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ABSTRACT In the process of classifying fresh-cut flowers, the classification accuracy of the algorithm
plays a vital role in the control of quality stability, uniformity, and price of fresh-cut flowers, while the
classification speed of an algorithm determines the possibility of industrial application. Currently, research
on fresh-cut flower classification focuses on the breakthrough of classification accuracy, ignoring the real-
time processing speed of the terminal, which seriously affects the use of fresh-cut flower online classification
technology. In this study, RGB images and depth information data of 434 rose flowers were collected using
a binocular stereo depth camera. Combined with the actual production line classification environment, a set
of data argumentation solutions was developed under the condition of limited samples. The architecture
was established and optimized based on the ShuffleNet V2 network backbone unit, transfer learning was
performed, and an appropriate attention mechanism was invoked to classify flowers of five specifications.
The experimental results showed that the proposed network structure had a competitive advantage in terms
of parameter quantity, classification speed, and accuracy compared with traditional networks without an
attention mechanism and other lightweight networks. The classification accuracy on the 3-channel (RGB
channel) flower dataset and the 4-channel (RGB and depth channel) flower datasets were 98.891% and
99.915%, respectively, and the overall prediction classification speed can reach 0.020 seconds per flower.
Compared to the fresh-cut flower classification machines currently on the market, the speed of the proposed
method has a great advantage. These advantages are of great significance for the design and development
of fresh-cut flower classification and grading systems, and the proposed method is instructive for the
identification and application of multichannel data in the future.

INDEX TERMS Fresh-cut flower grading, lightweight network, attention mechanism, image augmentation,
model parameter optimization.

I. INTRODUCTION
With the improvement of people’s quality of life and the
continuous expansion of the fresh-cut flower market, fresh-
cut flowers must be subdivided according to quality to meet
different market needs and enhance the value and market
competitiveness of fresh-cut flowers. The classification and
grading of different specifications of fresh-cut flowers in
terms of type, quality, and length are widely used in the
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post-harvest processing of flowers. The original classification
of fresh-cut flowers is done manually [1], but owing to human
subjectivity, visual fatigue, experience differences, and clas-
sification efficiency, it is difficult to meet the requirements
of standardized production of fresh-cut flowers and cannot
guarantee the efficiency, consistency, and stability of grade
classification and quality evaluation of fresh-cut flowers.
To effectively reduce the labor intensity of workers, manual
intervention, and the loss of post-harvest processing of fresh-
cut flowers, achieve high efficiency and quality, and meet the
demands of automatic processing and classification line of
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fresh-cut flowers, it is necessary to use automatic processing
and classification systems [2], [3], [4].

In recent years, with the development of artificial intelli-
gence (AI), machine learning and deep learning techniques
have been successfully applied to flower species recognition
and classification. Earlier studies relied more on manual
segmentation and feature selection with traditional machine
learning algorithms [5], [6]. Due to the large number of
flower categories and the large variability of flowers them-
selves, the classification accuracy of each category varies
depending on the acquisition environment and means, clas-
sification criteria, and the type and number of categories,
the classification robustness cannot be guaranteed. To obtain
a higher and more stable classification accuracy, the clas-
sical CNN architecture combined with the transfer learning
algorithm has made great progress in flower recognition
applications. The common method is to use VGG, Inception,
ResNet, and other classic architectures for transfer learn-
ing [7], [8], [9], which significantly improves the classifi-
cation accuracy compared to traditional machine learning
algorithms [10], and the classification accuracy can reach
98.5% on Oxford 17 dataset [7], but there is also much room
for improvement. Most classical algorithm architectures and
their improvements in recent years generally obtain deeper
image feature information by adding parallel branches and
layers to the network. For example, CNN was proposed as a
feature extractor and used in combination with other machine
learning classification algorithms to synthesize algorithms
with more classification advantages, such as VGG, Alexnet,
and DenseNet, used as feature extractors and SVM, RF, etc.,
used as feature classification tools [11], [12]. The highest
classification accuracy of these methods is up to 99.8% [13].
From many studies and experiments, it was found that par-
allel branch and layer expansion can significantly improve
recognition accuracy [14], [15], but it tends to lead to an
increase in the number of parameters, which undoubtedly
causes the burden of memory usage and hardware computing
power, resulting in slow recognition processing speed [16].
In most experiments, the number of parameters and time of
identification were not mentioned; therefore, the applicability
of these methods to industrial applications is uncertain.

