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ABSTRACT Deep neural network (DNN) inference on streaming data requires computing resources to
satisfy inference throughput requirements. However, latency and privacy sensitive deep learning applications
cannot afford to offload computation to remote clouds because of the implied transmission cost and lack of
trust in third-party cloud providers. Among solutions to increase performance while keeping computation on
a constrained environment, hardware acceleration can be onerous, and model optimization requires extensive
design efforts while hindering accuracy. DNNpartitioning is a third complementary approach, and consists of
distributing the inference workload over several available edge devices, taking into account the edge network
properties and the DNN structure, with the objective of maximizing the inference throughput (number of
inferences per second). This paper introduces a method to predict inference and transmission latencies for
multi-threaded distributed DNN deployments, and defines an optimization process tomaximize the inference
throughput. A branch and bound solver is then presented and analyzed to quantify the achieved performance
and complexity. This analysis has led to the definition of the acceleration region, which describes
deterministic conditions on the DNN and network properties under which DNN partitioning is beneficial.
Finally, experimental results confirm the simulations and show inference throughput improvements in sample
edge deployments.

INDEX TERMS Distributed artificial intelligence, edge computing, scheduling and task partitioning.

I. INTRODUCTION
Connected devices generated an estimated 2.5 quintillion
bytes of data every day in 2020.1 In this context, Artificial
Intelligence (AI) is one of the technologies that can best
cope with the always growing amount of produced data, in a
range of fields such as object detection in computer vision,
facial recognition, speech recognition, natural language
processing, or autonomous driving. AI, and specifically Deep
Learning (DL), requires, in addition to large amounts of data,
significant capabilities in processing power and memory,
which makes cloud computing the de facto hosting solution
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1According to the Data Never Sleeps annual study from Domo

https://www.domo.com/learn/infographic/data-never-sleeps-8

for AI workloads. Consequently, in 2019, 96% of AI tasks
were run in the cloud.2

AI applications can have strong latency constraints, e.g.,
in autonomous driving, manufacturing monitoring, or any
real-time inference involving a real world interaction. For
example, average response times in autonomous driving are
required to be under 100 milliseconds [1], making round trip
times to the cloud too long for such applications. Similarly,
some applications may introduce a significant link usage on
the network, e.g., in the case of high quality video processing
in computer vision, which prevents them from running in the
cloud. Data privacy policies or data protection regulations
may also prohibit data from leaving specific environments.
This encourages AI deployments in edge computing, which

2According to a survey from Nucleus Research Inc., 96% of Deep
Learning based applications ran in the cloud in 2019. https://d1.
awsstatic.com/whitepapers/Deep%20learning%20on%20AWS.pdf
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consists of relocating computation tasks from data centers
closer to edge devices, i.e., in proximity to the data sources.
In comparison with public clouds, the edge is a resource-

constrained environment with important limitations [2], and
developing AI for the edge is therefore intrinsically different
from developing AI for the cloud. Analyzing data close to its
source can be challenging because of lower device capacities,
inelasticity of the available resources, and heterogeneity of
edge networks. Lowering the computing capacity implies
lowering the achievable inference throughput, further com-
plicating relocation of heavy workloads from the cloud to the
edge. In some applications, the inference throughput, i.e., the
achievable inferences per second of a DNN, can be linked to
the DNN accuracy, e.g., with object tracking in video streams,
where dropping the inference rate from 15 to 5 inferences per
seconds has shown to lower the F1 score3 of an object detector
by 10% [3]. In other words, deployments with low inference
throughput can cause critical information loss, e.g., loss of
detections in video surveillance applications.

There are two main available methods to meet perfor-
mance requirements on constrained edge networks: model
compression or hardware acceleration. Model compression
consists of reducing and optimizing neural networks to a
light-weight, often under-performing, version of the model.
Standard model compression methods include pruning [4],
i.e., removing unnecessary parameters in the model, quanti-
zation [5], i.e., reducing the allocated memory to store the
model, and knowledge distillation [6], i.e., training a smaller
neural network with knowledge extracted from a larger one.
Model optimization requires extensive design efforts and can
be an impediment to model accuracy. Hardware acceleration
on edge devices implies finding hardware which can be both
power efficient and light-weight, while still being able to run
inferencewith sufficient performance. There are several types
of candidate hardware for acceleration at the edge, varying in
efficiency and specificity, but standard processing units fail
to meet expectations and dedicated hardware such as ASICs
have been found to be unpractical and expensive [7].

DNN partitioning is a complementary method for accel-
erating inference by leveraging the multiplicity of exist-
ing devices on edge networks to distribute the inference
computation – which can be used alone, or in conjunction
with the two other methods. DNN partitioning consists of
considering a neural network as a pipeline to segment into
partitions, and distributing these partitions on edge devices.
The placement of these partitions is based on both the DNN
and the underlying network characteristics. DNN partitioning
relies on the identification of split points, which are points in
the model graph where the model is separated into partitions.
During run-time, partitions are run sequentially, each sending
intermediary inference results to the next partition. This
allows each partition to start computing the next input data
while the other devices continue processing the offloaded
one, hereby improving the inference throughput, as shown

3The F1 score is a measure of a model’s accuracy on classification tasks.

FIGURE 1. Timeline of multi-threaded inference partitioning over
2 devices compared with unpartitioned inference. The figure shows the
computation (T c

i ) and transmission (T t
i ) latencies. The inference

throughput is improved by partitioning, and bound by the slowest
element in the network (T).

in figure 1. In the remainder of this paper, DNN partitioning
is illustrated through the example of real-time inference on
video streams.

