segmentation network with dual

encoders of HarDNet68 and Transformer module, which can
extract not only local feature information of low- dimension
medical images but also global feature information of high-
dimension incremental medical images to improve the model
segmentation effect.

(2) We adopt the HarDNet68 module instead of the tra-
ditional CNN module in the coding stage. HarDNet68 net-
work can learn more feature information of medical images
and reduce the computation, thus improving the operation
speed, the segmentation effect, and the accuracy of medical
images.

(3) We add a feature information fusion module to the
jump connection path of the image segmentation network to
fuse the image information of different feature dimensions
in the encoding and decoding stages to improve the model
segmentation effect.

FIGURE 1. Transformer and HardNet network model structure.

FIGURE 2. Vision transformer block.

II. THE PROPOSED ARCHITECTURE
The medical image segmentation network proposed in this
paper mainly consists of three parts, HarDNet68, Trans-
former, and feature information fusion module, and the net-
work structure is shown in Fig. 1. HarDNet68 module is
responsible for acquiring local feature information of the
input image after multi-layer convolution operation. Trans-
former module chunks the input image and then acquires
global feature information of the medical image. The input
image’s global and local feature information is directly fused
by the summation operation function, allowing the segmen-
tation network to learn the feature information of the input
image in multiple dimensions. The fused image feature infor-
mation is transmitted to the decoder through a simple squeeze
and excitation module [49] to activate the effective channels
and suppress the useless ones. In the jump path of the image
segmentation network, we propose the feature information
fusion module to fuse multi-level image feature informa-
tion of different dimensions to enhance the model expres-
sion capability, compensate for the information interaction
between channels that the model lacks, enhance the sensitiv-
ity of the model to the key information between channels, and
thus improve the segmentation network accuracy.

A. TRANSFORMER
Vaswani et al. [31] proposed the Transformer architecture
to solve the problem of limited parallel computation during
natural language processing. Dosovitskiy et al. [32] proposed
the ViT model across domains for computer vision image
classification tasks. The Transformer structure in the ViT
network is shown in Figure 2.

The self-attention mechanism is an optimization and
improvement on the attention mechanism, which mainly
relies on the internal correlation of image feature information
and assigns different weights to different pixel information.
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The self-attention mechanism transforms the input image
information into three different matrices of information Q, K,
and V. The query matrix Q is multiplied with the transpose
of the key value matrix K to derive the similarity matrix
QKT between them, and if the larger value indicates more
correlation.

The weight matrix is obtained by 5-normalizing the simi-
larity matrix with the softmax function. Finally the attention
of the input matrix is obtained by multiplying the weight
matrix with the value matrix, and the final result is shown
in equation (1).

Attention(Q,K ,V ) = SoftMax(
QKT
√
dK

)V (1)

where Q, K, and V denote the three matrices obtained after
the same input is calculated with different parameters. The
moderating smoothing factor

√
dK for the k dimensions, the

dimension of the key, prevents the multiplication result from
being too large. The generated vector is passed through a soft-
max activation function to normalize the scores and ensure
that all the values are positive.

The multi-headed self-attentive mechanism is the core
component of Transformer, which is a combination of n self-
attentive modules, where WQ

i ,WK
i ,WV

i denotes the ith self-
attentive linear transformation matrix, respectively, which are
multiplied with the input vectors Xi to obtain the projections
on different spaces to enhance the representational power
of the model and obtain the corresponding Q, K, V. Then
all the output matrices are stitched together and multiplied
with the linear transformation matrix W o to obtain the final
self-attentive output matrix.

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2)

Multi(Q,K ,V ) = Concat(headi, · · · , headh)W o (3)

Multi-layer perceptron: The multi-layer perceptron mainly
consists of a linear combination of two fully connected layers
and a linear activation layer ReLU,W1, b1 andW2, b2 denote
the weights and biases of the two fully connected layers,
respectively, and is calculated as shown in equation (4).