According to statistics, the post-harvest processing loss of
fresh-cut flowers can reach 31.88%, of which the grading
loss accounts for 21.74% [17]. Owing to the perishability and
vulnerability of fresh-cut flowers, processing efficiency is an
important factor in controlling their quality. Traditional deep
learning methods have a large number of parameters, long
running time, and high requirements for equipment perfor-
mance and are not feasible in the actual recognition process
of classification production lines. Considering the limitations
of processing time, quantity of parameters, classification
speed, and hardware computing power of the production line,
MobileNet series [18], [19], [20], ShuffleNet series [16], [21],
SqueezeNet [22], and other lightweight network architec-
tures have attracted increasing attention in the field of object

recognition and classification. In this application, transfer
learning [23], [24], [25] and fine-tuning [26], [27] were per-
formed on a lightweight network to obtain a more satisfac-
tory recognition accuracy with fewer parameters. However,
the above experiments were not tested in an actual produc-
tion line, and no specific quantification and comparison of
the detection time were illustrated, which cannot accurately
reflect the processing speed advantage of the lightweight
network architecture in practical applications. In the same
situation, the lightweight network was more prone to losing
some recognition accuracy than the classical CNN network
architecture [18].

The attention mechanism can capture more useful fea-
tures according to the classification goals and requirements
without changing the existing network architecture, and the
valid and important information are given a higher weight
than irrelevant and interference information to improve the
classification performance. Qin et al. [28] used a pre-training
model based on VGG, adding an attention mechanism before
the linear layer, and obtained an 87.6% classification accu-
racy on the Oxford-102 flower dataset. Zhang et al. [29]
fine-tuned the Xception architecture and used the spatial
attention and channel attention modules in combination with
the residual module, and realized more accurate discrimina-
tion of classification categories on the basis of light weight
and a low number of parameters. The accuracy was 97.35%
for Oxford102. The classification accuracy improved in the
experiments.

To meet market demand and improve production effi-
ciency, it was necessary to design a system that could adapt
to the production needs of the flower production line. This
system would provide a competitive advantage in terms of
the number of parameters, classification speed and accu-
racy compared with traditional networks without an attention
mechanism and other lightweight networks.

Aiming at an automatic flower classification line,
we designed a set of image data augmentation schemes with
Yunnan rose as the acquisition object, proposed an improved
algorithm framework based on ShuffleNet, and designed a
classification method with a superior attention mechanism to
improve the classification speed and accuracy of 3-channel
image data and 4-channel image datasets. The main contri-
butions of this study are as follows:

1) A lightweight classification architecture was proposed,
which was mainly fine-tuned on the basis of Shufflenet [16],
and the original training weights were used for transfer learn-
ing, providing the advantageous initial weight and training
starting point for the training task. The lightweight detection
method determines whether the algorithm can be deployed on
common production lines and handheld terminals.

2) In order to improve the classification accuracy, an atten-
tion mechanism module ECAnet [30] with superior perfor-
mance was added to the network architecture.

The rest of this paper is organized as follows. The
collection of fresh-cut flower datasets and classification
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criteria are given in Section II. Experimental methods, work-
ing procedures, analysis, and discussion are presented in
Section III. The hardware environment of the experiment and
its description are presented in Section IV. The conclusions
are presented in Section V. The future experimental plans are
discussed in Section VI.

II. MATERIALS AND CLASSIFICATION CRITERIA
A. DATA COLLECTION
We collected the data of roses using a depth camera (Intel
RealSense D435i) and obtained a total of 434 color images of
flowers in jpg format, with a size of 640 × 480×3 (width ×

height × RGB channels). In addition, 434 pieces of depth
information in csv format corresponding to the flowers were
obtained, with a size of 640 × 480×1 (width × height ×

depth). The flower depth information can bring 1 more
channel data for later experimental classification. The color
images and visualization results of the depth data in the
experimental dataset are shown in Figure 1.

FIGURE 1. Examples of the flower dataset. The first row is the color
image data, and the second row shows the depth images generated from
the visualization of depth information.