A. RELATED WORK
Methods for DNN partitioning, derived from mobile edge-
cloud offloading, seek to optimize varying performance
indicators, such as computing latency, energy consumption,
resource utilization, cost, or throughput. DNN partitioning
relies on the association of one or several of these metrics to
define an optimization goal, and a method which exploits this
metric to find partitioning schemes. For example, Neurosur-
geon [8] seeks a single split point, keeping the first partition
at the edge and offloading the second partition to the cloud,
to minimize latency and energy consumption. Applications in
IoT have also considered the joint partitioning and offloading
of several DNNs to optimize energy, delay, and/or cost,
using different solvers such as SPSO-GA [9] combining
Particle Swarm Optimization (PSO) and Genetics Algorithm
(GA), or DDPQN [10] which uses Deep Reinforcement
Learning to find partitioning schemes. Other examples
include DINA [11], which defines an Integer Non Linear
Programming (INLP) problem, and uses a matching theory
based solver, to optimize delay and resource utilization in fog
networks. Methods optimizing inference throughput include
DNN surgery [12], which uses the lower size of intermediary
DNN layer outputs to partition the inference computation
between the edge and the cloud. Both algorithms create two
partitions, one at the edge and the other in the cloud. Other
studies in the field of mobile edge-cloud [13] also include
multi-threaded computation in the cloud to further accelerate
the overall inference throughput. Relying on the cloud for
the second partition inference computation assumes good
network connectivity, which can be uncertain with the poor
connectivity of some isolated edge deployments. Edgent [14]
adapts the previous methodology to mobile devices and
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available edge servers, relaxing the constraint of offloading
to the cloud. This method is linked to a specific training
and model architecture, and still limits the partitioning to
two partitions. Other methods have considered multiple split
points, e.g., IONN [15], which describes the problem of
partitioning to minimize latency and energy consumption,
also taking into account the time to upload the models to edge
servers.

These methods are either interacting with remote clouds,
or are limited in the nature of the partitioning, e.g., required
to split in exactly two parts, with or without multi-threading.
None of the listed DNN partitioning studies considers both
multiple split points and multi-threading.

B. CONTRIBUTIONS
This paper presents a distributed inference framework
to maximize the inference throughput of real-time DNN
computation on streaming data, with multiple split points and
multi-threaded partitioning. The contributions of this paper
are the following:
• A model for computing and transmission latencies
of a distributed DNN, through which the expected
inference throughput of a given partitioning scheme can
be estimated.

• Formulation of the optimization problem for DNN
partitioning, implementation of a branch and bound
solver for this problem, and evaluation of its complexity.

• Simulations to explore the possible performance
improvements with varying network and DNN
properties.

• The identification of deterministic regions in the net-
work and DNN properties leading to the existence
of optimal partitionings and the cost to compute
such solutions, i.e., the conditions under which DNN
partitioning is beneficial.

• Experimental results illustrating the regions defined in
the simulations, as well as the prediction accuracy and
final inference throughput acceleration for homoge-
neous and heterogeneous environments.

For the remainder of this paper, to avoid confusion, the
partitioned deep neural network will be referenced as DNN,
and the term network will denote the underlying physical
communications network.

C. PAPER OUTLINE
The remainder of this paper is organized as follows. Section II
presents background of Deep Learning and how DNNs are
represented in this study. Section III details the inference
and transmission latency prediction methods required for
section IV which defines the optimization problem, as well
as the branch and bound algorithm to take partitioning
decisions. Section V presents simulation results to quantify
the performance and complexity of the branch and bound
algorithm, as well as conditions leading to the existence of
a partitioning which improves the inference throughput in
a homogeneous network. Section VI presents experimental

results confirming the simulations of section V, and shows
inference throughput improvements on a heterogeneous
experimental set-up. Finally, section VII discusses the results
and expands on the broader applicability of this method.

II. BACKGROUND: DEEP LEARNING
Within the field of Machine Learning, Deep Learning (DL)
refers to methods relying on the use of DNNs, i.e., artificial
neural networks (or related machine learning methods)
containing more than one hidden layer. One of the earliest
references to deep learning architectures was published in
1967 [16], but it was not until the 2010s that DL gained
traction, first in speech recognition, then in object detection
in images, for the ability to capture complex relationships
in high dimensional in data. Deep Learning is estimated to
represent the majority of AI applications in 2022, with more
than 75% of organizations using DNNs for applications that
could use classical methods.4 DLmethods have been defined
as ‘‘techniques for machine learning in which hypotheses
take the form of complex algebraic circuits with tunable
connection strengths’’ [17]. These algebraic circuits are
usually organized into layers, which form steps in the
computation. The term deep refers to algorithms consisting
of more than one layer.

There are two main DNN structures: feed-forward neural
networks and recurrent neural networks. Both types of
DNNs can be represented as computation graphs, with the
main difference being that feed-forward networks can be
represented as direct acyclic graphs (DAGs), while recurrent
neural networks may contain cycles. Recurrent neural
networks are built for sequences of data, where each data
point has a potential dependency with previous data points
in the sequence, while feed-forward neural networks do not
consider interactions between points in a data sequence.

The remainder of this paper will consider the case of feed-
forward DNNs.5

In the DAG representing the computation of a DNN, each
node represents a layer, i.e., the elementary operation on
the input. There are several types of layers depending on
the applied operation, e.g., fully-connected, convolutional,
pooling, batch normalization, etc. Each layer, i.e., each node
in the graph, applies a function to its inputs followed by a non
linear operation, called an activation function. An example
computation graph structure is shown in figure 2. Developing
and training a DNN consists in defining a DAG, and adjusting
the weights of these operations to fit the input data to a desired
output inference.

III. DISTRIBUTED INFERENCE MODELING
This section presents a model to represent DNN and
network properties in order to predict computation latencies,

4https://gartner.com/smarterwithgartner/gartner-predicts-the-future-of-
ai- technologies

5Feed-forward DNNs are well suited for inference on video streaming
data.
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FIGURE 2. Example computation graph of a feed-forward neural network.
Each layer Li runs ci operations, sends si,j amount of data to the
following layer, and is placed on a node Np (see section III-A).

TABLE 1. Summary of mathematical notations.

transmission latencies, and the final inference throughput of
a given partitioning solution.

