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ABSTRACT Current deep learning-assisted brain tumor classification models sustain inductive bias and
parameter dependency problems for extracting texture-based image information. Thereby concerning these
problems, the recent development of the vision transformer model has substituted the DL model for
classification tasks. However, the high performance of the vision transformer model depends on a large-scale
dataset as well as self-attention calculations between the number of image patches which result in a quadratic
computational complexity. To address these problems, the vision transformer must be data-efficient to be
well-trained with a limited amount of data, and the computational complexity must be linear with the
number of image patches. Consequently, this paper presents a novel linear-complexity data-efficient image
transformer called LCDEiT for training with small-size datasets by using a teacher-student strategy and
linear computational complexity concerning the number of patches using an external attention mechanism.
The teacher model comprised a custom gated-pooled convolutional neural network to provide knowledge to
the transformer-based student model for the classification of MRI brain tumors. The average classification
accuracy and F1-score for two benchmark datasets including Figshare and BraTS-21 are found 98.11% and
97.86% and 93.69% and 93.68% respectively. The results indicate that the proposed model could have a
great impact on medical imaging-based diagnosis where data availability and faster computations are the
main concern.

INDEX TERMS Brain tumor, classification, external attention, MRI, transformer.

I. INTRODUCTION
The mortality rate due to brain cancer can be minimized by
detecting brain tumors of the specific class in the earlier stage.
Several imaging techniques such as computed tomography
(CT), positron emission tomography (PET), and magnetic
resonance imaging (MRI) have an impact on the earlier
detection of brain cancer. Among these, MRI has mostly
used imaging techniques in the medical field [1], [2]. The
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identification of brain tumors from these imaging techniques
can lead to a false diagnosis which may cause a threat to
life [3]. Therefore, the utilization of an automated system for
quickly identifying the correct brain tumor class can aid a sig-
nificant role in traditional imaging techniques [4]. Currently,
automated systems are developed based on advanced technol-
ogy such as machine learning (ML) [5], [6], [7], [8], [9] and
deep learning (DL) [10], [11], [12], [13], [14] algorithms to
identify the brain tumor classes precisely. However, the ML
techniques have limitations to process image-type datasets
as handcrafted feature extraction is needed before data

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 20337

https://orcid.org/0000-0001-7487-1915
https://orcid.org/0000-0003-0031-9284
https://orcid.org/0000-0002-8251-5168
https://orcid.org/0000-0001-8806-708X
https://orcid.org/0000-0001-6347-7509
https://orcid.org/0000-0002-9352-0237


G. J. Ferdous et al.: LCDEiT: A Linear Complexity Data-Efficient Image Transformer for MRI Brain Tumor Classification

processing [15], [16]. On the other side, DL techniques have
the advantages to extract meaningful features automatically
before classification [17].

In earlier studies, convolutional architecture dominates
the DL field for computer vision tasks such as classifica-
tion, segmentation, object detection, and recognition. The
Pre-trained convolutional neural network (CNN) i.e., residual
neural network (ResNet) has outperformed the other convo-
lutional network architecture [18] for the classification task.
The CNN models are most case architecture-specific due to
depending on the parameter and training procedures. More-
over, it focuses on texture information based on the assump-
tion to generate output using locality and weight-sharing
features which leads to inductive bias. Therefore, the vision
transformer (ViT) model is developed as a replacement
for the CNN model due to having better computational
efficiency and scalability. The ViT model incorporates a self-
attention-based core transformer model for finding the rela-
tions between non-overlapping patches of the image. Then,
the parallelly executed multiple self-attention task called
multi-head self-attention pays attention to a particular image
feature for classifying the images into their actual class using
a fully connected dense layer [19]. However, the performance
of ViT model is limited to two concerns. One is a large-sized
dataset requirement for optimal model accuracy. The other
one is quadratic computational complexity w.r.t image size
due to the employment of a self-attention mechanism. From
these two concerns, the advanced ViT model called the Swin
transformer focus on complexity concern which is linear to
the image size. The computation is performed by calculating
non-overlapping window-based local self-attention. Where
the complexity is linear by computing self-attention through
a shifted window between consecutive layers [20]. However,
the requirement of sufficient data for the high performance
of the Swin transformer is still a problem to be looked
up. On the contrary, the Data-efficient image transformer
(DEiT) is only capable of handling small-sized data with
the help of a teacher model. A distillation token helps the
student model to adapt the knowledge of the teacher model
through attention [21]. Where the multi-head self-attention
computes the relation between the patches which leads to
quadratic complexity concerning the number of patches. For
this reason, the self-attention technique can be replaced by
an external attention mechanism that is based on a learnable
memory unit to reduce the quadratic computational complex-
ity of classification tasks [22]. Therefore, to overcome the
two limitations presented in the ViT model such as enormous
dataset requirements and quadratic computation, a model
needs to be data efficient and computation needs to be lin-
ear to image size without compromising the model accu-
racy. The primary contributions of this work are outlined as
follows:

• A linear complexity data-efficient image transformer
(LCDEiT) is developed to classify brain tumors that
can provide a great impact on future medical imaging
fields.

• A custom-gated pooled CNN network is employed
as a teacher model to distill knowledge to a
transformer-based student model for providing data effi-
ciency by reducing the requirement of a large dataset and
contributing to calculating the cross-entropy loss.