B. CLASSIFICATION CRITERIA FOR ROSE
The classification of fresh-cut flowers is mainly carried out
according to the type of flowers, length of flower stalks, and
overall quality of flowers. In this experiment, we usedYunnan
‘‘Fire shadow’’ roses as the object, and sorted the roses
according to their overall quality and appearance, such as
flower shape (bud openness and uniformity), maturity (sepal
calyx and petal petals opening degree), and defects. Accord-
ing to the domestic trade industry standard of the People’s
Republic of China (SB/T 11098.2-2014), a flower with sepals
separated but opened less than three pieces was Grade1. The
flower with petals opened 3-5 pieces was classified Grade2.
The flowers with petals opened more than five pieces, but
less than 50% were Grade3. The flower with petals opened
by 50% was Grade4. The flowers with petals opened at
more than 50% were Grade5. According to the classification
criteria, the 434 flowers collected were classified and labeled
manually. An example of the classification of the roses is
shown in Figure 2.

III. METHOD
The overall process of flower data preprocessing and classi-
fication proposed in this paper is shown in Figure 3, which

FIGURE 2. Representative pictures of rose flowers in the five grades.

mainly includes two parts: the first part was data prepro-
cessing: (1) Edge detection of flower image data, search-
ing for the smallest rectangular box to segment the flower
area, and extracting effective target objects. (2) The cropped
flower dataset was combined with the actual classification
environment for data augmentation and the image size was
adjusted to a uniform size. After flower image segmentation,
data augmentation, and image resizing, the 3C flower dataset
composed of the RGB 3-channel flower dataset was finally
obtained, and the 4-channel flower dataset was synthesized
using RGB 3-channel data and one-channel depth data, which
was called the 4C flower dataset. These two datasets were
fed into the recognition and classification frameworks. The
second part was the setting of the classification system. The
ShuffleNet lightweight unit, several feature deep extraction
modules, and attention mechanism modules designed by us
were used to construct the training framework. The effective
attention mechanism and hyperparameters were set, and the
training weights of the ImageNet dataset on ShuffleNet were
used for transfer learning. When the feature extraction was
completed, our proposed model, named Opti-SA (Optimized
ShuffleNet with Attention), was used to classify the flowers
on 3-channel dataset and 4-channel dataset respectively. The
overall framework of flower data preprocessing and classifi-
cation in the experiment is shown in Figure 3.

A. DATA PREPROCESSING
1) EDGE DETECTION AND IMAGE SEGMENTATION
In the process of image acquisition, there will be a lot of use-
less information added, and it will consume a lot of time and
computing resources if the information is directly input into
the architecture for training and classification. In the experi-
ment, the target object was processed via filtering, denoising,
edge detection, and image segmentation. Figure 4 shows the
segmentation and extraction processes used to obtain accurate
flower-feature data. The experiment was divided into two
parts: Experiment (a) operated on color images of flowers and
Experiment (b) operated on visualized images of flower depth
information.

In experiment (a), Step 1 selected a Gaussian filter to per-
form linear smoothing and denoising on the original image,
and displayed in the six-channel color space of R, G, B,
H, S, and V. Experimental results showed that the feature
information extracted by the S-channel was clearer and had
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FIGURE 3. Flow diagram of flower data preprocessing and classification methods.

FIGURE 4. Results of image segmentation.

fewer interference factors, which could make the image seg-
mentation more accurate.

Step 2: OTSU [31] is a very effective automatic global
threshold segmentation algorithm for a single object in an
image, which can accurately locate the discriminant region of
flowers, separate the foreground and background of flowers,
improve the feature extraction ability, and has the character-
istics of fast calculation and accurate segmentation. In the
experiment, the image was binarized by OTSU, dilated, and
etched to obtain binary images.

Step 3: Detect the contour and edge of the flower to deter-
mine the smallest rectangular box that can wrap the detection
line of the flower edge (the green box in Step 3 in Figure 4).
Step 4: The original color image is cropped according

to the coordinates of the diagonal points of the rectangular

box to obtain the RGB flower data for subsequent data
augmentation.

In experiment (b), the depth information was visualized as
a depth image, whichwas croppedwith the smallest rectangu-
lar box, similar to the box in Step 3. Finally, one-dimensional
depth information data was obtained.

2) DATA AUGMENTATION
In the experiment, we considered various possible situations
for fresh-cut flowers during the actual classification process.
For example, the diversity of flower images is caused by
different postures and placement angles of the flowers. Image
blur is caused by Gaussian noise, pepper and salt noise, and
the mismatch of the camera frame rate and flower-moving
speed on the production line. The inconsistent brightness
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of flower images is caused by the change in light intensity
on-site. Owing to the limitation of flower data, in order
to increase the robustness of model training in the later
stage, improve generalization ability, reduce over-fitting phe-
nomenon [32], and enhance the recognition and classification
performance of fresh-cut flowers, data augmentation was
performed on the flower data before training.

