
Received 2 January 2023, accepted 8 February 2023, date of publication 13 February 2023, date of current version 16 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244388

A Configurable Model-Based Reinforcement
Learning Framework for Disaggregated
Storage Systems
SEUNGHWAN JEONG AND HONGUK WOO , (Member, IEEE)
Department of Computer Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Honguk Woo (hwoo@skku.edu)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant by
the Korea Government through MSIT under Grant 2022-0-01045 and Grant 2022-0-00043, and in part by Samsung Electronics.

ABSTRACT With the rapid growth of data-intensive jobs and the use of different hardware in storage,
disaggregated storage architecture systems are being used to improve the operational cost efficiency of data
centers. The hardware heterogeneity and mixed configurations of disaggregated storage systems, along with
the diversity of workloads, often make it difficult for administrators to operate them optimally. In this work,
we investigate model-based reinforcement learning (RL) schemes to develop automated system operations
and maintain the storage performance across various system settings and workloads in self-managed storage
systems. Specifically, we propose a novel configurable model structure in which a system environment is
abstracted with a two-level hierarchy of storage devices and a platform and thus the environment can be
reconfigured according to a given system specification. Using that novel model structure, we implement a
configurable model-based RL framework CoMoRL by which RL agents are trained through model variants
that represent a variety of storage system specifications; thus, their learned management policy can be
highly robust to the diverse operation conditions of real-world storage systems. We evaluate our CoMoRL
framework using a storage cluster that relies on NVMe-oF devices and demonstrate that the framework can
be adapted to different scenarios such as volume placement scenarios with Kubernetes and primary affinity
control scenarios with Ceph. The learned management policy outperforms an IOPS-based heuristic method
and a model-based method by 0.7%∼5.1% and 11.8%∼29.7%, respectively, for various Kubernetes system
specifications, and by 1.6%∼5.6% and 8.2%∼16.5%, respectively, for various Ceph system specifications,
without requiring model and policy retraining. This zero-shot adaptation superiority of our framework makes
it possible to realize RL-based self-managing storage systems in data centers with frequent system changes.

INDEX TERMS Model-based reinforcement learning, configurable model, meta learning, policy adaptation,
data placement, disaggregated storage, heterogeneous storage.

I. INTRODUCTION
The technology trend of disaggregated storage architectures
has the benefits of flexibility and high efficiency in stor-
age system operation, allowing for fine-grained, device-level
upgrades and mixed configurations of heterogeneous devices
with different I/O capabilities in data centers [1], [2]. This
trend, which involves both disaggregation and heterogeneity

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhe Xiao .

in storage systems, is quite desirable from a total cost of
ownership perspective. However, it can inherently cause
performance issues. When the layout of data is managed
by a conventional storage platform that does not account
for the heterogeneous capabilities of storage devices, appli-
cations often experience lower-than-expected storage per-
formance [3], [4]. Hot data, frequently requested in large
amounts, and latency-sensitive data are preferably served by
high-performance enterprise-grade storage devices; however,
when storage size is limited and data access patterns vary

14876 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6948-3440
https://orcid.org/0000-0002-0440-5772

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

dynamically, data can be misplaced. Furthermore, storage
workloads become increasingly complicated, as various data-
intensive applications run with different I/O through require-
ments and latency limits.

Reinforcement learning (RL)-based approaches integrated
with deep neural networks have proved their applicability
in automated system operation and resource management,
e.g., on the single device level such as I/O merging [5],
caching [6], and garbage collection [7], [8] and on the sys-
tem level such as cluster resource management [9], object
placement [10], network traffic engineering [11], [12], [13],
and database index selection [14]. These applications of RL
formulate system operation tasks as Markov decision pro-
cesses (MDPs), by which an optimal policy for sequential
management decisions can be learned from experiences with
or operation logs from the target system.

In the context of self-managing storage systems,
recently, there were several research works using RL algo-
rithms [10], [15]. In Databot+ [10], a Q-learning-based
management agent was trained through the Mininet Simu-
lator [16] to determine server locations of I/O requests and
reduce their latency. In ARM [15], an RL agent was learned
to select an effective algorithm among several predefined
heuristic algorithms for load balancing on a Ceph storage
cluster. These works were either evaluated only in simulation
environments or were limitedly tested in certain management
scenarios with a small action space. The limitations of these
prior works are attributed to the sample inefficiency of exist-
ing RL-based approaches, which can arise when it is difficult
to aggregate operation log data sufficiently for RL training
through direct interaction, such as a storage system. Even
for ARM with a small discrete action space (i.e. a set of
predefined heuristic management algorithms), RL training
took 83 hours when learning by continual interaction with
the target Ceph testbed, as reported in [15].