• A multi-head external attention mechanism is intro-
duced to provide a linear computation w.r.t number of
patches which ultimately reduces model training param-
eters and time without compromising the classification
accuracy.

The residual part of the paper is organized as follows:
Section II presents an overview of the related research on
the classification task. A detailed explanation of the proposed
methodology is presented in section III. The description of the
dataset and evaluation matrices are outlined in Section IV.
The result is described in detail in Section V with some
performance measurements. A comparative analysis with the
state-of-the-art models is presented in discussion Section VI.
Finally, the conclusion and future directions of the paper are
drawn in Section VII.

II. RELATED WORK
Earlier studies commenced with the ML algorithm as a base
model for computer vision tasks. For instance, M. A. et al. [8]
performed a gray-level co-occurrence matrix (GLCM) for
statistical feature extraction and discrete wavelet transform
(DWT) for brain tumor segmentation which augment the per-
formance and shrivel the complexity. The noise emerged due
to segmentation is eradicated bymorphological operation and
then classification is performed by a support vector machine
(SVM) classifier. Moreover, Prabhpreet et al. [9] proposed an
MRI brain tumor detection technique including several stages
such as tumor segmentation, and statistical feature extraction
followed by binary classification into benign and malignant.
A modified medial filtering and multi-vector segmentation
method support the SVM classifier for tumor classification.
For the ML-based classifier, the generation of statistical
features from raw images is handcrafted and user-specific
which results in degrading model performance. Thereby, the
later studies treated CNN as the standard framework for
computer vision tasks due to the ability to extract important
features automatically from the raw images. Ghosal et al. [18]
employed a squeeze and excitation ResNet model based on
CNN for the image classification task. In addition, the utiliza-
tion of zero centering and intensity normalization provided
smooth variation in the intensity which increases the effec-
tiveness of the classification task. However, the CNN-based
architecture is restricted to local features and the model per-
formance is affected by the inductive biasing problem. There-
fore, transformer-based architectures are developed to extract
global information from the input images. In one study,
Dosovitskiy et al. [19] proposed a ViTmodel to act on several
computer vision tasks including classification, segmentation,
detection, and recognition. The individual tasks initiated with
making patches from images and feeding the projection of
images into the transformer encoder. Then, the output of
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FIGURE 1. Illustration of proposed linear complexity data efficient image transformer (LCDEiT). (a) Gated-pooled based customized CNN teacher
model, (b) Multi-head external-attention mechanism for transformer based student model.

the encoder was applied for specific task prediction. The
requirement of a vast dataset for training is one of the main
bottlenecks of this work. Another limitation such as quadratic
complexity w.r.t image size is present in the work due to the
multi-head self-attention mechanism. To pay attention only
to the complexity concern, Liu et al. [20] introduced a Swin
transformer where self-attention was computed between non-
overlapping windows, which results in linear complexity to
image size. However, the requirement of an enormous dataset
is still a problem for the superior performance of the Swin
transformer. Moreover, to focus only on the large dataset
problem, Touvron et al. [21] proposed a model called DEiT
that relied on a distillation token tomake amodel well-trained
with insufficient data. The pre-trained RegNetY-16GF-based
teacher model distilled knowledge to the transformer-based
student model through a distillation token. Where the student

model employed a multi-head self-attention mechanism for
final classification that leads to computational complexity
quadratic in nature. In another study, Tolstikhin et al. [23]
developedMLP-Mixer architecture for computer vision tasks
that eliminated convolution as well as the self-attentionmech-
anism. The work was mainly based on multi-layer percep-
tion for token mixing and channel mixing separately. Then
linear layer was used for the final classification. But the
degradation of accuracy compared to ViT and the require-
ment of large data is still an issue for this work. Moreover,
Wang et al. [24] proposed a pyramid ViT that employed a
linear-complexity attention layer by spatial reduction atten-
tion (SRA) and tokenized images with overlapping patch
embedding to extract local continuity of information. The
utilization of SRA makes the computational complexity lin-
ear, however, the vast amount of data is still necessary to
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get optimum results. For this reason, Lee et al. [25] utilized
shifted patch tokenization (SPT)model to embedmore spatial
information in the visual token where the spatially shifted
images were concatenated with the input image. The Local
self-attention (LSA) mechanism sharpens the distribution
of attention scores to reduce smoothing problems but the
complexity is still quadratic with the image size. Moreover,
Trockman et al. [26] designed a conv-mixer model that
used convolution for mixing spatial and channel dimensions.
Where depth-wise convolution mixed spatial location and
after that pointwise convolution mixed channel location to
increase data efficiency. This model is designed with com-
promising the accuracy performance of small-sized datasets.
Similarly, the Shift-ViT model introduced byWang et al. [27]
replaced attention with zero parameter shift operation. The
model classification was performed by linear layer. The elim-
ination of attention operation in the model results in no
complexity concerns but the vast amount of data is still a
problem for superior model performance. On the other hand,
Zhang et al. [28] used a transformer for covid-19 diagno-
sis from the chest CT images. After the segmentation of
lung images with UNet, Swin transformer is used for fea-
ture extraction. However, this model also suffers enormous
data requirement problems related to the Swin transformer.
To concern this limitation, Zhiqin et al. [29] employed shifted
patch tokenization on swin transformer for a specific task of
brain tumor segmentation by fusing deep semantics and edge
information of multimodal MRI. Despite performing linearly
complex able feature extraction using swin transformer, the
edge feature extraction is CNN sensitive which may lead
to an inductive biasing problem. In another work, a spatial-
channel feature preserving vision transformer (SCViT)
proposed by Pengyuan et al. [30] extracted long-range depen-
dencies between features and considered the contribution
of the different channels in the classification by comput-
ing lightweight channel attention. This version of ViT suf-
fers from both limitations such as quadratic complexity
and vast data requirement. Similarly, Bazi et al. [31] used
a ViT for remote sensing image classification with sev-
eral data augmentation techniques such as cutmix, cutout,
and mixup to get sufficient data to train. Without com-
promising the accuracy, half of the layers from the model
are pruned to reduce parameters and complexity. Moreover,
Wang et al. [32] proposed vision transformer-plus (ViT-P)
architecture which made a balance between category imbal-
ances by applying deep convolutional generative adversarial
networks (DCGAN). Then, channel attention correlated with
different channels and obtains important features of each
channel for the classification task. The performance of the
architectures used in works [31] and [32] is limited by the
core two limitations of the ViT model.