In Figure 5, the original cropped color and depth infor-
mation images are processed. Image (1) is the result of the
horizontal flipping operation on the original image, image (2)
is the result of the vertical flipping operation on the original
image, image (3) is the result of the horizontal and vertical
flipping operations on the original image, image (4) is the
result of a 90◦ rotation operation on the original image,
image (5) is the result of adding random salt and pepper noise
to the original image, image (6) is the result of randomly
adding Gaussian noise to the original image, image (7) is
the result of the blurring operation on the original image,
and image (8) is the result of changing the brightness of the
original image.

Because of the different sizes of the minimum rectan-
gular boxes used for capture and cropping, the sizes of
the images after cropping were different. To facilitate the
subsequent model training and testing, the samples were
adjusted to a uniform size, and a 224 × 224 3C flower
dataset with 3906 samples was obtained after data augmen-
tation. A total of 434 cropped RGB images and 434 one-
dimensional images with depth information were integrated
into a 224 × 224 4C flower dataset with 3906 samples after
data augmentation.

FIGURE 5. Data augmentation strategies for the rose dataset.

B. CLASSIFICATION METHOD
1) NETWORK ARCHITECTURE
The establishment of ShuffleNet V2 [16] model architec-
ture is based on a large number of experimental verifica-
tion, which started from the determination of the number
of input channels and output channels, the use of grouping
convolution, the fragmentation operation of multi-channels
and branches, and the element-by-element operation, proves
that the performance index of network architecture is not
only floating-point operations (FLOPs), but also is neces-
sary to consider the amount of memory access cost (MAC),
calculation speed and other factors, so the ShuffleNet V2
has better performance in reasoning speed and accuracy
than ShuffleNet V1, Xception [33], MobileNet V2 and other
lightweight networks.

To achieve high classification accuracy in a fresh-cut
flower production line, improve the speed of recognition
and classification, and deploy the system on production line
devices with limited computing power, ShuffleNet V2 [16]
was used as the basic model in our experiment. Consider-
ing the limited sample size, the ShuffleNet V2 model was
selected to carry out transfer learning on the weight trained
on the ImageNet dataset, which could obtain general shallow
information, such as contour and color, more quickly in the
training of feature extraction on the flower dataset. It had
a better fitting starting point and training basis, and could
promote faster convergence in shallow feature extraction,
reduce the computing power consumption and the cost of
learning shallow information, and obtain an accurate conver-
gence direction with high probability.

In the experiment, the flower dataset was normalized by 0.5
mean and 0.5 variance to accelerate the convergence of sub-
sequent model iterations. In the network architecture of the
model, convolution (ConV), batch normalization (BN [34])
and nonlinear ReLU activation functions were used as Bas-
icConv2d (BC) modules. Three BC modules, MaxPool and
Dropout [35], were combined into two blocks, named Block1
and Block3. Two BCmodules, MaxPool and Dropout formed
Block2. Pretrained_block was inserted between Block1 and
Block2, and a total of 16 original blocks of stage2, stage3
and stage4 of ShuffleNet V2 were called in Pretrained_block,
while the weight parameters trained in ImageNet were used
in the model training. The effective connection between the
shufflenet lightweight core module Pretrained_block and the
three blocks was established, while ensuring sufficient light
weight. The Conv layer in the self-built block was used to
strengthen the effective extraction of flower data features. The
core size of MaxPooling (2× 2) was used for downsampling
to reduce the number of training parameters and to improve
the training speed of the model. BN and Dropout [35], [36]
were used to reduce the over-fitting probability in the model
training process, prevent gradient disappearance and theDead
ReLU problem effectively, and improve the model gener-
alization ability. Each dropout layer used a probability of
0.25 to randomly discard neurons at the relevant connection
layer.

The Fully Connected (FC) layer, which is used to integrate
information [37] and output classification results, accounts
for a large proportion of the total parameters. Therefore, when
setting this layer, the number of neuron nodes of the FC layer
should be reduced as much as possible to reduce the total
number of architectural parameters to improve the training
speed and reduce memory usage. Only 16 output neurons
were used in the experiment.

