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ABSTRACT Substantial research has been done in saliency modeling to make intelligent machines that
can perceive and interpret their surroundings and focus only on the salient regions in a visual scene. But
existing spatio–temporal saliency models either treat videos as merely image sequences excluding any
audio information or are unable to cope with inherently varying content. Based on the hypothesis that an
audiovisual saliency model will perform better than traditional spatio–temporal saliency models, this work
aims to provide a generic preliminary audio/video saliency model. This is achieved by augmenting visual
saliency map with an audio saliency map computed by synchronizing low-level audio and visual features.
The proposed model was evaluated using different criteria against eye fixations data for a publicly available
video dataset DIEM. The evaluation results show that the model outperforms two state-of-the-art visual
spatio–temporal saliency models. Thus, supporting our hypothesis that an audiovisual model performs better
in comparison to a visual model for natural uncategorized videos.

INDEX TERMS Saliency, audiovisual, uncategorized videos, spatio–temporal.

I. INTRODUCTION
Humans are able to quickly identify and analyze the most
intriguing elements of a complex visual environment because
of the perceptual and cognitive mechanisms termed as visual
attention. Rapid eye movements, or saccades, are constantly
used to quickly scan new things of interest and thus analyze
the scene. These mechanisms aid in the prioritization and
filtering of stimuli as they go from the initial stages of
visual processing to later stages, which are capable of
higher-level cognitive processing. Effective scene scanning
is made possible by the ability of humans to recognize
objects’ saliency in a visual scene [1]. Simulating the visual
attention mechanism in machines is termed as visual saliency
prediction. Automatic saliency prediction has applications
in several research and practical fields including computer
vision, robotics, healthcare, and multimedia [2], [3], [4], [5].
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Many saliency computing algorithms designed for
images [6], [7], [8] are around that use visual cues, for
example color, intensity, orientation etc., other models
[9], [10], [11] also take social cues like face into account and
are found to give more accurate eye movement predictions.
spatio-temporal saliency models for image sequences
[12], [13], [14] usually incorporate temporal cues like motion
but ignore the effect of audio stimuli, an integral part of
video content, on human gaze, and hence such models can be
classified as unimodal models [15] where only visual stimuli
is used.

Interestingly the effect of audio stimuli is proved to be
relevant to human eye movements, for instance in [16] the
authors find eye movements to be spatially biased towards
the source of audio by performing an eye tracking experiment
on images with spatially localized sound sources in three
conditions: auditory (A), visual (V) and audio-visual (AV).
Moreover, another study [17] analyzed the effects of different
type of sounds on human gaze involving an experiment with
36 participants and thirteen sound classes under audio-visual
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FIGURE 1. Historical Perspective: Traditional Approaches employing
visual cues to Uni-model approaches for video saliency where temporal
cues are added to multi-modal methods employing audio along with
Spatio-temporal cues.

and visual conditions. The sound classes are further clustered
into on-screen with one sound source, on-screen with
more than one sound source and off-screen sound source.
Kullback-Leibler divergence is used to evaluate eye positions
and fixation durations between the two conditions. The
results show that human speech, singer(s) and human noise
(on-screen sound source clusters) highly affect gaze and,
more importantly, linked audio-visual stimuli has a greater
effect than unsynchronized audio-visual events. Though a
lot of research has been done in the general field of
unimodal models for both images and videos [18], [19],
no remarkable contribution is found in the area of bimodal
saliency modeling. Of more consequence is the lack of a
model for computation of audiovisual saliency in complex
video sequences. Existing literature in the area of audio-video
saliency modeling is scarce and often aims at a specific class
of videos [20], [21], [22]. Motivated by the lack, an extension
of a typical visual saliency model into an audio-visual model
to predict salient regions in complex videos with different
sound classes is required.

The focus of this work is to propose a generic audio-visual
saliency model for complex video sequences. The work dif-
fers from previous research [20], [21], [22] in that it does not
restrict input videos to be from a certain category. To accom-
plish that an audio source localization method was used to
relate an audio signal with an object in the video frames in
a rank correlation space. The proposed model was evaluated
against eye fixations ground truth from DIEM dataset.