In summary, the existing transformer-based classification
model suffers from the calculation of self-attention leads to
computational complexity quadratic to the number of pixels
and the requirement of an enormous dataset for superior
classification results. Therefore, the utilization of an external

attention-based transformer model as a student model and
a customized gated-pooled-based CNN model as a teacher
model can overcome the deficiency of the state-of-the-art
classification models.

III. LCDEiT FRAMEWORK
Figure 1 illustrates the proposed LCDEiT framework forMRI
brain tumor classification. Where a teacher-student strategy
allows the student model to learn through external atten-
tion and distill knowledge from the teacher model. A gated-
pooled-based customized CNN model is utilized as a teacher
model that provides data efficiency flexibility to the student
model for classification on small-sized datasets. The cus-
tomized gated pooled CNN is designed to generalize the
model based on the data fed into it. The teacher model con-
tributes to calculating and minimizing the total cross-entropy
loss in the overall LCDEiT architecture. Moreover, an exter-
nal attention-based transformer model is employed as a stu-
dent model which calculates the attention between patches
linearly for final classification. Additionally, a descriptive
explanation of the overall classification procedure is given in
the subsequent subsections.

A. IMAGE PROCESSING
Initially, the raw images of size (512 × 512) are resized into
(32 × 32) before patch patching. As the transformer process
sequence of image patch tokens, a fixed-size input image is
initially converted to non-overlapping patches of fixed size.
The raw image, I with dimension (H×W) ∈ R32 and the
patch with resolution (P×P) ∈ R2 generates a total number
of N ∈(H×W)/P2 ∈ R256 patches. Equation (1) presents the
formulation of patch matrix, IPatching from the raw image.
Then, the IPatching are projected to a feature vector using a
linear layer that conserves a fixed dimension, D ∈ R64 which
results in a patch token, Ip. After that, position embedding,
Epos is added to each patch token, Ip to retain position infor-
mation that formulated projected output, IProjection.

IPatching =

 [P1] · · · [P16]
...

. . .
...

[P241] · · · [P256]

 (1)

IProjection =



[IP11
. . . IP641

] + Epos1
...

[IP116
. . . IP6416

] + Epos16
...

[IP1241
. . . IP64241

] + Epos241
...

[IP1256
. . . IP64256

] + Epos256


(2)

B. CLASS TOKEN
A trainable classification token, Tc is prepended to the gen-
erated IProjection to feed into the transformer encoder. Where
the token is applied to the classification head for tumor class
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prediction. The transformer encoder makes an interrelation
between patch tokens, Ip and classification tokens, Tc through
external attention with a dimension of D∈R64, but the clas-
sification token is only responsible for predicting the final
output. Moreover, the classification token calculates the stu-
dent loss in the training stage and the final class in the testing
stage.

C. DISTILLATION TOKEN
Another token called the distillation token, Td is added to the
IProjection and Tc to establish a relationship through external
attention in the transformer encoder. The distillation tokens
prediction is contributed to calculating distillation loss in
the training stage and the average of prediction from the
classification and distillation token is used at the testing stage
for final classification.

Tin =
[
Tc; IProjection;Td

]
(3)

The input of the transformer encoder, Tin are formulated
with a dimension of {N+2 (two tokens) × D} ∈ R258×64

by adding two class tokens such as Td and Tc with IProjection
simultaneously. The classification and distillation tokens are
initialized by zero having dimension, D ∈ R64 and updated
during training.

D. TRANSFORMER ENCODER
The transformer encoder, TE consists of multi-head external
attention (EA) followed by multi-layer perception (MLP).
The details of the EA are described later in the later subsec-
tion. The MLP block consists of two fully connected linear
layers with an activation function of the gaussian error linear
unit (GELU). The number of nodes in two fully connected
layers is equal to the projected feature dimension, D ∈ R64.
Moreover, a skip connection is maintained on both EA and
MLP to ensure feature reusability and solve the degrada-
tion problem. The normalization layer in both EA and MLP
blocks normalizes the summed input to reduce dependencies
between instances. In this work, a stack of eight identical
transformer encoders is used having 4-head EA and an MLP
block of [64, 64] units. Moreover, TABLE 1 specified all the
required parameters of the transformer-based student model
in the proposed LCDEiT architecture. Additionally, TABLE 2
depicts the shape and number of parameters of several blocks
presented in the student model. The image is patching with
dimension (2 × 2), which results in N ∈ R256 patches per
image. Then, the patches are projected to a fixed feature
dimension, D ∈ R64. Therefore, the shape of the projec-
tion block is (256, 64). Then, the TE allows patch token
with two extra tokens such as classification and distillation
tokens which cause the shape of (258, 64). Both the shape
and parameters of TE is retained the same throughout the
eight stacked transformer encoders that allow controlling
the parameter count of the overall transformer-based student
model.