MLP(X ) = max(0,XW1 + b1)W2 + b2 (4)

Position embedding: Unlike natural language processing,
an image is only a single individual, and in obtaining its self-
attentiveness, it is necessary to first segment the whole image
into small fixed-sized pieces by convolutional neural network
CNN and then splice a learnable position embedding matrix
to learn the position embedding information of the image, and
then after layer normalization (LN) andmultilayer perceptron
(MLP), finally, each layer Transformer can be expressed as
shown in equation (5) and (6).

O′
l = Multi (LN (Ol−1)) + Ol (5)

Ol = MLP
(
LN

(
O′
l
))

+ O′
l (6)

where Ol−1 represents the output of the previous Transformer
layer. Ol as the input of the next Transformer layer, and so on.

FIGURE 3. Multi-head attention.

FIGURE 4. HarDNet network structure [44].

Before the medical image is input to the Transform layer,
the image needs to be segmented for the operation. We take
an input image X ∈ R3×H×W with H × W resolution and
segment it into N =

H
P ×

W
P blocks for labeling, P is

the size of each image segmentation block, and N is the
total number of each image segmentation block. Then, the
projection function converts the two-dimensional image into
a one-dimensional embedded image sequence Xe ∈ RN×Ce

with Ce dimension. Finally, the resulting one-dimensional
image sequence is transferred to the Transform layer.

B. HardNet
The HarDNet model is an improvement on the DenseNet
structure, which can reduce the total number of model param-
eters and increase the speed of network operation, as shown
in Figure 4.

HarDNet uses a sparse connection, assuming that layer k
is connected to layer k−2n, 2n, which can divide k integer,
where n ≥ 0, k−2n ≥ 0. With this connection, if 2n is
processed, layer 1 to layer 2n−1 can be cleared frommemory,
reducing the amount of model parameter computation.

We input n image data x ∈ RH×W×C×n into a CNN feature
extraction network composed of HarDNet, where n denotes
the number of images and C denotes the number of channels
of images. To realize the transformation of image data x ∈

R
H
16×

W
16×C×n from high-resolution images to low-resolution

images and complete the coarse extraction of image features.
At the same time, the segmentation network will pass the
feature information of low dimensionality in the image to
the upsampling process. Reduce the image features in the
encoding and stage process, resulting in information loss.

C. FEATURE FUSION MODULE
The fusion module fuses the outputs of the two branches in
the decoder to complete the decoding process from high-
level features to segmentation masks. By upsampling, the
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FIGURE 5. Feature fusion structure.

high-level features are spliced with the middle and low-level
features of the same scale stored in the hybrid encodermodule
to prevent partial image detail information during the image
upsampling process and ensure the accuracy of the restored
image. The output of the Transformer branch first passes
through the linear layer, then performs the Reshape operation
to save the image feature information. After the output of
the HarDNet68 branch undergoes 1 × 1 convolution, it is
spliced with the features after the reshape of the Transformer
branch in the channel dimension. After a simple extrusion
and excitation (SE) module, the effective channel is activated,
and the useless channel is uppressed. The element summation
operation is directly performed to fuse the feature map, and
it is used as the input layer for sampling on the decoding side
of the segmentation network. The model structure is shown
in Figure 5.

D. LOSS FUNCTION
The loss function is a neural network to measure the degree
of loss and error, and it is the index of a neural network
to find the optimal weight parameters. Due to the relatively
small size of the lesion tissues, the segmentation effect is not
satisfactory by directly using the cross-entropy loss function.
The loss function adopted in this paper is the combined loss
function of Cross Entropy loss [7] and Dice loss [50]. This
function can combine the advantages of the two functions to
make the network better find the optimal parameters for opti-
mization learning. The cross-entropy loss function evaluates
the loss incurred when classifying pixel points in the image
segmentation process, and the smaller the value, the better the
segmentation model.