A. NOVEL CONTRIBUTION
The original contribution of this study is as follows:

1) An audio-visual saliency model for complex scenes
that, unlike existing literature, does not restrain videos
to any specific category and experimental evaluation of

same for the purpose of analyzing the effect of audio
stimuli.

2) Presented and analyzed the results of preliminary
experimental evaluation on a publicly available dataset
to examine how our proposed saliency model compares
to two state-of-the-art saliency models.

B. ORGANIZATION
The remainder of the paper is organized as follows: Section I
narrated the background knowledge of saliency modeling and
novel contribution of this work towards it. Section II gives
a detailed review of state-of-the-art literature pertaining to
the problem under consideration and their drawbacks while
Section III describes the proposed solution step by step.
Section IV provides implementation details of the proposed
solution and outlines the properties of video sequences
in the dataset used for experimentation, this section also
explains the saliency evaluationmetrics used for evaluation of
proposed model. Section V presents the performance results
of the proposed solution on the dataset described in the
previous section followed by a discussion in Section VI.
Section VII summarizes our main findings and concludes by
indicating future research directions.

II. RELATED WORK
Unimodal saliency models use only one type of sensory
stimulus as input traditionally some visual cues including
color, intensity and orientation features [8], [23], [24].
Other biologically-inspired models [14], [25] exploit spatial
contrast and motion, and simulate interactions between
neurons using excitation and inhibition mechanisms.
While some spatio-temporal models [26], [27] propagate
spatial/temporal saliency making use of multiscale color
and motion histograms as features. In [26] pixel-level
spatio-temporal saliency is computed from spatial and
temporal saliencies via interaction and selection driven
from superpixel-level saliency. Reference [27] propagates
temporal saliency forward and backward via inter-frame
similarity matrices and graph-basedmotion saliency, whereas
spatial saliency is propagated over a frame using temporal
saliency and intra-frame similarity matrices. In most of
these models, conspicuity maps are constructed by a variety
of approaches using different visual features that are later
integrated together via a number of fusion schemes to get
a final saliency map.

Based on the fact that eyes are the most important sensory
organs providing much of the information around humans,
many state-of-the-art visual models [26], [27] aim at saliency
computation for complex dynamic scenes. But such unimodal
models tend to overlook other influential social cues like
faces in social interaction scenes, and hence exhibiting lower
predictability [28], [29]. Moreover, social scenes involve a
lot more sensory signals influencing eye movements spatially
such as auditory information including voice tone, music,
etc [30]. In addition, different kinds of sounds affect eye
fixations differently [16], [17]. Thus, soliciting the need of
a bimodal saliency model that incorporates both visual and
audio information channels.
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Rapantzikos et al. [31] proposed an audio-visual saliency
model for movie summarization. The visual saliency map
is constructed using traditional features i.e. intensity, color
and motion and simulating feature competition as energy
minimization via gradient descent. Which is then thresholded
and average saliency per frame is computed to construct a
1D visual saliency curve. While maximum average Teager
energy, mean instant amplitude and mean instant frequency
are extracted as audio features by applying Teager-Kaiser
Energy Operator and Energy Separation Algorithm on the
audio signal. The audio feature vector is normalized to the
range [0, 1] and a weighted fusion is applied to achieve
audio saliency curve. Final audio-visual saliency curve is a
weighted linear combination of audio and visual saliency
curves. Local maxima feature of audio-visual saliency
curve is used for key-frame selection. The experiments are
conducted on movie database of A.U.T.H but no comparison
and evaluation is given.

Coutrot and Guyader [32] proposed an audiovisual
saliency model for natural conversation scenes; a linear
combination of low level saliency, face map and center
bias. Low level saliency map is constructed via Marat’s
spatio-temporal saliency model [14]. While for face map
construction a speaker diarization algorithm is proposed
which uses motion activity of faces and 26 Mel Frequency
Cepstral Coefficients (MFCCs) as visual and audio features
respectively. Center bias is a time-independent 2D Gaussian
function centered at screen center. The three maps are
linearly combined into final audiovisual saliency map using
expectation maximization to decide the weight for each.
Normalized Scanpath Saliency (NSS) score showed that
proposed model performs better than same model without
speaking andmute face differentiation but target video dataset
belongs to a limited category; conversation scenes only.