E. EXTERNAL ATTENTION
The core function of the transformer encoder, TE is based
on the EA mechanism that provides linear complexity to the
proposed method. Figure 2 illustrated a visualization of the
complexity assessment of self-attention (SA) and external
attention (EA). In the traditional SA mechanism, query (Q),
key (K), and value (V) vector is generated from each patch.
The matrix multiplication of Q and K results QKT . Then,
normalization of this output is again matrix multiplied with V.
Calculating attention in this way leads to the requirement of
N operation for a single patch where N is the total number of
patches in an image. Therefore, the completion of attention
calculation for the whole image requires N2operation. This
functionality is depicted in FIGURE 2(a) where an image
consists of N ∈ R256 patches and calculation of attention for
each patch, SAPatch_1 need N ∈ R256 operations that lead to
the quadratic computational complexity O (N2) to calculate
whole image attention.

SAPatch_1 =

∑256

N=1
Norm(Q1KT

N )VN (4)

On the contrary, the mechanism of EA computes the
pixel-wise relation between patches of images and mem-
ory units. Two learnable parameters that are indepen-
dent of input features are introduced externally as a key
memory unit, Mk and value memory unit, MV . Only the
query vectors generated from normalized patch tokens,
Tin−norm leads to a reduction of the input-dependent vari-
able. It allows an increment of the robustness of the

FIGURE 2. Visualization of complexity assessment of self-attention (SA)
and external attention (EA) mechanism.
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model as compared to self-attention where all three vec-
tors (Q, K, V) are generated from the patch. An illus-
tration of EA mechanism is presented in FIGURE 2(b)
where an image having N ∈ R256 patches and attention cal-
culation for a single patch, EAPatch_1 need only one operation
which helps to achieve linear computational complexity O
(N) for whole image attention over SA.A generalized version
of the whole EA process is depicted in (5).

EAPatch_1 = Double− Norm
(
Q1MT

K

)
MV (5)

The computation of correlation between input patches and
shared memory is utilized by employing only two linear
layers and two normalization layers. The matrix multiplica-
tion of the self-query vector and learnable key memory unit,
Mk is double normalized. Then this attention map, Am is
again matrix multiplied with the learnable value memory
unit, MV which generates external attention output, Tout
(see FIGURE 1(b)). In the transformer encoder, the normal-
ization of Tin is performed and the produced normalized patch
tokens, Tin−norm is fed into a multi-head external attention
block. For both key and value memory units, the dimension
is chosen (Mk , Mv) ∈ R16.

Am = Double− Norm (Tin−normMT
k ) (6)

Tout = AmMv (7)

TABLE 1. Parameters in the student model of proposed LCDEiT
architecture.

TABLE 2. Properties of blocks in the student model of LCDEiT
architecture. (D1 and D2 indicate required parameters for
Figshare and BraTS-21 datasets respectively).

Double normalization technique utilizes normalization
technique twice by separately normalizing both columns and

rows to handle the sensitivity of the input features scale.
At first, single normalization is applied to the matrix multi-
plied output of query from patches and key memory unit. The
exponent of each element is divided by a row-wise summation
of the exponential of each element where R ∈ R258 as patch
tokens with additional two tokens make a total of 258 rows.
Then the output of single normalization, Snorm is again nor-
malized by dividing with the column-wise summation of all
single normalized vectors which is referred to as a double nor-
malized vector,Dnorm where C∈R64 as the feature dimension
is 64. The equation of double normalization is depicted as
follows:

Snorm=exp
(
Tin−normMT

k

)
/
∑

R=258
{exp

(
Tin−normMT

k

)
}R

(8)

Dnorm = Snorm /
∑

C=64
{Snorm}C (9)

The multi-head EA is performed by repeating the EA com-
putation multiple times in parallel, each of these is referred
to as attention head, h. This process leads to a boost in per-
formance by extending the learning capability of the model
to capture different aspects of the relation between patches.
Query vector from each patch is transformed independently
into H linearly projected query vectors using dense layers
where H refers to the total number of heads. These projected
query vectors, external key, and value memory units are
embedded to calculate the attention scoreH times in parallel.
Then concatenation of the H attention score for each head,
(h1, . . . , hH ) is transformed with another linear projection
matrix, Wo which refers to the multi-head external attention
output, Tmulti_head . This transformation matrix helps to make
the dimension of input and output consistent.

Tmulti_head = Concatenation (h1, h2, . . . .., hH )Wo (10)

In this work, 4-head external attention is computed to extract
the relation between patches. Four query vectors are extracted
from a normalized patch token and after double normaliza-
tion, four attention maps are found.