A. DNN AND NETWORK REPRESENTATION
A feed-forward DNN of N layers is modeled as a DAG
GA = (L, E) with L = (L1, . . . ,LL) the layers of the DNN.
Edges (Li,Lj) ∈ E are the connections between layers Li and
Lj. Each layer Li has an associated compute consumption ci,
measured in the number of floating-point operations required
to compute a forward pass through the layer. Edges (Li,Lj)
are assigned a weight si,j corresponding to the size of the data
transiting between layers Li and Lj in bytes.

The physical network is modeled as a fully connected
graph G = (N ,V) where N = (N1, . . . ,NN ) is the set of
compute nodes and V is the set of links between nodes. It is
assumed that compute nodes N1, . . . ,NN have processing
rates η1, . . . , ηN , respectively, measured in floating-point
operations per second. Finally, the link throughput between
two adjacent nodes Na and Nb is denoted as θa,b, measured
in bytes per second. Every node Ni is connected to itself with
infinite throughput to represent the loopback link, and links
are assumed to be symmetrical, i.e., θa,b = θb,a.
Partitionings are defined as maps P : L → N , i.e., a

partitioning assigns a node number to each layer in the DNN.
A partitioning can be described as a matrix P of dimension
(N × L), N being the number of nodes on the network and
L the number of DNN layers and, with Pa,i = 1 if layer Li
is placed on node Na, 0 otherwise. With the example given
in figure 2, L = 7 layers and N = 2 compute nodes,
the displayed partitioning with layers {L1,L2,L3,L6,L7} on
node N1, and layers {L4,L5} on node N2, is represented as:

P =
(
1 1 1 0 0 1 1
0 0 0 1 1 0 0

)
Given a partitioning, a thread is defined as a group of

consecutive layers between two split points, run sequentially
on the same node. In the example above, nodeN1 will run two
threads, the first containing layers {L1,L2,L3} and the second
one containing {L6,L7}.

With these notations defined, the remainder of this section
derives a closed expression of the inference throughput
achieved by a given partitioning, as a function of the
inference (section III-B) and transmission (section III-C)
latencies.

B. INFERENCE LATENCY PREDICTION
Given a partitioning, this section looks at inference latency
prediction on an isolated node. The latency induced by
the computation of a layer Li with consumption ci, to be
computed on node Na, with processing rate ηa is expressed
as T ci (Na) = ci/ηa. Given a set of layers L′ ⊂ L across
all threads running on node Na with processing rate ηa, the
inference latency can be expressed as:

T c(Na) = η−1a

∑
Li∈L′

ci (1)

This expression is a first order approximation of an
inference latency estimation based on the number of
floating-point operations (FLOPs) required to process the
DNN, i.e., the number of multiply-add operations in the
model.

Estimation of inference latency on edge devices is com-
plicated by run-time optimizations. Existing solutions such
as nn-Meter [18] predict inference latency based on FLOPs.
Other solutions rely on a look-up table with pre-computed
inference times for latency inference. For example, BRP-
NAS [19] uses a pre-trained graph convolutional network
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FIGURE 3. Accuracy of linear modeling for inference and transmission latency. The figures show (i) the dependency between number of
FLOPs and inference time on an NVIDIA Jetson Nano, running either on CPU (figure 3a), or GPU (figure 3b), and (ii) the dependency
between transmission times and the size of the intermediary vectors sent between layers in a YOLOv2 model in figure 3c. Each figure
displays the correlation coefficient R2 for a linear predictor with zero value intercept.

to predict inference latencies, while taking run-time model
optimizations into account.

Inference latency prediction is further complicated by its
difference in behavior depending on the underlying hardware.
As an example, figure 3 depicts the dependency between
FLOPs and inference latency of a YOLOv26 [20] model on
CPU and GPU.7 With a linear model as inference latency
predictor, it is possible to evaluate the accuracy of such a
model by computing the correlation coefficient R2 of the
model on CPU and GPU. The coefficients, displayed in
figure 3, depict the difference in model accuracy between
CPU and GPU.

In equation 1, it is further assumed that processors use
their full capacity, which implies that multi-core processors
are modeled as single-core processors with a processing rate
equal to the sum of their core processing rates. It is also
assumed that the computing resource is shared evenly across
threads, i.e., a processor allocates the same proportion of its
time to each thread.

Across all nodes, the thread with highest latency sets
the inference throughput for the distributed DNN. Omitting
transmission latencies, this implies that once this limiting
thread is done computing a data frame, it directly starts
processing the next one. Other threads will have idle time
before processing the next data frame because their inference
latency is lower than this maximum latency, as shown on
figure 1.

Given a partitioning matrix P, the inference latencies can
be expressed as a single vector Tc of size N where the a-th
component is the highest thread inference latency on nodeNa,
i.e., Tca = T c(Na):

Tc = H · P · c (2)

where H is the diagonal matrix of inverse node processing
rates diag(η−11 , . . . , η−1N ) and c is the column vector of
individual layer consumptions (c1, . . . , cL).

6The YOLOv2 model was taken from the ONNX model zoo at
https://github.com/onnx/models/

7The device used for this experiment is an NVIDIA Jetson Nano.