LCeloss =
1
N

∑
i=1

−

∑C

c=1
yilg(pi) (7)

where C is the label and yi refers to whether it is category i.
If it is that category, yi = 1, otherwise yi = 0.
LDiceloss is the loss function of Dice loss. It is mainly

used to measure the degree similarity between the segmented
image predicted by the model and the real segmented image,
and the value range is [0,1]. The calculation formula of the
function is shown in Eq. (8). |X ∩ Y | represents the number
of intersections between a real segmented image and a model
predicted image, |X | and |Y | represent the number of real
segmented images and model predicted images respectively.

LDiceloss = 1 −
2 |X ∩ Y |

|X | + |Y |
(8)

The total loss function proposed in this paper is LTotal, The
formula is shown in Eq. (9).

LTotal =
LDiceloss + LCeloss

2
(9)

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASETS
The CVC-ClinicDB dataset comes from the Clinical Hospital
of Barcelona, and consists of 612 polyp images extracted
from 31 colonoscopy videos. Each picture in the dataset has
GroundTruth manually marked by experts for segmentation
experiments in medical image processing. The original size
of the image is 383∗288.
The ETIS-Larib dataset contains 196 colonoscopic images

of 36 polyp types and their corresponding ground-truth
segmentation labels, all of which have a resolution of
1225 × 966. Compared with the CVC-ClinicDB dataset,
ETIS-Larib has a smaller area of interest and a higher sim-
ilarity between the target and background features.

The COVID-19 CT contains a series of CT images of
lung image segmentation and the corresponding label data,
released by Kaggle in 2019. The original image size is
512∗512, and the image size is resized to 256∗256 as needed.
The above three datasets are divided into the training set,

validation set, and test set according to the ratio of 80%, 10%,
and 10%.

B. TRAINING AND MEASUREMENT METRICS
The operating environment of this model: CPU main fre-
quency is 3.6GHz, graphics card is RTX2080T, memory is
24G. The operating system is Win 10 Professional, and the
deep learning framework is Pytorch for 1.6.

During the network training process, We set the model
training count to 200 and the batch size to 6. The network
optimizer to Adam’s algorithm and the initial learning rate
to 0.0001. A Dropout strategy with a ratio of 0.5 is used to
prevent the network from overfitting during training.

In this paper, the performance indicators widely used in
the medical image segmentation neighborhood are used to
evaluate the segmentation results quantitatively: the Dice
coefficient, Intersection over Union (Iou), Sensitivity, and
Precision. Several evaluation metrics of segmentation are
used in the experiments, and the specific definitions of these
metrics are given below.

The Dice coefficient can measure the similarity between
the predicted segmentation label map and the real segmen-
tation label map, and the larger the value, the higher the
similarity between the two.

Dice =
2TP

2TP+ FP+ FN
(10)

The Iou can reflect the overlap rate between the predicted
segmentation label map and the real segmentation label map.
The larger the value, the more overlap between the two sets
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TABLE 1. Comparison of segmentation effects of different methods on
CVC-ClinicDB.

TABLE 2. Comparison of segmentation effects of different methods on
ETIS-Larib.

and the higher the similarity.

Iou =
TP

TP+ FP+ FN
(11)

The precision can reflect whether the pixel consistency
between the predicted segmentation label map and the real
segmentation label map is strict and accurate. The calculation
is the proportion of correctly segmented target pixels to all
predicted target class pixels.

Prec =
TP

TP+ FP
(12)

The sensitivity calculates the proportion of correctly seg-
mented target pixels to the target class pixels in the real
segmentation label map. The larger the value, the lower the
proportion of missed detection.

Sens =
TP

TP+ FN
(13)

where TP is the pixels correctly segmented in the medical
segmentation results, TN is the pixels incorrectly segmented
in the medical segmentation results, FP is the background
pixels incorrectly treated as medical pixels in the medical
segmentation results, and FN is the medical pixels incorrectly
treated as background pixels in the segmentation results.

C. ANALYSIS OF EXPERIMENTAL RESULTS
The segmentation results on the CVC-ClinicDB, ETIS-Larib
and COVID-19 CT datasets were compared with those of
Unet, PraNet, UNet++, Attention-Unet, PraNet, UACANet
networks, respectively. Table 1 to Table 3 shows the final
obtained methods of each of the segmentation performance
metrics.