F. TEACHER MODEL
The teacher-student strategy works based on a knowledge
distillation framework. Knowledge distillation is a model
compression techniquewhere a heavy-weight complexmodel
transfers knowledge to a lightweight student model. A strong
image classifier such as a convolutional neural network or
transformer can be utilized as a teacher model. Earlier studies
imply that the ConvNet teacher model performs better than
the transformer-based teacher model. In this work, the core
idea of knowledge distillation is utilized in a slightly different
way as one of our concerns is to reduce complexity. Instead
of taking a heavy-weight model to distill knowledge into a
studentmodel, a customized lightweight gated pooled CNN is
utilized which can learn complex patterns [40] from the data
fed into it in replacement of RegNetY-16GF as used in the
traditional teacher model. The less complexity property of the
teacher model provides fewer parametric quantity that leads
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Algorithm 1 External Attention Based MRI Brain Tumor Multi-Classification
Input: Input Image I,
True Label of Image y.
Output: Predicted Class of Image PF .
#Student Model #Multi-Head External-attention Block in
1. Training Stage: Transformer Encoder
1.1. Image patching and concatenating 1. Attention Map: Normalized patch tokens is

classification, Tc and distillation token, Td matrix-multiplied with key memory and double
1.2. Feeding into transformer encoder, TE normalized.

Tc= T e(T c) Am = Doublc− Norm (Tin−normMT
k )

Td= T e (Td) 2. External Attention: Attention map is matrix-
1.3. Prediction from classification token: multiplied with value memory.

Pc= Classification-Head (Tc) Tout = AmMv
Prediction from distillation token: 3. Multi-Head External Attention: Tout for each

Pd= Distillation-Head (Td ) head is concatenated.
Prediction from teacher model: PT #Teacher Model

1.4. Student cross-entropy loss: 1. Gated Pooling:
SLoss = LCE (Pc, y) #This operation is repeated twice

Teacher cross-entropy loss: 1.1. Extractedfeatures from image, I :

TLoss = LCE (PT ,Pd ) Fr= Conv+ReLU (I )
Total cross-entropy loss: Average of 1.2. Mixing proportion, β = σ (MTF1)
SLoss and T Loss P.qated = β ∗MaX-pooling(F1)+

T l = 0.5 ∗(SLoss + TLoss) (1- β) ∗Avg-pooling(F1)
2. Testing Stage: 2. Convolution Operation:

Predicted class: Average of tokens prediction F2 = Conv+ReLU (Conv+ReLU (P.qated ))
PF= 0.5 ∗(Pc + Pd )

3. Gap= Global-average-pooling (F2)
4. Fc= Dense (Dense (GAP)
5. Classification: PT =Soft-max (Dense (Fc))

to less computational effort. However, to make the model
more responsive to the characteristics present in the features
extracted by the Conv layer, a gated max-average pooling
layer is employed. The gated pooling function provides a
boost of invariance properties compared to traditional pooling
which results in reducing the inductive biasing problem [40].
Initially, the input raw images are fed into the convolutional
(Conv) layer and rectified linear unit (ReLU) activation func-
tion. Then, a gated pooling operation is performed by the dot
product of a gatingmask,M, and Conv features, x. Finally, fed
it into the sigmoid function, σ to get the mixing proportion
of max pooling, Pmax and average pooling, Pavg to produce
gated pooling, Pgated .

Pgated (x) = σ
(
MT x

)
Pmax(x) + (1 − σ

(
MT x

)
)Pavg(x)

(11)

Therefore, the mixing proportion is varied depending on the
characteristics of the region being pooled. In the teacher
model, at first two times, the Conv and gated pooling opera-
tion are performed and then used two consecutive Conv layers
followed by the RELU activation function. Later, the use of
two consecutive Conv layers without utilizing the pooling
layer reduces the number of parameters in CNN. Then,

instead of utilizing flatten layer, we use global average pool-
ingwhich reduces each featuremap to a single number by tak-
ing an average of all pixel values whether flatten layer makes
the 2D vector into a 1D vector only. It also helps the model to
reduce the number of parameters, hence reducing the overfit-
ting problem. Then two dense layer is used to deeply connect
to the neurons and another dense layer with a soft-max
activation function is used for the teacher’s prediction. The
layer properties and parameters of the teacher network
having altogether 11 layers are summarized in TABLE 3.
The model is trained with the same Figshare and
BraTS-21 datasets having an accuracy of 88.00% and
92.85%. The adequate performance of this teacher model
helps to learn the local detail information as a distillation
token to the transformer-based student model that is normally
unable to capture andminimize total cross-entropy loss which
ultimately leads to the reduction of misclassification.

G. STUDENT AND DISTILLATION LOSS
Student loss refers to cross-entropy loss calculated among
true labels from the original dataset and prediction of clas-
sification token. The teacher model contributes to calcu-
lating cross-entropy distillation loss among the prediction
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of the teacher model and distillation token. The total loss
is measured by averaging the student loss and distillation
loss. Therefore, the total loss, TL is calculated by using
equation (14) where PT , Pc,Pd , and y denotes the predic-
tion from the teacher model, classification token, distillation
token, and true label from the original dataset respectively
and LCE is cross-entropy loss function.

TL = 0.5 ∗ (LCE (y, Pc) + LCE (PT ,Pd )) (12)

where

LCE (y,Pc) = −

∑M

i=1
y(i)log(Pc(i)) (13)

LCE (PT ,Pd ) = −

∑M

i=1
PT (i)log(Pd (i)) (14)

The equation of cross entropy loss is depicted in equa-
tions (13) and (14) where M is the total number of classes
in a dataset. For the Figshare dataset, M ∈3, and M ∈4 for the
BraTS-21 dataset.