C. TRANSMISSION LATENCY PREDICTION
The transmission latency can be predicted as follows: the time
it takes to send the amount of data si,j between layers Li and
Lj on edge (Na,Nb) over a link with measured throughput θa,b
is T ti,j(Na,Nb) = si,j/θa,b. The time to achieve data transfers
si,j ∈ E ′ ⊂ E over link (Na,Nb) is:

T t (Na,Nb) = θ−1a,b

∑
si,j∈E ′

si,j (3)

Similarly to the inference latency prediction, this implies
that the links are shared evenly between data transfers
from Na to Nb. The transmission latency prediction relies
on the estimation of the link throughput between nodes,
more precisely the goodput, i.e., the amount of useful data
transmitted per second.
Similarly to inference latency estimation, this is a first

order approximation, which efficiently offers good prediction
results, as shown in figure 3c, with a correlation coefficient of
R2 = 0.9998. The drawback of this method is its requirement
to saturate the links to get a throughput estimation.
Given a partitioning matrix P, the transmission latency

matrix Tt can be defined as a square matrix of size L, with
Tta,b = T t (Na,Nb):

Tt =
(
P · S · P⊤

)
◦2 (4)

where ◦ is the term by term product, or Hadamard product, 2
is the inverse throughput matrix, i.e., a square matrix of size
N with2a,b = θ−1a,b and S is the transmission size matrix, i.e.,
a square matrix of size L with Si,j = si,j if Li sends data to Lj,
0 otherwise.

IV. DNN PARTITIONING
The objective of DNN partitioning in this study is to
maximize the inference throughput, denoted by C , which
corresponds to the inverse of the maximum latency between
all the different computation and transmission latencies.
Given a partitioning P, the inference throughput is defined
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FIGURE 4. Tree representation of the space of all potential DNN
partitionings on a physical network of N nodes.

as:

C(P,GA,G) =
(
max
i,a,b

(
Tci ,T

t
a,b
))−1

(5)

Maximizing the inference throughput amounts to finding
the joint min-max between all the terms of Tc and Tt . This
can be defined as a discrete optimization problem:

min
P

max
i,a,b

(
(H · P · c)i ,

((
P · S · P⊤

)
◦2

)
a,b

)
s.t. J1,N · P = J1,L (6)

Pa,i ∈ {0, 1} ∀(a, i) ∈ [[1,N ]]× [[1, L]] (7)

with Ji,j being the all-ones matrix of size i× j, conditions (6)
and (7) require that each layer be placed on one and only one
node.

This optimization problem is a Mixed Integer Non-linear
Programming (MINLP) problem. The partitioning matrix
can be seen as the one-hot encoded version of a vector
of size (1 × L) with values in [[1,N ]]. MINLP problems
are NP-hard, implying that the complexity of finding an
optimal DNN partitioning isO(NL) since each of the L layers
can be placed on N nodes. There are several heuristics to
obtain optimal or sub-optimal solutions to this problem in
less time than a brute force algorithm, e.g., Genetic Algo-
rithms (GA) [21], Particle Swarm Optimization (PSO) [22],
or Branch and Bound (B&B) [23]. The chosen methodology
is an adapted B&B implementation, which is presented
in section IV-A.

A. BRANCH AND BOUND ALGORITHM
This section presents the branch and bound (B&B) adaptation
to the DNN partitioning optimization problem defined in
section IV.

In B&B algorithms, the solution space is represented by a
tree. The process consists of eliminating entire branches in
the tree based on the evaluation of the score of the root node.
This implies the existence of a tree topology which creates a
relationship between the score of a node in the tree and the
bounds on the scores of all of its leaves.

For this purpose, a partitioning P is represented as a
list p = (pi)1≤i≤L with ∀i ∈ [[1, L]], pi ∈ [[1,N ]]
corresponding to the node assigned to layer i. For example,
the partitioning matrix in Equation III-A is equivalent to

list p = (1, 1, 1, 2, 2, 1, 1), i.e., P is the one-hot encoded
version of p. With this representation, the space of all possible
partitionings can be modeled as a tree, as shown in figure 4,
with each node being a partial version of the full partitioning
list. The root node is an empty list, and at every stage s ≤ N
of the tree, the nodes are all possible lists of size s. The
children of a parent node of size s are all lists of size s + 1
beginning with the parent node. Partial lists of size s can
represent all partitioning lists which start with a given set of
s values.
This tree representation of the solution space favors the use

of the B&B algorithm in this study. Assuming ps is a partial
list of size s, the children of the node ps in the tree topology
are all lists which start with ps, i.e., all partitionings where the
first s layers are placed according to ps. The leaf node below
ps corresponding to ps padded with the last value of ps is
labeled p̃s. For example, if L = 5 and p2 = (2, 1), then p̃2 =
(2, 1, 1, 1, 1). Given T tmax = maxTt (p̃s) the maximum value
of the transmission latency matrix for partitioning p̃s, all leaf
nodes p below ps will have a higher maximum transmission
latency than p̃s, i.e., ∀p,maxTt (p) ≥ T tmax . This is explained
by the fact that given a partial partitioning, any displacement
in the other layers will only add data transfers between nodes.

During the process of looking for an optimal partitioning p,
which maximizes the inference throughputC(p,GA,GN ), and
given a current best achievable throughput best_throughput,
the B&B optimization consists of eliminating entire branches
of the tree representing the solution space by evaluating
transmission times in partial partitionings. This process
allows the B&B optimization to quickly eliminate numerous
cases compared to a brute force algorithm. For example, if the
throughput between nodes is low compared to the compute
capacity, e.g., with nodes connected through a low throughput
wireless connection, the optimal solution is often to keep all
computation on a single node. The advantage of the B&B
algorithm is that it terminates after N operations in such
simple cases by eliminating all partial partitionings in the first
stage of the tree. Conversely, in cases where links have higher
throughputs, the complexity of the B&B can be higher since
it will be unable to eliminate large branches.

B. BRANCH AND BOUND COMPLEXITY
The overhead caused by the total number of partitions in a
real world implementation is neglected in this approach. This
added latency is correlated with the total number of partitions.
With each partition, the data transfer from Network Interface
Controller (NIC) to memory causes an additional latency,
related to the PCIe throughput, memory throughput and
size of the transferred data. Assuming that the data transfer
throughput is limited by the memory throughput, a simplistic
evaluation of this latency would change the computation
latency in equation 1 to:

T c(Np) = ν−1
∑
(i,j)∈C

si,j + η−1p

∑
Li∈L′

ci (8)
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In this expression, ν is the memory throughput, i.e., the
read/write speed to and from the memory, and (i, j) ∈ C are
all the layers Li and Lj such that edge (Li,Lj) is a split point
with associated data transfer si,j.