Ould-Sidaty et al. [22] proposed an audiovisual saliency
model for teleconferencing and conversational videos. Three
best performing models on target database i.e. Itti et al. [33],
Harel et al. [34], and Tavakoli et al. [35] are selected as spatial
model. Acoustic energy is computed per frame and block
matching algorithm is used to construct visual features from
the face stream of video for audio map. Then peak match-
ing is used for audio-visual synchronization. Five fusion
schemes are used to get final map and Global Non-Linear
Normalization followed by Normalization performed best.
Experiments performed on XLIMedia database created by
authors showed that proposed model performed better than
all three spatial models. Limitation of this work is that it only
targets conferencing and conversational videos.

In [36] authors detect the spatial and temporal saliency
maps from the visual modality then they use cross-modal
kernel canonical correlation analysis to compute the audio
saliency map from both modalities by localizing the moving-
sounding objects. They also propose a two-stage adaptive
audiovisual saliency fusion method to integrate the spatial,
temporal and audio saliency maps to audio-visual saliency
map. This work has collected an audio-visual dataset for
video saliency prediction, the main difference between this

and our work is our evaluation dataset does not restrict
the number of sound sources and also includes background
sounds which makes the task more challenging while their
dataset only have videos with one sound source.

A brief historical perspective of saliency models is shown
in the figure 3. All in all, one of the major drawback of visual
models is that such models treat videos as a mute sequence
of images ignoring the influence of audio stimuli resulting in
inaccurate predictions often in such cases where sound guides
eye movement. Furthermore, there is a knowledge gap due to
the absence of any audiovisual model for complex dynamic
scenes; that is, many of the state-of-the-art audiovisual
models restrict the dataset used to only one specific category
of audio, for instance, conversational videos, thus limiting the
models’ performance when dealing with videos containing
different sound classes.

III. PROPOSED SOLUTION
This section explains the proposed solution for audio-visual
saliency computation for videos. The framework consists of
five major modules, the first one, feature extractor, takes
audio and visual stimuli and outputs audio energy descriptors
and object motion descriptors per frame by processing the
stimuli through separate channels explained in next sections.
Next module computes audio saliency map from the audio
and motion descriptors produced previously while visual
saliency map computation and motion map computation
can work in parallel computing visual map from low level
features like intensity, color, orientation etc. and motion map
from color-coded optical flow previously computed while
processing visual stimuli in first step of the solution. Then
all the maps are normalized and combined in a unified
audiovisual saliency map. Figure 2 outlines the proposed
framework.

A. FEATURE EXTRACTION
This is the first step of proposed methodology where a
number of visual and acoustic features were extracted from a
given input video by using a modified version of the method
given by [37]. The step comprises of two branches for feature
extraction, audio features and visual features respectively.
A detailed workflow is shown in figure 3

1) AUDIO FEATURE EXTRACTION
Audio energy descriptor a(t) of an audio signal featuring the
changing patterns of an audio signal strength in the same
temporal resolution as the corresponding video frames was
obtained. In detail, the audio signal was first segmented
into frames according to the frame rate of video such that
each audio frame corresponds to a video frame. Using
STFT (short-term Fourier Transform), this framed signal was
transformed into time-frequency domain to get a spectrogram
of the signal at each frame. The audio energy of the input
signal a(t) was computed by the integration of the resultant
spectrogram at any given frame over all frequencies using,

a(t) =

∫
∞

0

∫ T

0
f (t ′)W (t ′ − t)e−j2π ft

′

dt ′df
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FIGURE 2. Architecture of proposed solution: top left - video instance segmentation and visual features computation, bottom left - audio features
computations from audio signal, top right - bottom up visual saliency map computation, bottom right - motion map computation from optical flow.