In addition to ensuring fewer parameters and higher recog-
nition speed, an appropriate attention mechanism (AM) was
added between the Block3 and FC layers to increase atten-
tion to target objects, obtain more effective information,
and improve the recognition and classification accuracy
[38], [39]. Finally, using the Softmax function, the probability
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FIGURE 6. Structure of the Opti-SA for fresh-cut flower grading.

that flowers belong to each grade is output. The proposed
model is named Opti-SA (Optimized ShuffleNet with Atten-
tion), and its structure is shown in Figure 6.

2) ATTENTION MECHANISM
An attention mechanism is used to increase the weight of
the target object, which has a significant influence on the
entire network. By adding an appropriate attention mecha-
nism to the network and increasing the weight of the effective
information, the recognition and classification accuracy was
improved.

Squeeze-and-excitation networks (SEnet) [38] focused
attention on global channels, established the correlation link
between channels, set the weights of each channel according
to the importance of information, enhanced the attention
to valid information, and improved the model classifica-
tion performance. The efficient channel attention module
(ECAnet) [30] is an improvement of SENet, which does
not capture global channel information. ECAnet replaces
the fully connected layer in SEnet with a one-dimensional
convolution operation for an adaptive convolution kernel, and
has a good ability to capture cross-channel information. The
structure of the ECAnet block is shown in Figure 7.

FIGURE 7. The structure of the ECAnet block and improvements
compared to SENet.

The size of the adaptive convolution kernel in ECANet is

k = ψ(C) = |
log2(C)
γ

+
b
γ

|odd (1)

where k is the size of the 1 × 1 convolution kernel, C is the
number of channels, γ and b are set to two and one.

IV. RESULTS AND DISCUSSION
In the experiment, we obtained 3906 samples in 3C dataset
and also 3906 samples in 4C dataset, after data augmen-
tation of the original 434 original flower samples and the
3906 samples were randomly split into training and test sets
at a ratio of 7:3, which means 2734 samples in training set
and 1172 samples in test set.

The performance of the network depends on the design
of the model structure and selection of hyperparameters.
To obtain a satisfactory recognition performance, we initially
used the Adam+True [40] optimizer on the model architec-
ture and set the learning rate to 0.0001. Based on the existing
model architecture, the batch size and attention were adjusted
to observe the performance of the model on the 3C and 4C
flower datasets.

All models were trained on the platform with an Intel
i9-12900K processor, 2TB hard disk, 32GB RAM, and
NVIDIA GeForce RTX3080Ti GPU. The experiment used
the Jupyter notebook platform with PyTorch as the frame-
work, and the programming language was Python 3.9.13.

1) PERFORMANCE OF ECANET WITH DIFFERENT BATCH SIZE
Batch size is an important parameter that affects the
model performance in recognition and classification tasks
[41], [42], [43]. In the experiment, 500 epochs were set,
and the same attention mechanism, ECAnet, was used to
test the model performance with different batch sizes. Test
accuracy was used to measure the model performance for
different batch sizes. As shown in Figure 8, the corresponding
iteration optimization accuracy was higher when the batch
size of the 3C and 4C flower datasets was set to 45. Therefore,
to match the experimental dataset and obtain better perfor-
mance, we set the batch size of the 3C and 4C flower datasets
to 45 in subsequent experiments.

2) PERFORMANCE OF ECANET WITH DIFFERENT
ATTENTION MECHANISM
The attention mechanism can assign different weights to
different information in the image, improve the extraction of
the region of interest of the target object, and enhance the

17288 VOLUME 11, 2023



Y. Fei et al.: Lightweight Attention-Based Convolutional Neural Networks for Fresh-Cut Flower Classification

TABLE 1. Results of different methods for fresh-cut flower classification.

FIGURE 8. Accuracy of the proposed method with different batch sizes
for fresh-cut flower grading.

classification accuracy [44]. In the experiment, we compared
model performance when using SEnet, CBAM, ECAnet, and
the model without the attention mechanism. As shown in
Figure 9, when the attention mechanism was set to ECAnet,
the test accuracy reached 98.891% on the 3C flower dataset,
and 99.915% on the 4C flower dataset.

FIGURE 9. Accuracy of the proposed method with different attention
mechanisms for fresh-cut flower grading.