1) EARLY STOPPING
With an increasing number of partitions, both the per-
formance and inference latency prediction accuracy will
decrease. For this reason, and for the increase of complexity
in cases with high available network throughput, an early
stopping mechanism is added to limit the number of
split points in the final partitioning, i.e., B&B will only
explore partial partitioning with a maximum of S split
points, further limiting the size of the explored tree. The
complete B&B algorithm with limited split points is shown
in algorithm 1.

Algorithm 1 Branch and Bound Algorithm
Input: GA,GN , S
Output: best_partitioning, best_throughput

queue← {[ ]}
best_throughput← C([1, . . . , 1],GA,G)
best_partitioning← [1, . . . , 1]
while queue is not empty do
get p from queue
generate all children p ∥ {i} ,∀i ∈ [[1,N ]]
compute ti the maximum transmission time Tt (p ∥ {i})
for i = 1 to N do

if ti > best_throughput−1 then
discard p ∥ {i}

else if ti ≤ best_throughput−1 then
if S(p ∥ {i}) < S then
add p ∥ {i} to queue

end if
if C(p ∥ {i} ,GA,GN ) > best_throughput then
best_throughput← C(p ∥ {i} ,GA,G)
best_partitioning← p ∥ {i}

end if
end if

end for
end while

Limiting the number of split points lowers the complexity
of thisMINLP problem. ForN the number of nodes, and L the
number of DNN layers, the number of possible partitionings
considered by the algorithm is now lowered to:

S∑
k=0

(
L − 1
k

)
N (N − 1)k (9)

instead of O(NL) for a brute force algorithm.

V. SIMULATIONS
This section presents simulations to evaluate the impact of the
algorithm parameters on the B&B algorithm performance and

complexity. The worst case complexity for B&B is described
in equation 9, when all of the transmission times computed
in the partial partitionings exceed the best achieved time,
but the effective B&B complexity varies according to the
DNN and network properties. The following variables are
explored:
• The relationship between number of nodes N and the
maximum allowed number of split points S, which
determines the required number of B&B iterations to
reach the optimal solution.

• The relationship between link throughput θ and
node processing rate η, which determines the exis-
tence of a partitioning which improves the inference
throughput.

These interactions are evaluated via the following metrics,
which can be used to compare the proposed method to the
literature:
• The achieved inference throughput, measured in infer-
ences per second.

• The number of B&B iterations to reach the solutions,
i.e., the number of explored partitionings in the solutions
tree. This metric is used instead of computation time
in order to abstract the used device performance. For
reference, when running B&B on a desktop computer
with an Intel Core i7 processor, it took 17 milliseconds
to run through 102 iterations, 1.269 seconds to run
through 104 iterations, and 5 minutes to run through
106 iterations.

To isolate each variable contribution, the simulations are
run in a homogeneous network scenario, i.e., all nodes have
an identical processing rate, and all links have an identical
throughput.

A. NUMBER OF NODES AND SPLIT POINTS
The set-up consists of a homogeneous network with process-
ing rates set at 5GHz (effective processing rate of a standard
edge device, e.g., a Raspberry Pi 48), and link throughputs
at 10MBps (effective throughputs for connections through
802.11). The number of compute nodes N on the network
varies between 1 and 6, and the maximum number of split
points S varies from 0 (keeping all computation on a single
node) to 5 (for a total of 6 partitions, spread across the
network).

Results are shown in figure 5. It can be observed in figure 5
that, forN > 2 nodes in the network, B&Bfinds partitionings
which can multiply the inference throughput by 1.9× to
2.3× the throughput of the unpartitioned solution S = 0.
By increasing the maximum number of allowed splits, S, the
algorithm is able to find better partitionings and improve the
inference throughput, at the expense of additional complexity,
as indicated in figure 5b.
Figure 5a also illustrates that the best achievable through-

put does not improve for maximum number of split points
above S > 3. With the given values in processing rate and

8https://www.raspberrypi.com/products/raspberry-pi-4-model-b
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FIGURE 5. Impact of the number of nodes N and the maximum number
of split points S on B&B achieved inference throughput (figure 5a), and
complexity (figure 5b), for a YOLOv2 model on a homogeneous network.

link throughput, increasing the maximum number of split
points does not affect the achieved inference throughput.
The main advantage of this observation is that it adds an
argument for limiting the B&B maximum split point value S.
Since the score stays identical while the complexity increases
significantly, choosing S = 3 under these conditions both
maintains a reasonable complexity and reaches the optimal
solution.

This limitation can be explained as follows: with the given
DNN and network properties, the optimal placement found
on N = 3 nodes, and a maximum number of splits S = 3,
adding a new node to the network, or a possibility for
another split point, will not lead to a better partitioning. In a
homogeneous network, this implies that any displacement
of layers to another node will imply transmission latencies
higher than the maximum computing latency of the current
partitioning. This leads to a bound on the value of S, after
which point the optimal partitioning is the best possible

achievable partitioning. This bound can be expressed as:

S =
T cmono

T tdisp
<

θ
∑

Li∈L ci
sminη

(10)

with T cmono the computing latency when keeping all compu-
tation on a single node, T tdisp the transmission latency caused
by a layer displacement, η and θ the node processing rate
and link throughput values in the homogeneous network,∑

Li∈L ci the sum of all layer consumptions in the DNN,
and smin the minimal inter-layer data transfer size. This
expression can be used to define an upper bound on the value
of S, and limit the B&B computation time.
For the remainder of this paper, experiments and sim-

ulations will be run with a maximum number of splits
S = 3 to limit the complexity of the algorithm, with
near optimal partitioning in the described set-up, which
corresponds to a typical edge scenario.