H. CLASSIFICATION
To know the class of the test images, the prediction from
the classification token and distillation token are fed into the
final classification layer. Equation (15) presents the mean
prediction from both tokens to get the predicted class of the
test image.

PF = 0.5 ∗ (Pc + Pd ) (15)

Here, PF is the final prediction and Pc, Pd are predictions
from classification and distillation tokens. The test image fed
into the model is patched and concatenated with both tokens.
Then the prediction from the classification and distillation
head is averaged to get the final prediction.

TABLE 3. Layer properties of the teacher model of the proposed LCDEiT
framework. (D1 and D2 indicate the Figshare and BraTS-21 datasets
respectively).

I. MODEL HYPERPARAMETERS
Hyperparameter selection is an important factor, to train
the proposed model for superior results. TABLE 4 rep-
resents the optimal values of the hyperparameters of the

TABLE 4. Hyperparameter settings of proposed LCDEiT architecture.

proposed LCDEiT model. The model is compiled using
AdamW optimizer with a learning rate of 0.00025 and fitted
with a batch size of 512. Moreover, the model training is per-
formed for 30 epochs per fold. Furthermore, the categorical
cross-entropy is chosen as a loss function to compute student
and distillation loss.

IV. EXPERIMENTS
For conducting training and testing of the proposed
model, the Google Colab platform is used with Python
version 3.7.13. The Model is implemented using
Keras = 2.8.0 with TensorFlow = 2.8.2 framework. The
NumPy= 1.21.6 and Scikit-learn= 1.0.2 packages have been
used for image data preparation and evaluation respectively.
During the training, the model occupied 3.80 GB RAM and
38.79 GB of disk space in the Colab environment. In this
experiment, a random division of the dataset into ten approx-
imately equal portions is taken and one part in sequence
each time is used as the test set and the rest is used as the
training set. For every fold, the model is fitted on the different
training sets and evaluated on the other test sets. The network
is trained using data shuffling in every iteration. Finally, the
model evaluation matrices are estimated by taking an average
of ten results. The summarization of steps in ten-fold cross-
validation is depicted as follows:

• The dataset is divided into ten portions and each contain-
ing an equal number of images.

• For each fold, one portion is selected as a test set and
the remaining are used as a training set. The selection of
portions is changed in every fold.

• An average of ten results is taken to obtain the final
result.

A. BENCHMARK DATASET
Two benchmark datasets are employed in this work. One
is created by Cheng [33] and acquired from Nanfang Hos-
pital and General Hospital, Tianjing Medical University,
China. The database contains T1-weighted contrast-enhanced
MRI images of 233 brain tumor patients with three dif-
ferent types such as Pituitary, Meningioma, and Glioma.
And, another dataset developed by Baid et al. [34] contains
multi-parametric magnetic resonance imaging (mpMRI)
scans of 2,040 brain tumor patients with four different
tumor classes including fluid attenuated inversion recovery
(Flair), native T1-weighted (T1w), T1-weighted post-contrast
(T1wce), and T2-weighted (T2w).
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B. EVALUATION MATRICES
The most widely used performance indices such as accuracy,
precision, recall, and F1-score are considered in this work for
evaluating model performance in performing the classifica-
tion task.

Accuracy =
TP + TN

TP + TN + FP + FN
×100% (16)

Precision =
TP

TP + FP
×100% (17)

Recall =
TP

TP + FN
×100% (18)

F1 − score =
2 ∗ (Precision ∗ Recall)
Precision+ recall

×100% (19)

where TP, TN refers to true positive and negative and FP,FN
represents false positive and negative respectively. Perfor-
mance measurement with accuracy utilizes each class in the
dataset in an equal manner by taking into account overall
true and false, positive and negative values which is effective
for a balanced dataset. As real-life datasets may not always
be balanced in class, it is efficient to widely use precision,
recall, and F1-score as performance parameters. Precision
and recall both focused on each class-wise performance in a
model. on the contrary, F1-score is employed with averaging
precision and recall thus leading to the assessment of the
proposed model in terms of the F1-score widely.

V. RESULTS AND PERFORMANCE ANALYSIS
This section presents the results achieved from laborious
experiments on two benchmark datasets. For ensuring an
effective classification measurement, the training and testing
datasets are contained in different folders.

A. QUANTITATIVE ANALYSIS
For the quantitative analysis of the proposed network, the
class-wise measurement of precision, recall, and F1-score
are evaluated as shown in TABLE 5. In terms of accuracy,
all the classes in Figshare dataset achieve a quite similar
accuracy of above 0.98. But for the BraTS-21 dataset, all the
classes except the Flair class show similar accuracy of above
0.97. Hence, in terms of accuracy, the proposed model shows
quite equal performance for both datasets. Due to the imbal-
anced dataset, the F1-score performance indices evaluation is
needed as the results vary based on the number of samples in
the corresponding class. In the Figshare dataset, the Menin-
gioma class has a lower F1-score of 0.96 as the number of
samples in that class is smaller among the three classes. The
Glioma and Pituitary classes have a greater number of sam-
ples which causes better performance in terms of the F1-score
of above 0.98 over the Meningioma class. On the other hand,
for the BraTS-21 dataset, the Flair class shows the lowest F1-
score of 90.38 compared to the other three classes. However,
the rest of the three classes show an F1-core of above 0.94.
Moreover, the confusion matrix of 10-fold cross-validation
for Figshare and BraTS-21 datasets are shown in FIGURE 3.
The misclassification rate is found 2.25% and 6.37% in