After a series of optimization, we finally decided to use the
Adam+True optimizer, set the learning rate to 0.0001 and
the batch size to 45, and use ECAnet, multiple training

optimization iterations were performed until the model con-
verged smoothly and a model with a classification perfor-
mance advantagewas obtained. The accuracies of Opti-SA on
the 3C and 4C flower datasets during training and testing at
500 epochs are shown in Figure 10. The best test accuracy of
the 4C flower dataset was 99.915%, and that of the 3C flower
dataset was 98.891%. The starting point and convergence
speed of training and testing on the 4C flower dataset during
the iterative process were higher than those of the 3C flower
dataset. In the first 20 epochs, the model quickly entered a
state of good performance with stable convergence and good
robustness, which further proves the feasibility of the pro-
posed model. After 20 epochs, it can be seen that the model
on the 4C flower dataset performed significantly better than
the 3C flower dataset on the test set by approximately 1%.
The test accuracy on the 4C flower dataset fluctuated between
99% and 100% with small fluctuations. The robustness of
Opti-SA on the 4C flower dataset was superior to that on the
3C flower dataset.

FIGURE 10. Accuracy of the proposed method of testing and training on
3C and 4C flower datasets.

3) PERFORMANCE OF DIFFERENT METHODS FOR
FRESH-CUT FLOWER CLASSIFICATION
AlexNet [35], DenseNet121 [45], SqueezeNet,MobileNet_v3
and MnasNet [46] were used for transfer learning in the
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FIGURE 11. Confusion matrix on the 3C flower dataset.

experiment, and their comprehensive performance was com-
pared with Opti-SA on the 3C and 4C Flower datasets. The
results are listed in Table 1.

As shown in Table 1, our proposed model Opti-SA has
obvious comprehensive advantages in terms of the total num-
ber of parameters and estimated total size, and can obtain
98.891% and 99.915% test accuracy on two datasets (3C and
4C flower datasets), respectively. Compared with AlexNet,
the Opti-SA architecture does not have an advantage in
the estimated total size, but Opti-SA only requires 1/35
of the total number of parameters and achieves a signifi-
cant improvement in test accuracy of 12.799% and 6.912%,
respectively. Compared to DenseNet121, the test accuracy on
the 3C flower dataset and the 4C flower dataset was increased
by approximately 7%, the running speed was increased by
approximately 1.8 times, the number of parameters was
reduced by more than three times, and the estimated total
size was reduced by approximately 2 times. Compared with
the classic lightweight network architectures SqueezeNet,
MobileNet_v3, and MnasNet, the Opti-SA architecture has
absolute competitive advantages in test accuracy, with a max-
imum improvement of 13.055% on 3C flower dataset and
8.066% on the 4C flower dataset, although the test speed is
slightly slower.

The rose-series flower classification and processing sys-
tem of BERCOMEX can detect and process 9000 roses per
hour, which means that the processing time for each fresh-
cut flower is approximately 0.4 seconds. The processing
speed of the fastest tulip grading system in HAVATEC is
about 0.2 s/flower (18,000 tulips per hour), Comparing the
processing time of the classification lines of BERCOMEX
and HAVATEC, our flower classification and grading process
with processing speed of 0.020s per flower (including image
preprocessing time) will not become a bottleneck in thewhole
flower classification system. By optimizing other processes
and the speed of the classification line, we can effectively
improve the efficiency of the flower grading system, reduce
the overall time of flower grading and processing, reduce
losses, and maintain the quality of flowers with an efficient
processing speed.

TABLE 2. Performance of different models.

FIGURE 12. Confusion matrix on the 4C flower dataset.

In addition, we compared and tested the recognition and
classification performance of the architectures in the existing
literature in recent years on our dataset under 500 epochs
iterations. As shown in Table 2, our network architecture
Opti-SA obtains 9.045%-32.338% higher accuracy on the 3C
flower dataset and 1.195%-15.956% higher accuracy on the
4C flower dataset than the other networks. At the same time,
it can be observed from the experimental results that adding
one dimension depth information is of great help in improving
the accuracy of flower classification. As far as the self-built
architecture is concerned, the test accuracy on the 4C flower
dataset was approximately 1% higher than that on the 3C
flower dataset.

4) DISCUSSION
The confusion matrix is a visual representation of the clas-
sifier’s performance index [51]. We used it to evaluate the
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TABLE 3. Classification performance measures (%).