B. PROCESSING RATE AND LINK THROUGHPUT
The set-up consists of a standard implementation of
YOLOv2 [20], deployed on a network with N = 4 compute
nodes. B&B is run with a maximum number of split points
set to S = 3, for node processing rates between 0.1GHz
and 100GHz, and link throughputs between 1MBps and
10GBps. The ranges in value for processing rate and link
throughput were chosen to cover a wide spectrum of edge
scenarios:
• Processing rates between 0.1GHz and 100GHz cover
CPUs of systems on a chip, e.g., the Qualcomm
Snapdragon suite9 with processing rates between several
500MHz and 1GHz, and specialized AI embedded
systems, e.g., the NVIDIA Jetson TX2 module,10

with a measured processing rate of 30.7 GHz in the
experiments of section VI.

• Link throughputs between 1MBps and 10GBps corre-
spond to link throughputs covering 802.11g connections
at several MBps, and Gigabit Ethernet links.

Simulation results are presented in figure 6, composed of
two heatmaps, displaying the impact of link throughput and
node processing rate, on both the B&B achieved inference
throughput (in inferences per second) and complexity (in
number of partitionings evaluated by B&B). Level lines
are displayed to facilitate interpretation of the figures.
Darker colors on the figures correspond to lower inference
throughputs (respectively B&B iterations) and lighter colors
correspond to higher values, for a set-up of two devices
with the corresponding processing rate and link bandwidth
value.

Results show that achieved inference throughput and
B&B iterations increase with both processing rate and
link throughput. This is expected, since faster processors
yield faster inferences, and better link throughput creates
possibilities for improved partitionings.

9https://www.qualcomm.com/snapdragon
10https://developer.nvidia.com/embedded/jetson-tx2
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FIGURE 6. Impact of node processing rate and link throughput on B&B
achieved inference throughput (figure 6a) and complexity (figure 6b), for
a YOLOv2 model on a homogeneous network.

Additionally, these simulations highlight the existence of
distinguishable regions in the two heatmaps of figure 6. These
regions are separated by three boundaries, corresponding
to fixed link throughput to processing rate ratios: the
partitioning improvement boundary, the optimal partition-
ing boundary and the maximum complexity boundary,
displayed by the three dotted lines of figure 6. These
boundaries are detailed in sections V-B1, V-B2, and V-B3,
respectively.

1) PARTITIONING IMPROVEMENT BOUNDARY
The green dotted line separates the top-left region of
figures 6a and 6b, where the optimal solution consists
of keeping all the computation on the same node, and
the bottom-right region, where a non-trivial partitioning
that improves inference throughput exists. This boundary
corresponds to conditions on the ratio between link through-
put and node processing rate under which B&B starts

to explore improved solutions in algorithm 1: maxTt ≤
best_throughput−1. This is validated under the condition that
the smallest data transfer latency between nodes exceeds
the unpartitioned computing latency, i.e., the existence of
partitionings which improve the unpartitioned inference
throughput is subject to:

smin

θ
<

∑
Li∈L ci
η

i.e.,
θ

η
>

smin∑
Li∈L ci

(11)

with η and θ the node processing rate and link throughput
values in the homogeneous network,

∑
Li∈L ci the sum of all

layer consumptions in the DNN, and smin the minimal inter-
layer data transfer size. This expression is a particular case of
equation 10, with a number of split-points S = 1.
This result is essential, in order to understand DNN

partitioning. It defines a criterion on the region where
distributing inference can improve the overall performance.
In a homogeneous scenario, for every DNN, the link
throughput to node processing rate ratio θ

η
(which is a

property of the network) needs to exceed a deterministic
value described in equation 11 (which only depends on
properties of the DNN). This boundary is represented by
the green dotted line in figure 6 and corresponds to θ

η
≈

1.64 × 10−3 for the YOLOv2 implementation used in
this paper.

2) OPTIMAL PARTITIONING BOUNDARY
The red dotted line in figure 6 corresponds to θ

η
≈

9.52 × 10−3 and delimits the point of diminishing returns,
which is also the maximum achievable inference throughput
for YOLOv2. For higher values of the link throughput to
processing rate ratio θ

η
(bottom right), the achieved inference

throughput remains identical while the number of evaluated
partitionings by B&B continues to increase. The additional
evaluated partitionings have lower inference throughputs than
the optimal solution. This explains why the level lines in
figure 6a are horizontal in that region, since the inference
throughput only depends on the processing rate. Increasing
the ratio above this boundary (for example by changing
the links) does not yield better solutions, and increases
complexity.

3) MAXIMUM COMPLEXITY BOUNDARY
The blue dotted line represents the boundary of the region
in which the number of evaluated partitionings by B&B is
maximal, and corresponds to θ

η
≈ 0.168. On the bottom

right part of this boundary, increasing the throughput to
node processing rate ratio will not impact the complexity of
B&Bwhich has reached the maximum number of evaluations
it runs through to reach the optimal solution. Notably, the
maximum number of partitionings evaluated by B&B in the
worst case scenario is around 1.7×105, which remains below
the complexity of B&B with limited number of split points
S = 3 (around 1.9 × 106 iterations in this context), and
orders of magnitude below the brute force scenario, which
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would need to evaluateNL
≈ 1029 partitionings (for the given

YOLOv2 implementation with L = 49 layers).

C. DISCUSSION
Results of performed simulations allow to identify three
boundaries which delimit the scope of validity for DNN
partitioning in a homogeneous network. These boundaries
depend on the DNN and network properties and delimit
the conditions under which a partitioning can improve
the unpartitioned inference throughput. The partitioning
improvement criterion defines these conditions on the link
throughput to processing rate ratio, and can be anticipated
prior to the deployment.