FromTable 1, for the CVC-ClinicDB dataset, theDice, Iou,
Prec, and Sens of the U-Net network are 0.823, 0.809, 0.882,

TABLE 3. Comparison of segmentation effects of different methods on
COVID-19 CT.

TABLE 4. Comparisons against existing approaches on CVC-ClinicDB,
ETIS-Larib and COVID-19 CT.

and 0.893, respectively. Compared with the U-Net, our model
proposed in this paper increased by 10.8%, 8.3%, 3.4%, and
3.1% on Dice, Iou, Prec, and Sens, respectively.

From Table 2, for the ETIS-Larib dataset, the Dice, Iou,
Prec, and Sens of the U-Net network are 0.398, 0.335, 0.808,
and 0.631, respectively. Compared with the UACANet, our
model proposed in this paper increased by 8.0%, 7.6%, 1.9%,
and 1.5% on Dice, Iou, Prec, and Sens, respectively.

From Table 3, for the COVID-19 CT dataset, the Dice, Iou,
Prec, and Sens of the U-Net network are 0.798, 0.825, 0.967,
and 0.949, respectively. Compared with U-Net, our model
proposed in this paper increased by 15.5%, 14.9%, 3.1%, and
4.7% on Dice, Iou, Prec, and Sens, respectively.

We also compare the proposed method in this paper with
several recently proposed segmentation methods for analysis.
Table 4 shows the performance of different segmentation
methods on the CVC-ClinicDB, ETIS-Larib, and COVID-
19 CT datasets. The overall performance of the model in
this paper is comparable to the performance of the latest
model. The models achieved relatively good results on all
three datasets.

Ourmodel proposed it has achieved excellent segmentation
results in several evaluation indexes on the three datasets.

The segmentation experiments are carried out on CVC-
ClinicDB, ETIS-Larib, and COVID-19 CT datasets and com-
paredwith the Unet, UNet++, ResUNet++, Attention-Unet,
and UACANet networks. The paper runs the six comparison
networks in the same experimental environment, and their
visual effects are shown in Figure 6 to Figure 8.

Figure 6 shows the segmentation effect of various networks
on the CVC-ClinicDB dataset. The third and eighth columns
are the result diagram of six network segmentations. From
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FIGURE 6. Model segmentation results in the CVC-ClinicDB dataset.

FIGURE 7. Model segmentation results in the ETIS-Larib dataset.

Figure 6, the proposed algorithm can completely distinguish
lesion regions with blurred boundaries, while other algo-
rithms have some omissions for segmentation targets with
blurred edges. The visualization results can well overcome
the problem of similar color polyps and backgrounds, detect
polyp tissue with different shapes, sizes, and colors, and
divide the region and boundary more clearly and accurately
without missing phenomena.

Figure 7 shows the segmentation effect of various networks
on the ETIS-Larib dataset. The third and eighth columns are
the resulting diagram of six network segmentations. From
Figure 7, several networks can segment the edge informa-
tion of lesion regions images, but our model proposed is
better than other networks in dealing with the edge part. The
segmentation boundary is clearer, the structure is relatively
complete, and it achieves the best segmentation performance.

Through Figure 6 and Figure 7, we can also find that all
the neural network models segment well for polyps with
relatively smooth edges. However, the segmentation results
in the first row in Figure 5 shows that for polyps with similar
backgrounds, the segmentation results of other models could
be better compared with the model in this paper. There are
problems such as image edge loss.

The method in this paper has almost no problemwith miss-
ing polyp segmentation, less miss-segmented areas, clearer
edge contours, and better internal coherence of the segmented
image.

Figure 8 shows the segmentation effect of various networks
on the COVID-19 CT data set. The third and eighth columns
are the resulting diagram of six network segmentations. From
Figure 8, the U-Net has learned too many redundant features.
There are always obvious noise points; several other networks

FIGURE 8. Model segmentation results in the COVID-19 CT dataset.