FIGURE 13. Sample images misclassified in the confusion matrix.

classification results of our model and obtain more classifi-
cation information. Figure 12 shows the classification confu-
sion matrix of the test results on the 3C flower dataset. The
data on the diagonal in the figure represent the classification
accuracy; the most incorrect predictions were made with
a probability of 0.019 for Grade 1 being misclassified as
Grade 2, 0.025 for Grade 2 being mispredicted as Grade 3,
0.004 for Grade 3 being mispredicted as Grade 2, 0.002 for
Grade 3 being mispredicted as Grade 4, 0.008 for Grade 4
being mispredicted as Grade 3, 0.004 for Grade 4 being
mispredicted as Grade 5, and 0.005 for Grade 5 being mispre-
dicted as Grade 4, respectively. Figure 11 also shows that the
misclassification of Opti-SA occurs only between adjacent
grades and not between nonadjacent grades.

Figure 12 shows the performance of Opti-SA on the 4C
flower dataset during the classification process. Only Grade 4
has a probability of 0.004 to be mispredicted as Grade 3, and
the recognition performance is excellent in other grades.

We also used the parameters of TP(True Positive, an out-
come where the model correctly predicts the positive flower
grade ), TN(True Negative, an outcome where the model cor-
rectly predicts the negative flower grade), FP(False Positive,
an outcome where the model incorrectly predicts the positive
flower grade), and FN(False Negative, an outcome where
the model incorrectly predicts the negative flower grade).
With TP, TN, FP and FN, we got the accuracy, precision,
recall, specificity and F1-score to evaluate the performance
of our model on 3C flower dataset and 4C flower dataset. The
formulas are given between Eqs. (2)–(6), and Table 2 shows
the performance metrics for each grade on 3C flower dataset
and 4C flower dataset.

In Table 3, we can conclude that Opti-SA on the 4C flower
dataset has the satisfactory performance, according to the
result of accuracy, precision, recall, specificity and F1-score
[49], [52]. F1-score performs about 2% higher on 4C flower
dataset than 3C flower dataset.

Accuracygrade_no

=
TPgrade_no + TNgrade_no

TPgrade_no + TNgrade_no + FNgrade_no + FPgrade_no
(2)

Precisiongrade_no =
TPgrade_no

TPgrade_no + FPgrade_no
(3)

Recallgrade_no =
TPgrade_no

TPgrade_no + FNgrade_no
(4)

Specificitygrade_no =
TNgrade_no

TNgrade_no + FPgrade_no
(5)

Specificitygrade_no =
TNgrade_no

TNgrade_no + FPgrade_no
(6)

We extracted 11 misclassified images from the test dataset
in the 3C flower dataset, as shown in Figure 13. The main
reasons for the wrong classification may be the following two
points:1) It is stipulated in the flower classification standard
that in the absence of obvious defects, when evaluating the
degree of opening and maturity of the buds; if the flower with
petals opened 3-5 pieces, it was classified as Grade 2, while
the flower with petals opened more than 5 pieces in total was
classified as Grade 3. There are no clear quantitative criteria
or strict boundaries to distinguish the degree of petal opening
and maturity among the standard taxonomic categories, and
most of the data in the dataset are labeled manually, so there
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are overlapped labels. 2) The camera cannot cover the flowers
in all directions because of the fixed shooting angle, and the
features of the flowers facing away from the camera cannot
be reflected in the image, resulting in a final judgment error.

V. CONCLUSION
This study proposed a high-quality classification model for
fresh-cut flowers. To enhance robustness and generalization
ability, a set of data preprocessing methods suitable for fresh-
cut flowers was designed, including accurate edge detection,
cropping, and specific data augmentation methods for flower
images. The experimental results showed that under the con-
dition of limited sample size and less hardware resources,
a classification accuracy of 98.891% was obtained on the
traditional color image dataset, and was up to 99.915% on
the dataset including depth data. The classification speed
could reach 0.020s per flower. Compared with other tra-
ditional and lightweight classical networks, our proposed
model showed strong competitiveness and excellent classifi-
cation performance in terms of the estimated total size, num-
ber of parameters, recognition accuracy, and image-detection
speed.

In the future, we will conduct further research on the
classification system of fresh-cut flowers, mainly for the
classification system design of roses, tulips, gladiolas, carna-
tions, chrysanthemums, and other different types of objects,
to expand the application field and improve the practical
application value of the classification system.
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