Figure 1(a) shows the learning curves of RL training with
our Kubernetes testbed that is composed of 4 storage nodes.
For this test, we implemented a data placement policy by
which the state of a Kubernetes testbed is observed and
inferred actions in data migration commands are performed
every second. The learning curves show that more than
200 hours were needed for RL training whereModel-free (the
blue-colored curve in Figure 1(a)) corresponds to learning via
direct interaction with the target system. In the RL literature,
model-based RL methods, by which a model provides a sim-
ulation environment where the dynamics of the target system
are abstracted according to its MDP, have been investigated
for improving sample efficiency [17], [18], [19].

Our implementationwithmodel-based RL (the red-colored
curve in Figure 1(a)) indicates such sample efficiency, in con-
trast to the Model-free method.

In this paper, we explore model-based RL methods for dis-
aggregated, heterogeneous storage systems to allow learned
RL policies to adapt to continual system changes. In model-
based RL, an MDP is defined and learned specifically for

FIGURE 1. Limitation of conventional (a) model-free and (b) model-based
RL methods for storage system management. In (a), the x-axis denotes
training time in hours and the y-axis denotes the achieved performance
explained in Section IV-A. In (b), the x-axis denotes different storage
systems where a model for model-based RL is learned on a specific
(Source) system and an RL agent learned through the model is evaluated
with different Tar(get) systems.

a given system, so if the system is changed, adaptation or
retraining issues might arise in practice. The operation con-
ditions of a data center with disaggregated storage systems
vary continually due to frequent configuration updates such
as storage node scale-in and -out and device upgrades and
replacements as workload patterns change and devices fail.
However, such changing conditions have not been fully inves-
tigated in the prior works. Figure1(b) demonstrates that the
performance ofmodel-basedRL degradesmore than the other
heuristic method when the system is changed (i.e., from the
source to other targets 1∼4), although it achieves higher
performance than the heuristic method for the source system
where it is learned. The detailed implementation is described
in Section IV.
Existing model learning techniques in RL rarely account

for configuration updates to the target system. The techniques
normally rely on a monolithic model structure, so they are
inherently unsuited to flexible reconstruction and rapid adap-
tation. In the context of disaggregated, heterogeneous storage
systems, yet, a model that can readily accommodate changes
without retraining from scratch is desirable. This limitation of
existing RL approaches motivates us to investigate a config-
urablemodel structure in the context of self-managing storage
systems.

To address the limitation and enable model adaptation for
target storage systems, we develop a configurable model-
based framework with a two-level hierarchy structure: at
the lower level, device models are learned to represent the
dynamics of individual storage devices and then a higher-
level storage platform model is constructed on top of those
device models. Using the composition of the learned dynam-
ics, the resulting high-level dynamics model can be thus
flexibly constructed to match with various system scales and
mixed configurations. With the configurable structure that

VOLUME 11, 2023 14877

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

provides numerous model variants, we leverage the meta-
learning capability of RL agents so that the agents’ learned
policy (the management strategy) is able to adapt to different
system specifications. Our learning procedure includes sam-
pling a set of model variants from the configurable model
and using them as environment models that represent stor-
age system specifications, hence meta-training RL agents.
We call this novel framework for configurable model-based
RL, CoMoRL.

Our work is the first to propose model-based RL with
configurability in the domains of self-managing storage in
which the system configuration can be changed over time
(i.e., different compositional settings of storage devices). The
CoMoRL framework allows management policies learned
through a set of model variants to adapt to system changes
without retraining models and policies, thus enabling to facil-
itate RL-based zero-touch self-managing systems.

Through experiments, we show that an RL policy trained
in CoMoRL achieves robust performance in various storage
operation conditions compared to other baseline methods,
e.g., with an average performance gain of 0.89%∼5.7% over
an IOPS-based heuristic method and 11.8%∼29.7% over a
model-based method in volume placement scenarios with
various Kubernetes cluster specifications (as demonstrated in
Section IV-B2).
The main contributions of this paper are as follows.

• We propose a novel model-based RL framework
CoMoRL to support flexible RL adoption for automated
operations in dynamic, disaggregated, and heteroge-
neous storage systems.