FIGURE 9. Accuracy of the CVC-ClinicDB dataset.

FIGURE 10. Accuracy of the ETIS-Larib dataset.

also have good segmentation performance on the segmenta-
tion boundary, but it pays too much attention to the image
boundary, thus ignoring the internal features of the image.
However, our model proposed in this paper retains more
image details, and the segmentation results are consistent
with the standard segmented images.

We also compare the accuracy and loss of the different
models on the three datasets, as shown in Figure 9 to 11.

The comparative analysis of the three figures shows that
the model proposed in our paper converges fast on the three
datasets. Finally, the model is almost converged and achieved
a high accuracy rate.

IV. DISCUSSION
In recent years, many experts have applied the Transform
module to the medical image field and the mainstream
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FIGURE 11. Accuracy of the COVID-19 CT dataset.

segmentation network collection to improve the effectiveness
of medical image segmentation, such as the TransUnet net-
work. However, the network model based on the Transformer
structure tends to ignore geometric features such as lines,
edges, and shapes of the image during the encoding and
decoding stages and cannot consider the correlation informa-
tion between channels and positions. Therefore, we propose
a dual module of HarDNet68 and Transformer for simulta-
neous image feature information extraction. The HarDNet68
module improves the DenseNet network structure, which
runs faster and is directly used for local feature information
extraction of medical images. The Transformer module can
consider global information and is used to extract global
feature information of medical images. Finally, the global and
local feature information of medical images are fused and
then transmitted to the next layer of the medical segmentation
network to improve the segmentation performance of the
network.

It can be seen from the objective evaluation index, and the
segmentation effect diagram that the network proposed in this
paper has achieved the best performance in the evaluation
indexes of Dice, Iou, Prec, and Sens. And also is better than
the comparison method in the text in terms of visual effect.
We propose a feature adaptation module to facilitate the
fusion of image features at the encoding and decoding stages.
By introducing a simple Squeeze and Excite module, activate
effective channels and suppress useless channels, directly
perform element-wise summation operations to fuse feature
maps of corresponding layers in local and global contexts.
Fuse channels of multi-level features information, enhance
the expressive ability of the model, make up for the infor-
mation interaction between channels that the model lacks,
and enhance the model’s sensitivity to the key information
between channels, thereby improving the accuracy of the
segmentation network.

Although we have extensively evaluated the network’s
performance on three different datasets, CVC-ClinicDB,
ETIS-Larib, and COVID-19 CT, we considered two different
types of image datasets of polyps and lungs for model val-
idation, but our network still needs to improve. First of all,
due to objective factors, we did not try to verify the influence
of the connection mode of different attention modules on the

network structure; secondly, the images used in the experi-
ment were all 2D images, and we did not try to verify it on
the 3D medical image segmentation dataset. We may do the
above work in the future.

V. CONCLUSION
Since the Transform module in the existing medical image
segmentation network does not consider the local connec-
tion between adjacent blocks, and the lack of interaction
between channel information in the upsampling process,
we propose a dual module of HarDNet68 and Transformer
for simultaneous image feature information extraction. The
HarDNet68 module is an improvement on the DenseNet
network structure, which runs faster and is directly used for
local feature information extraction of medical images. The
Transformer module can consider global information and is
used to extract global feature information of medical images.
To realize the fusion of image feature information of different
dimensions in two stages of encoding and decoding, a feature
adaptation fusion module is proposed to fuse the channel
information of multi-level features and realize the infor-
mation interaction between channels and then improve the
segmentation network accuracy. On CVC-ClinicDB, ETIS-
Larib, and COVID-19 CT datasets, the Dice of the method
in this paper reached 0.931, 0.774, and 0.953, respectively,
and the IoU reached 0.892, 0.691 and 0.974, respectively. The
segmentation effect was better than that of the comparison
method. In future work, we will further optimize the model
structure, apply it to more medical datasets, and improve the
generalization performance of the network model.
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