FIGURE 3. Proposed solution workflow: Feature Extraction - video frames are used to calculate optical flow, which is used for both video features
and motion maps computation, audio features i.e. audio energy is calculated via STFT. Audio saliency maps are generated via correlation of these
features. Audio-Visual Saliency - Audio-visual Saliency is then acquired by combining the normalized audio, visual and motion maps.

where windowing function W (t) is defined such that the
neighboring windows overlap by 50%. This audio energy

descriptor a(t) was then filtered using a 1D Gaussian
kernel.
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2) VISUAL FEATURE EXTRACTION
Based on the assumption that in a video any moving object
is a prime candidate to be an audio signal source, proposed
solution aims at performing unsupervised video instance
segmentation to get candidate objects for correlating with
audio stimuli later. This task includes both segmentation
and tracking of objects through all video frames but it is a
relatively new and non-trivial computer vision task [38], [39].
Techniques for solving this problem are just emerging now
and have not been tested rigorously. On the other hand, video
object segmentation using optical flow has been put to use
many times and proved to perform well [38]. The success of
optical flow based methods motivated us to devise a method
using it for the purpose of video instance segmentation.
Also, sparse optical flow only calculates some edges and
corners of objects in order to avoid aperture problem while
we need the tracking of whole-body mass of moving object
because it is used both in segmentation set up andmotionmap
computation. Segmented objects obtained using optical flow
were then tracked along all frames via color histograms of
the regions in HSV color-space and are then used to calculate
acceleration per frame of all the moving objects in a given
input video, designated as motion descriptor. The process is
described in detail as follows:

1) Optical Flow Computation. The method proposed
by [40] was used to compute dense optical flow and
corresponding color-coded optical flow images for
all frames of a given input video. This method uses
apparent motion of each pixel to compute forward
and backward optical flows where the former depicts
the motion of pixels of frame t with reference to
frame t + 1 and the latter is the motion of pixels of
frame t with respect to frame t − 1. These resulting
optical flows were then averaged to get the mean
optical flow per frame, which was used as a basis for
performing video instance segmentation to be then used
in calculation of visual features employed in computing
audio saliencymap through the correlation of audio and
visual features.

2) Frame Segmentation. The color coded mean optical
flow image corresponding to each frame is used as
input for the segmentation step. Meanshift, a nonpara-
metric clustering algorithm, is applied for segmentation
of each input image in LUV color space. The over-
segmented result of the Meanshift segmentation step is
followed by a simple region merging technique based
onDeltaE, a color difference score, tomerge the closely
similar regions. Regions smaller than 200 pixels are
filtered then to remove noisy and insignificant regions.

3) Region Tracking. Once individual frames are seg-
mented, a number of tracks are initialized using
regions’ location and appearance features in the first
frame. Then all regions in each new segmented input
frame are either assigned to an existing track or
initialized to a new track based on its location and
appearance similarities. The location similarity dE is
computed by Euclidean distance between the centroid

of a new region Cn and that of an existing track Ce
using,

dE =

√
(Cn(x, y) − Ce(x, y))2

The similarity measure outputs a list of candidate
tracks similar to the region under consideration for
assignment within a specified search radius r . For
appearance similarity AS LUV histograms of these
existing candidate tracksHe are compared with the new
region’s histogramHn using cosine value of angle cosθ
as,

cosθ =
Hn · He

||Hn||||He||

The region is assigned to the track whose cosine
value of angle is maximum of all candidate tracks and
greater than a specified threshold. The track is then
updated by replacing the centroid with the centroid of
newly assigned region and histogram with the mean
of existing histogram and new region’s histogram.
Otherwise if this maximum value is less than the
specified threshold the region is used to initialize a new
track.