While the optimal partitioning boundary and maximum
complexity boundary depend on the number of nodes N and
the maximum number of split points S, the location of the
partitioning improvement boundary is independent of these
variables, or the number of layers. The scope of validity of
DNN partitioning is independent of network or DNN size,
and only depends on the relationship between (i) θ

η
, which is a

property of the network, and (ii) smin∑
Li∈L ci

, which is a property

of the DNN.
Regarding complexity, it has to be noted that the opti-

mization process is a one-time operation that decides on a
partitioning which will remain relevant for long periods, i.e.,
longer than the order of magnitude of B&B computation
times depicted in figure 5. The necessity to recompute
a partitioning would only arise if the system experiences
persistent changes in the node processing rates or link
throughputs. In ‘‘healthy’’ network scenarios scenarios,
where faults, or events causing persistent changes, are rare,
this paper argues that partitioning computation times of B&B
can fit use-cases with one-time deployments.

In more constrained use-cases, the maximum number of
split points S can further act as a tuning parameter for
the optimization complexity, e.g., if the computation of an
optimal partitioning is more frequent, at the expense of the
achieved inference throughput.

Compared to works cited in section I-A, B&B can reach
optimal solutions with unlimited split points (S ≥ L − 1),
i.e., the best achievable solution in the problem space. The
time to reach these solutions increase with α. Nevertheless,
it is possible to observe from Figure 5a that this solution can
lead to higher inference throughputs than most methods cited
in section I-A which are limited to a single point (S = 1).

VI. EXPERIMENTS
This section presents experimental results evaluating the
accuracy of the model and the achieved inference through-
put improvement. Section VI-A describes experiments in
homogeneous scenarios with two identical nodes, performed
to test the validity the identified boundaries in the simulations
presented in section V. Section VI-B describes experi-
ments and presents results in networks with heterogeneous
nodes.

A. HOMOGENEOUS NETWORK
Four set-ups are presented in table 2, with details on links,
processing rates, and corresponding ratios.
• Set-up 1 corresponds to conditions above the partition-
ing improvement boundary in figure 6 (section V-B1)
where partitioning the DNN does not improve the
inference throughput (i.e., the set-up does not fulfill the
partitioning improvement criterion of equation 11).

• Set-up 2 corresponds to conditions between the par-
titioning improvement boundary and the optimal par-
titioning boundary (section V-B2). DNN partitioning
is expected to find partitionings which improve the
inference throughput.

• Set-up 3 corresponds to conditions between the optimal
partitioning boundary and the maximum complexity
boundary (section V-B3). This implies that B&B is
expected to find the best achievable partitioning for a
given model.

• Set-up 4 corresponds to conditions below the maximum
complexity boundary, i.e., the achieved partitioning is
optimal and the number of B&B iterations is maximal.

The values in table 2 are experimental and were measured
by benchmarking devices and links. Partitions are deployed
and run for a YOLOv2 model and a maximum number of
splits S = 3, for each of the experimental set-ups. The
inference is run on a 1280× 720 webcam video stream, with
30 frames available per second.

Figure 7 depicts the measured inference throughputs
during this process, and compares them to the predicted
inference throughputs and to the baseline, i.e., to the
throughput achieved by keeping all of the computation on a
single node.

The results correspond to the simulations and confirm the
existence of the four identified regions of figure 6.

B. HETEROGENEOUS NETWORK
In order to better understand DNN partitioning perfor-
mance in heterogeneous networks, this section presents an
experiment which considers the case of adding a single
device with varying capacities to a fixed set-up with a
single device. This experiment aims to both show results on
simple heterogeneous set-ups, and to illustrate the case of an
additional device being added to a network to improve the
overall performance, e.g., adding a processor in proximity to
a smart camera to increase its inference throughput.

The fixed node11 has a processing rate η0 = 14.7GHz,
and figure 8 shows the measured inference throughputs when
adding devices with varying processing rates to the network,
with two different link throughput values, compared with
their predicted values. The figure also depicts bounds on
achievable solutions: the lower bound is the unpartitioned
inference throughput, i.e., the throughput when placing all
computation on the fastest node, and the upper bound
corresponds to the throughput of a device with a processing

11The fixed processor is an NVIDIA Maxwell GPU (128 CUDA cores).
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TABLE 2. Experimental set-ups with measured properties, corresponding link throughput to node processing rate ratios, and associated B&B
computation times. Each experimental set-up corresponds to properties in one of the four separate zones identified in figure 6.

FIGURE 7. Achieved inference throughput and complexity for a YOLOv2 model in homogeneous experimental set-ups (table 2). Figure 7a compares
the achieved inference throughput with the unpartitioned throughput, and the B&B predicted throughput. Figure 7b compares the effective number
of iterations required to compute the partitioning with the maximum number of iterations for S = 3 split points.

FIGURE 8. Inference throughput improvement when adding devices with
varying processing rates η to a device with a processing rate of
η0=14.7GHz. The figure shows measured throughput values with their
standard deviation and compares them with the predicted inference
throughputs.

rate equivalent to the sum of both processing rates, i.e.,
corresponding to a perfectly even distribution of the inference
workload.

This experiment shows that under good link conditions,
i.e., above the partitioning improvement boundary (sec-
tion 11), the achieved inference throughput can be close to
the maximum achievable throughput. Notably, the expression
of the partitioning improvement boundary differs from its
expression in the homogeneous case (equation 11):

smin

θ
<

∑
Li∈L ci
ηmax

i.e., θ >
sminηmax∑

Li∈L ci
(12)

for a heterogeneous case with N = 2 nodes, with
ηmax being the maximum processing rate between the
two nodes.

This expression implies that for link throughputs below
the fixed value sminηmax∑

Li∈L ci
, optimal partitioning keeps all

computation on the fastest node, i.e., following the minimum
throughput line, as is the case when the nodes are connected
via a Wi-Fi connection with θ = 10MBps in figure 8.
For higher link throughputs, there exist partitionings which
improve the inference throughput, and inference throughput
values are higher than the lower bound in figure 8, as is the
case when the nodes are connected via Ethernet links with
θ = 1.4GBps.