Figshare and BraTS-21 datasets respectively. The incorrect
classification is more on the Meningioma class due to having
fewer samples in this class of the Figshare dataset. For a
similar reason, a greater number of samples in the Flair class
of the BraTS-21 dataset is wrongly classified than the other
three classes which leads to an increased misclassification
rate over other classes. In addition, the area under the receiver
operating characteristic curve (AUROC) per class for both
Figshare and BraTS-21 datasets is depicted in FIGURE 4.
In the Figshare dataset, the Glioma and Pituitary classes have
a quite similar AUC value of 0.99 compared to the Menin-
gioma class with an AUC value of 0.98. On the contrary,
for the BraTS-21 dataset, the T2w and T1wce classes have
a greater AUC value of 0.97 among the four classes. There is
a much degradation of the AUC value of the Flair class which
is observed 0.93.

B. QUALITATIVE ANALYSIS
TABLE 6 shows the model prediction performance on testing
sample images. Some samples ofMRI brain tumor images are
tested on different architectures e.g. ResNet-50, ViT, Swin,
DEiT & LCDEiT to measure how is the model prediction
equal to the actual class. From the Figshare dataset, all
three class samples are correctly predicted by our LCDEiT
model. Whereas, the other four models are incapable to pre-
dict Meningioma class correctly. Moreover, in the case of
Glioma class, the ResNet-50 and DEiT models incorrectly
classify it as the Pituitary class. For BraTS-21 dataset, all the
classes except T1w are correctly predicted by our LCDEiT
model. Consequently, these correct predictions confirm the
superiority of the proposed LCDEiT approach over the other
models in classifying brain tumors into their specific classes.
The dataset used in this work is imbalanced as the number
of samples among classes is not equally distributed. Due
to having a smaller number of samples the T1w class is
predicted incorrectly.

TABLE 5. Class-wise performance measurement of the proposed LCDEiT
Model.

C. COMPLEXITY ANALYSIS
TABLE 7 presents the computational complexity analysis
of the proposed LCDEiT model over conventional DEiT in
terms of multiply-accumulate (MAC) operation. The causes
of quadratic complexity formulated by self-attention in the
conventional DEiT can be reduced by introducing multi-head
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FIGURE 3. The confusion matrix of the proposed LCDEiT framework for
(a) Figshare, and (b) BraTS-21 datasets.

FIGURE 4. The area under the ROC curve (AUROC) of the proposed LCDEiT
network for (a) Figshare, and (b) BraTS-21 dataset.

EA in the transformer encoder. For Figshare dataset, the num-
ber of parameters in MAC unit for the transformer encoder
of DEiT is found 0.74M MAC but when the multi-head
SA is replaced by multi-head EA, the transformer encoder
needs 0.04M MAC parameters. There is around 94.30% of
reduction in parameters due to the EA component. Moreover,
the total trainable parameter required for the LCDEiT model
is 0.43M which results in 98.68% of parameters reduction
compared to the conventional DEiT model. Similarly, for
BraTS-21 dataset, the trainable parameter reduction is also
98.68% for the LCDEiT model over the DEiT model. The
cause of huge parameter reduction is due to using fixed valued
key and value memory units in multi-head EA mechanism
and a customized teacher model.

D. ABLATION STUDY
TABLE 8 depicts the impact of EA over SA by consider-
ing a gated pooled based custom CNN teacher model. The
analysis is made by varying normalization techniques and
values of key and value memory units. For both Figshare
and BraTS-21 datasets, EA outperforms SA by improving the
accuracy by 2.26% and 3.11% respectively. However, double-
normalization outperforms conventional soft-max normal-
ization for both self and external attention mechanisms.
An increment of memory unit from 8 to 16 increases accu-
racy but a memory unit of 32 degrades the performance for
both normalization techniques. Moreover, the effectiveness
of the EA mechanism on image feature extraction is also

TABLE 6. Sample images with their actual class and models’ predicted
class. The symbols (

√
) and (×) indicate correct and incorrect predictions

respectively.

TABLE 7. The computational complexity of LCDEiT framework in terms of
multiply-accumulate (MAC) operations on two benchmark datasets.

analyzed by considering two samples of raw images from
two datasets and performing both self and external attention
tasks on it as shown in TABLE 9. Where SA removed all
the relevant pixels in the target brain region whereas EA
keeps all the relevant pixels in that area. Therefore, after per-
forming multi-head attention this single attention map output
will particularly be focused on tumor shape-based feature
extraction only. In addition, TABLE 10 indicates that the pro-
posed gated-pooled CNN achieves high accuracy by 4.51%
as compared to traditional RegNetY-16GFand conventional
max-pooled CNN. As experiments show the advantage of the
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TABLE 8. Effectiveness of external attention mechanism over traditional
self-attention with gated-pooled CNN as teacher model.

TABLE 9. Impact of external attention over self-attention on the basis of
image feature extraction.

TABLE 10. Performance evaluation of proposed gated-pooled based
teacher model over the pre-trained model using external attention on
student model.

ability to distill knowledge from this responsive model with-
out compromising model accuracy.This customized gated
pooled CNN model is robust and generalized to compensate
for the requirement of a more complex model as a teacher
model.