4) Calculate Acceleration. In this step segmented and
tracked objects’ acceleration is computed using the
aforementioned motion descriptors. Average of for-
ward and backward optical flow gives the acceleration
at each pixel (x, y, t) in a frame given by equation:

g(x, y, t) = F+(x, y, t) + F−(x, y, t)

where x and y are spatial coordinates, t is frame number
and F+ and F− indicate forward and backward optical
flow.
The acceleration of regions ST ti where i is region index
per frame t is computed as the average acceleration of
all pixels belonging to that region as:

mi(t) =
1

|ST ti |

∑
(x,y)εST ti

||g(x, y, t)||

The acceleration vector is filtered with Gaussian kernel
to remove visual noise to get motion descriptor of
objects in a given input video.

B. AUDIO SALIENCY MAP COMPUTATION
For the audio saliency map computation, the method
proposed in [37] for audio-video correlation is used. Humans
are incredibly good at matching the sounds they hear with
the accompanying visual perception, which allows them to
locate and separate various sounding objects in a scene.
The task of sound source localization in visual scenes is to
mimic humans’ such ability, where the goal is to identify
regions of a visual that correlate strongly with the audio
signals [41]. In this work, the correlation between audio and
motion descriptors computed in previous steps is used to
localize the source of sound signal in given video frames
to indicate audio saliency. Winner-Take-All (WTA) hash
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a subfamily of hashing functions [42] controlled by the
number of permutations N and window size S is used to
transform both feature vectors in rank correlation space. Once
both descriptors are in the common rank correlation space
Hamming distance is used to relate the audio signal with the
object having maximum synchronization.

C. VISUAL SALIENCY MAP COMPUTATION
A basic saliency map which takes only visual input for
saliency computation is used here proposed in [34]. The
model approaches the problem of saliency computation by
defining Markov chains over feature maps, extracted for
features of intensity, color, orientation, flicker and motion,
and treat equilibrium locations as saliency values. In detail
each value of the feature map(s) is considered to be a
node and the connectivity between them holding weights
determined by their dissimilarity, defining Markov chain on
this graph, the equilibrium distribution of this chain computed
by repeated multiplication of Markov matrix with an initially
uniform vector accumulates mass at highly dissimilar nodes
giving activation maps. Similar mass concentration process
is applied on activation maps and output is summed into the
final visual saliency map.

D. MOTION MAP COMPUTATION
Motion map indicates the regions of high motion in a given
video frame computed with the mean optical flow for each
frame as described in Section III-A2. Adaptive thresholding
proposed in [43] is applied on the color-coded mean optical
flow frames to discard any inconsequential low motion. The
method works by setting any pixel Ip to zero if its brightness
is T percent lower than average brightness of the surrounding
pixels, otherwise setting it to one.

Ip =

{
0 if Ip < T · Iavg
1 otherwise

E. NORMALIZATION AND COMBINATION
In this final step of the proposed model, the three computed
maps: a) visual saliency map, b) audio saliency map, and
c) motion map are normalized before combining them
together in a final audiovisual saliency map. Here the
visual saliency map is a sum of normalized activation
maps computed, as explained in Section III-C, using mass
concentration algorithm that works like activation map
construction algorithm. The other twomaps are normalized to
a specified range [0−1] using simple linear transformations.
The resulting normalized maps are then linearly combined to
get the final audiovisual saliency map.

IV. MATERIALS AND METHODS
A. IMPLEMENTATION DETAILS
The proposed solution is implemented in MATLAB 2014b
andWindows 10 on a 64-bit architecturemachinewith Intel i5
processor. The same hardware and software setup is used for
evaluation purposes. The parameters used for the proposed
solution are given in Table 1.

TABLE 1. Parameters used for different steps of the proposed solution.

B. DATASET
Unfortunately, most video saliency datasets and their ground
truth exclude audio cues, making publicly available standard
audio visual saliency prediction datasets scarce. One avail-
able dataset is DIEM (Dynamic Images and EyeMovements)
dataset [44], which initially, comprised 26 videos of different
genres, most with both audio and video data, converted to
30 frames per second MPEG-4 files. Eye fixation data is
collected via binocular eye tracking experiment with 17 male
and 25 female (forty-two in total) participants with ages
ranging between 18 and 36 years with normal/corrected-to-
normal vision. The dataset later extended to 85 videos with
eye fixation data recorded for more or less 250 participants.
Alongside the dataset, DIEM project also provides a tool,
referred to as CARPE (Computational and Algorithmic Rep-
resentation and Processing of Eye movements), to visualize
eye fixation data.