VII. RESULTS, SCOPE, AND LIMITATIONS
This section describes key results from simulations and
experiments on the DNN partitioning approach, as well as a
discussion of their scope, limitations and ways to generalize
them.
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A. CONDITIONS FOR HOMOGENEOUS NETWORKS
Through simulations (section V) and experiments
(section VI), on homogeneous networks, the paper has
identified and described conditions, bounds, and closed
expressions, for performance and complexity of DNN
partitionings. Under the assumption of homogeneity (i.e.,
nodes and links in the underlying network having equivalent
capability), these expressions allow to dimension appropri-
ately the underlying network, and predict the partitioning
outcome.
• The partitioning improvement boundary (section V-B1)
describes the conditions under which there are parti-
tionings that improve the monolithic inference through-
put. This is extended to the heterogeneous case in
equation 12, and allows to estimate the values of
link bandwidth and node processing rate, necessary to
achieve an inference throughput improvement.

• The upper bound on the number of split-points necessary
to achieve an optimal solution (equation 10) is the
maximal number of split-points worth considering,
to minimize the B&B computing time, while accessing
maximal inference throughput.

• The maximal B&B complexity, with a chosen maximum
number of split-points (equation 9).

These results allow to derive, under conditions of perfect
distribution of workload over homogeneous nodes and links,
an upper bound on the achievable inference throughput of the
partitioning strategy:

C(P,GA,G) < min

(
ηmin (N , S)∑

Li∈L ci
,

θ

smin

)
(13)

The validity of these expressions is subject to the network
homogeneity assumption. For non-homogeneous networks,
the derivation of similar performance and complexity bounds
is, of course, specific to the characteristics of the considered
network.

B. SCOPE AND LIMITATIONS
This section discusses the limitations of this work, and
the presented assumptions, to illustrate their scope of
applicability.

1) INPUT DATA
The study has used the DNN partitioning framework on video
stream data applications. Although the study has not proven
its applicability to other data types, there are no assumptions
in the modeling restraining this partitioning method from
applying to other applications, e.g., audio, text, or telemetry
data. The only limiting assumption in this study is that the
model used a feed-forward DNN, with data of constant size
across requests.

2) OPTIMIZATION PROBLEM DEFINITION
This study focuses on use-cases which require a maximal
inference throughput, omitting optimization objectives such

as the ones included in the related work of section I-A,
e.g., latency, energy consumption, cost, or a combination of
these previous metrics. However, the presented assumptions
and modeling can be exploited to describe other use-
cases. For example, DNN partitioning can cover contexts
which:
• jointly optimize several metrics, e.g., throughput,
latency, energy consumption, monetary cost, drop rate,
node up-time, link usage, etc.

• dynamically adapt what metric to optimize depending
on the received data. For example, DNN partitioning
application on video streams can choose to optimize
throughput to avoid missing detections, and switch to
latency when an event occurs in the system, to enable
low response times.

• add other constraints to the MINLP problem, e.g., a
minimal number of split points, a partial node to layer
mapping, e.g., in order to keep sensitive computation on
dedicated nodes.

All these assumptions can be expressed as optimization
objectives, or constraints in the discrete optimization problem
of section IV.

3) LIMITS OF EXPERIMENTAL RESULTS
As described in section VI, the space of possible DNNs and
edge networks is too large to explore fully. The experiments
have been designed to confirm the boundaries identified
in the simulations of section V, and to illustrate a simple
heterogeneous use-case. This study also has assumed that the
network properties remain fixed over time.

Completely exploring the influence of other parameters
on the DNN partitioning performance and complexity, e.g.,
the number of compute nodes and number of split points
in large networks, the complexity of DNN structures, the
heterogeneity of layer consumptions and data transfer sizes,
or the heterogeneity of link bandwidths and processing
rates in large networks — and providing a more thorough
understanding of how the system behaves in cases where
(i) other processes are dynamically allocated to compute
nodes, (ii) links are dynamically used by other processes,
or (iii) faults occur on the system (e.g., node failure, routing
change, packet drops) — requires additional experiments,
following the pattern and methodology of those presented in
this paper.

VIII. CONCLUSION
Deploying DL applications in the cloud is convenient because
it allows on-demand easy access to computing resources.
However, latency or privacy sensitive applications may not
be able to exchange data and models with the cloud, while
still requiring the same inference throughput to run with
good performance. In such cases, DNN partitioning can offer
a complementary alternative to hardware acceleration and
model optimization to increase inference throughput. This
paper has described such an approach to DNN partitioning,
which extends previous works by allowing for multiple
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split points and multiple threads, and shown to achieve
higher inference throughputs than single split point DNN
partitioning.

In this context, this paper has quantified the limitations
of inference and transmission latency prediction in edge
environments. With these assumptions, the DNN partitioning
problem is defined as an optimization process, with the
objective of maximizing the overall inference throughput.
This paper has then introduced a branch and bound algorithm
to find optimal DNN partitionings, with a theoretical analysis
of its complexity and achieved inference throughput results.

This analysis has led to the identification of the partitioning
improvement boundary, a deterministic bound on the network
and DNN properties under which a performance improve-
ment can be achieved by partitioning, as well as the cost
to compute such solutions, and their expected performance,
in a homogeneous network context. This result is essential in
understanding DNN partitioning because it defines the scope
of validity of this approach, and only depends on (i) the DNN
data transfer size to layer consumption ratio, and (ii) the link
throughput to processing rate ratio of the underlying network.

Inference throughput accelerations and defined theoret-
ical boundaries are evaluated through experimental set-
ups under varying network conditions. The experimental
results also illustrate the behavior of DNN partitioning under
heterogeneous network conditions, highlighting the use-case
of incrementally adding processing capacity to accelerate
inference throughput. These results enable sizing of both
DNN and underlying network properties to achieve inference
throughput improvements, even prior to the deployment, with
deterministic conditions on the necessary link throughputs to
enable a maximal inference throughput acceleration through
partitioning.
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