VI. DISCUSSION
As there is a GPU memory space constrained, the image
scaling has been performed with proper parameters tuning
on the proposed LCDEiT model. However, concerning the
practical feasibility of the proposed model such as in the
medical imaging field, an assessment proposed framework by
varying image size and patch size is analyzed in TABLE 11.
A constant patch matrix (16×16) is utilized for running the
model with a maximum of (256 × 256) image size. Where
variation of image size from lower to larger results in devia-
tion of accuracy values (2-3)% without parameter tuning of

TABLE 11. Impact of varying image size and patch size on the proposed
LCDEiT framework (Bold values indicate with parameter tuning accuracy).

TABLE 12. Statistical assessment using P-value by Wilcoxon test of
proposed LCDEiT and other models.

the model. If the parameter tuning will be applied, the model
accuracy will be similar to the (32×32) image size. Concern-
ing these quite lower significant changes in the results, it can
be stated that the developed LCDEiT model is generalized
and practically feasible where larger resolution images are
preferred. For further assessment of the proposed LCDEiT
model, a statistical analysis is performed based on Wilcoxon
test [41] to determine the p-value as presented in TABLE 12.
The TABLE implies that P-value of LCDEiT model is
less than all the other models with a value of 0.039 and
0.000488 for Figshare and BrasTS-21 datasets respectively.

TABLE 13. Performance comparison of different classifiers concerning
test accuracy. Here, SM and TM denote the student model and teacher
model respectively.

In addition, the performance comparison of different clas-
sifiers concerning testing accuracy is performed as presented
in TABLE 13. This table implies that the proposed model
i.e. DEiT with a gated-pooled CNN teacher model and exter-
nal attention increases classification accuracy, which ulti-
mately leads to reducing misclassification. Moreover, the
transformer gives much better classification accuracy than
the ResNet-50 transfer learning model. The high perfor-
mance of the vision transformer is limited to the large-sized
dataset. DEiT acknowledges this problem and solves the
dependencies of sufficient data but accuracy is compromised
slightly. DEiT with a RegNetY-16GF teacher model gives
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1.7% and 1.5% less accuracy than the vision transformer for
both Figshare and BraTS-21 datasets respectively. The cus-
tomized DEiT with a generalized and robust teacher model
provides an improvement of accuracy of 2.29% than conven-
tional DEiT for both datasets. The customized DEiT with
multi-head external attention provides improved accuracy
of 98.11% and 93.69% for Figshare and BraTS-21 datasets
respectively.

Furthermore, the comparative analysis of the proposed
LCDEiT model with the state-of-the-art model is summa-
rized in TABLE 14 and TABLE 15. TABLE 14 presents
all the existing models’ comparison that uses Figshare data
and BrasTS-21 data utilized existing models are presented
in TABLE 15. The comparison shows that the proposed
LCDEiT model for both datasets provides an improvement
in accuracy over another existing technique. In TABLE 14,
a customized CNN is employed in [35] for the classification
of Figshare data which acquires an accuracy of 95.40%. The
performance is degraded by 1.2% in [10] when the genetic
algorithm is employed to choose the proper parameter for
the network. However, a pre-trained model called ResNet-50
with global average pooling is utilized in [36] and the accu-
racy is found 97.48%. Another customized CNN is used
in [38] with an accuracy of 96.13%. A hybrid model of
CNN along with the NADE (neural autoregressive distri-
bution estimation) achieves 95% accuracy. However, the
proposed LCDEiT provides 98.11% in Figshare which indi-
cates superiority as compared to the other. On the contrary,
in TABLE 15, a pre-trained model called EfficientNetB0
is developed in [37] for the classification of the BraTS-21
dataset with an accuracy of 55.90%. The accuracy is
improved drastically by 33.20% when YOLOv5 is utilized
for classification purposes. There is around 2% increment in

TABLE 14. Comparative analysis of the proposed model with the existing
state-of-the-art techniques for Figshare dataset.

TABLE 15. Comparative analysis of the proposed model with the existing
state-of-the-art techniques for BraTS-21 dataset.

accuracy when finetuned VGG19 network is used. The degra-
dation of accuracy is observed for utilizing a machine learn-
ing algorithm named support vector machine (SVM). The
model using pre-trained CNN with correlation-based selec-
tion provides 92.67% accuracy.Moreover, LCDEiT has supe-
rior accuracy 93.69% over the existing models for BraTS-21
dataset.

VII. CONCLUSION
This paper presents a teacher-student-based LCDEiT frame-
work for categorizing tumors from brain MRIs. The frame-
work consists of a gated-pooled CNN-based teacher model
for knowledge extraction followed by image classification
with an external attention-based image transformer back-
bone. The knowledge taken from the teacher model has com-
pensated for the requirement of the vast dataset of vision
transformers. The quadratic complexity due to self-attention
in the transformer encoder is eliminated by appending exter-
nal attention in the backbone transformer model that reduces
complexity linearly w.r.t the number of patches. The results
show that the proposed framework with the backbone of a
transformer-based student model achieves the best classifi-
cation performance with an F1-score of 0.978 and 0.937 for
Figshare and BraTS-21 datasets respectively. This reflects
the strong applicability of image transformers with a robust
learner in the medical imaging field where faster computation
is a crucial criterion to initiate treatment of the critical patient.
In the future, the imbalance dataset handling approach such
as class-wise augmentation could be implemented to over-
come the issues related to a greater misclassification rate
for lower sample classes. Although the proposed LCDEiT
model outperformed for two distinct Figshare and BraTS-21
datasets, the experimental database could be increased further
to improve the model’s universality.
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