In this work, for evaluation 25 video sequences were
randomly selected from DIEM dataset. The video sequences
are listed in Table 2 along with some properties.

C. EVALUATION METRICS
The proposed solution was evaluated using the listed four
saliency evaluation measures.

1) Area under the curve (AUC). Reference [45] is a
location-based metric, where the number of fixation
pixels is counted, as well as, the same number of pixels
are randomly extracted from the saliency map. The
true positives (TP) and the false positives (FP) are
then calculated for different threshold values treating
saliency pixels as a classifier. The resulting values
are then used to plot a ROC curve and compute the
AUC–the ideal score being 1.0 and a value of
0.5 indicating random classification.

2) Kullback-Leibler divergence (DKL). is a distribution-
based measure of dissimilarity given by the equation,

DKL =

∑
i

Mf (i)ln
(
Mf (i)
Ms(i)

)

it estimates the loss of information when saliency
map Ms is used to approximate fixation map Mf –both
considered as probability distributions.
The ideal DKL score is zero, meaning the saliency and
fixation maps are exactly same, otherwise, higher the
score poorer the saliency model.

VOLUME 11, 2023 15465



M. Qamar et al.: Saliency Prediction in Uncategorized Videos Based on Audio-Visual Correlation

TABLE 2. Summary of properties of video sequences selected from DIEM dataset. In Audio source column On-screen(+)/Off-screen(−): H = human, N =

non-human, M = music and A = applause. Properties in order are: Single object(−)/Multiple objects(+) (f1), Camera motion (f2), Abrupt scene change
(f3), Interaction (f4), Occlusion (f5), Deformation (f6), Crowd (f7), Clutter (f8), and Motion blur (f9). In columns f2 to f9 (+) indicates presence and (−)
indicates absence of the particular property.

3) Normalized Scanpath Saliency (NSS).Reference [46]
is computed using,

NSS =
1
N

∑
i

Ms(i) − µMs

σMs

where saliency mapMs is normalized to zero mean and
unit standard deviation, which is then averaged for N
fixations.
Zero score means a chance prediction wheres a high
score indicates high predictability of the saliency
model.

4) Linear Correlation Coefficient (CC) is another
distribution-based metric computed using the equation,

CC =
cov(Ms,Mf )

σMsσMf

Its output ranges between −1 and +1, the closest is the
score to +1, the better is predictability of the saliency
model.

Performance metrics are summarized in table 3.

D. COMPARISON METHODS
Based on our literature review, we found no other audiovi-
sual saliency model for complex dynamic scenes saliency

TABLE 3. Performance metrics summary.

computation. Thus, for the purpose of comparison with state-
of-the-art methods, in this study, we compared our proposed
audiovisual saliency model against two state-of-the-art visual
saliency models. The first model proposed in [26] derives
pixel-level spatial/temporal saliency map from superpixel-
level spatial/temporal saliency map constructed using motion
and color histogram features. The other spatio-temporal
saliency detection model proposed by Liu et al. [27] is based
upon superpixel-level graph and temporal propagation.
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TABLE 4. Experimental results.

For evaluation, We computed three saliency maps for the
selected videos from DIEM dataset using the aforementioned
two state-of-the-art methods and our proposed model. Using
the evaluation measures described in Section IV-C, average
scores for the resulting saliency maps were compared to
assess the eye movements predictability of the proposed
model.

V. RESULTS
The proposed model is compared against two state-of-the-
art methods [26], [27] on 25 random videos using first
300 frames per video from DIEM dataset. Table 4 shows
averaged evaluation scores over all the videos for the three
models: the two comparison methods and the proposed
solution.

It can be seen from Table 4 that the proposed model
not only outperforms both comparison methods but also
results in a satisfactorily higher average score in terms
of AUC . Moreover, a lower DKL score compared to the
comparison methods indicates a better saliency model with
less dissimilarity with the ground truth. For the remaining
evaluation metrics, theCC and theNSS, the proposed method
shows comparable performance (discussed in VI). Some of
the video sequences performing better than other consid-
ering all four metrics scores are stewart_lee_1280 × 712,
news_us_election_debate_1080×600 and one_show_1280×
712. It is noted that, on screen sound source is a common
feature in these videos with others like object occlusion,
interaction etc. These results suggest that the proposed model
makes better or comparable eye movement predictions,
specially in scenarios where audio guides the eye movement,
and thus warrant further exploration of incorporating audio
features when computing spatio-temporal saliency for uncon-
strained videos.

Figure 4 shows saliency maps produced by the different
methods. The visual comparison shows that the proposed
solution performs comparatively better than the state-of-the-
art methods. For instance, video sequence with an on-screen
audio source-type in third row, visual models failed to
correspond to the ground truth as they considered both faces
salient; on the contrary, the proposed audiovisual model
marked only the talking face salient.

A. TIME COMPLEXITY
Table 5 details a comparison of computation times of the
proposed solution alongside the state-of-the-art methods for
a 534 × 400 sized video-frame. The result shows that
Liu et al. 2016 (SGSP) method [27] took the least amount of
time whereas the proposed solution took the maximum time;

TABLE 5. Time complexity for the proposed model and state-of-the-art
methods.

however, excluding the audio saliency computation stage for
the proposedmethodwould result inmuch lower computation
times than state-of-the-art methods. The table also shows a
breakdown of the total time into times taken by each step of
the proposed solution.

As shown in table 5 optical flow and segmentation
take most of the computation time while rest of the steps
are efficient enough. It is generally known that dense
optical flow computation is an optimization problem and
thus a compute intensive process, also the method used
here estimates both forward and backward flow so that
optical flow of occluded regions is also computed correctly
making it more time consuming. Similarly for segmentation
of diversified multiple objects meanshift is used, a non-
parametric clustering technique employing kernel density
estimation which is not very scalable with feature space
dimension making the segmentation step compute intensive.
The methods used though computationally expensive align
well with the task of diversified instance segmentation and
tracking, moreover, this work does not focus on the efficiency
but aims at analyzing the role of audio cues in predicting the
saliency of complex videos.

VI. DISCUSSION
spatio-temporal saliency detection is a challenging problem,
existing research though doing well generally may fail in
scenarios where attention is driven by other stimuli in
addition to visual cues, and hence computation of a saliency
model based upon multiple stimuli has been proposed
[22], [31], [32]. Yet existing work in the field of spatio-
temporal saliency modeling lacks in a generic solution
incorporating both audio and video stimuli, it is either close
to being non-existent or limited to some specific categories
of videos.

A major reason for this lack in literature may be due to one
of the foremost challenges of audiovisual saliency models;
that is, the localization of audio source in a given frame.
Many of the localization methods do not do well in the
case of dynamic videos, as they assume there to be a single
audio source. These methods either use microphone arrays
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FIGURE 4. Comparison of our results with other methods against the ground-truth on DIEM dataset.

to triangulate this single source or only target stationary
sources in a scene. On the other hand, methods exempt from
these restrictions using correlation analysis between audio
and video segment the audio source as a set of some relevant
pixels rather than an object.

In more recent works object segmentation precedes audio-
visual correlation making audio source separation maintain
the source object’s shape. But both audio and video signals
being from different domains, reliable correlation requires
a transformation of the features into a suitable space.
Also in addition to devising a method to relate an audio
signal descriptor with object descriptors in a video frame,
segmentation and tracking of all the diversified objects in a
video frame is in itself a challenging task. And the literature
also lacks in such techniques for multiple objects aimed for
video sequences with diverse objects, which is the case in our
dataset with no a priori information about object properties
like shape, color, size, etc.

It is worth mentioning here that existing spatio-temporal
saliency models completely ignore the audio signal present
in the input media. However, a number of experimental
studies [16], [17], [47] discuss the influence of aural stimuli
on early attention when viewing complex scenes; that is,
audio stimuli can provide useful information in guiding eye
movements. This influence can be incorporated into existing
bottom-up models by the inclusion of low-level audio prop-
erties like energy, frequency, amplitude, etc. The resulting
audiovisual saliency model makes more sense to be used
in application areas like movie summarization/compression,
event detection, gaze prediction, and robotic vision and
interaction.

The knowledge gap thus created should be fulfilled as the
need for a general purpose solution is evident from the use of
saliency detection in various fields like video summarization,

compression, robotic vision, etc. The solution proposed in
this work is an attempt to bridge this knowledge gap and
the results presented in V via saliency metrics support that
the proposed audiovisual saliency model performs better by
more accurately predicting eye fixations than existing visual
saliency models.

In terms of eye movement predictability, in comparison to
the state-of-the-art spatio-temporal and audiovisual models,
the proposed audiovisual saliency model performed better
for two evaluation metrics; however, resulted in comparable
scores for the other two metrics. The result can be attributed
to the difficulty in segmenting and tracking of multiple
interacting objects in varying conditions like motion blur,
crowd, etc. Moreover, multiple and/or off-screen audio
sources make it a more challenging task to locate the
audio source [48], in consequence, affecting the model’s
performance.

The proposed saliency model exhibits higher time com-
plexity apparently due to dense optical flow computation,
which is inherently compute-intensive being an optimization
problem. The main advantage of using the method is
that it estimates both forward and backward flow, and
hence, optical flow of occluded regions is also computed
correctly. Other alternative motion estimation approaches are
block-matching and phase correlation that can be used instead
to propose a more efficient solution. Likewise, segmentation
of multiple objects is also a complex task involving mean-
shift segmentation, a non-parametric clustering using kernel
density estimation that is not very scalable with feature
space dimension. All these aforementioned steps make color
image segmentation highly compute intensive. Alternatively,
simpler histogram or superpixel-based segmentationmethods
can be used to reduce computational complexity, as well as,
increasing the model’s predictability.
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A shortcoming of the current study is use of a subset of the
available dataset for evaluation of the proposed audiovisual
model. It may be interesting to perform the evaluation using
the entire dataset and/or other available datasets to enforce
our findings that aural stimuli can provide useful information
in guiding eye movements alongside visual stimuli. However,
there are not many datasets available designed for the purpose
of audio-visual saliency prediction, we intend to collect a
new dataset and evaluate the method on it in future. All in
all, the proposed solution scored reasonably well; however,
further improvements can be made. For example, improving
segmentation and tracking techniques may contribute toward
a better audio saliency map, and in turn towards a better final
saliency map. Furthermore, the use of a more sophisticated
visual saliency model, as well as the use of more suitable
combination techniques, can improve the final result.

VII. CONCLUSION
Existing bottom-up saliency models only use visual stimuli
while the audio stimuli present in the input media remain
unused. In this paper, we proposed an audiovisual saliency
model incorporating both low-level visual and audio infor-
mation to produce three different saliency maps: an audio
saliency map, a motion saliency map, and a visual saliency
map. These resulting saliency maps were linearly combined
with the audio saliency map weighted twice compared to the
other two saliency maps to get a final saliency map. The
final saliency maps produced by the model were evaluated
for the DIEM dataset using four different evaluation criteria.
The results show an overall improvement against two state-
of-the-art visual saliency models and enforce the idea that
aural stimuli can provide helpful information to guide eye
movements. In future, we plan to collect a new dataset for
the audio-visual saliency prediction task in uncategorized
videos and also work on improving the efficiency of the
proposed method by incorporating less compute intensive
video instance segmentation techniques. Furthermore, this
work specifically focused on visual saliency computation
methods for comparison as the intention was to test the
hypothesis of aural signals being impactful or not for video
saliency computation, next we intend to compare the solution
with state of the art audio-visual methods.
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