• We devise a configurable model structure with a two-
level device and platform hierarchy and a set of
robust management policies learned through recon-
figured model variants for different storage operation
conditions.

• We demonstrate several applications of CoMoRL such
as volume placement optimization for a container-based
virtual cluster and primary affinity control for an object
storage cluster, verifying its superiority in zero-shot
adaptation to given operating conditions.

The rest of this paper is organized as follows. Section II
explains the architecture of a disaggregated storage system
and its performance issues with mixed configurations of
heterogeneous devices. Section III presents CoMoRL, our
proposed model-based RL framework with configurability,
and describes how to achieve a robust management policy
by using model variants in the framework. Sections IV, V,
and VI describe our experiment settings and results, related
research works, and conclusions, respectively.

II. DISAGGREGATED STORAGE SYSTEMS
In this section, we present the architecture of a disaggregated
storage system for which we adopt RL-based management
strategies to establish robust storage performance for system
changes and various workloads.

FIGURE 2. Disaggregated storage systems.

FIGURE 3. Performance patterns of different storage devices. Each
corresponds to a specific NVMe-oF node containing different SSDs and
network adapters; (a) an enterprise-level device with a Samsung
PM1725a SSD and Intel 40GbE XL710-QDA2 NIC shows high throughput
(on the left-y-axis) and low latency (on the right-y-axis) over an
increasing IOPS request burden (on the x-axis). The examples in (b)-(d)
show different performance patterns, e.g., having the bottleneck point on
serviced latency at 360K, 270K, and 160K IOPS, respectively. The detailed
specifications for these 4 devices are in Table 3.

Figure 2 illustrates the architecture of a disaggregated
storage system of NVMe-oF (non volatile memory express
over fabrics) devices in which numerous NVMeSSDs are dis-
tributed and connected over a data center network. NVMe-oF
technology enables NVMe SSDs to operate on top of a
network fabric transport (e.g., Ethernet, RDMA) other than
a conventional PCIe [20]. It facilitates the separation of
computing and storage nodes in a data center, thus allowing
for storage disaggregation that offers independent scaling
and resource pooling, while enabling low-latency access on
remote SSDs. Overall, a storage scale-out structure using
NVMe-oF SSDs offers several advantages of storage disag-
gregation including better resource utilization, rapid system
upgrades, cost-efficient maintenance, and flexible configu-
rations. Furthermore, it renders data center operation more
flexible and efficient [20], [21], [22].

14878 VOLUME 11, 2023

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

FIGURE 4. Performance of homogeneous and heterogeneous storage
systems.

However, such a highly flexible operational strategy for
independent storage scaling and upgrades in a heterogeneous
storage system (i.e., a cluster of various storage devices
with different I/O capabilities) often leads to management
challenges in a data center. That is, a storage cluster of het-
erogeneous devices makes it difficult to optimize the overall
performance of both the storage platform (e.g., Kubernetes
volumemanager, Ceph object storage, HDFS) and each appli-
cation, because traditional storage platform architectures are
rarely able to optimize the performance of a mixed configu-
ration of heterogeneous storage devices with various applica-
tion requirements [3], [4].

Figure 3 shows the I/O patterns of 4 individual stor-
age nodes each of which has a specific NVMe/TCP SSD
device. As shown, we obtain different patterns of IOPS and
latency for the different nodes when the same workload is
generated by the FIO storage performance benchmarking
tool [23]. Figure 3(a) depicts a pattern of enterprise-level stor-
age devices that maintains high serviced IOPS (on the left-y
axis) and low latency (on the right-y axis) across increas-
ing workloads (on the x-axis), but the others demonstrate
different bottleneck patterns in which the latency increases
suddenly at different required IOPS.

Furthermore, in Figure 4, we compare the overall perfor-
mance, in terms of the application-level quality of service
(QoS), achieved by different storage systems. The systems
share all the same storage cluster settings except for the indi-
vidual NVMe-oF nodes. The homogeneous system (Hom)
is configured with 4 identical devices (RC500, 10GbE in
Figure 3(c)) of mid-range performance. The heterogeneous
systems (Het1, Het2) are configured with different devices,
but their total I/O capacity is set to be no less than that of the
homogeneous system. We intentionally generated intensive
workloads for a clear comparison. The two heterogeneous
systems yield lower performance than the homogeneous sys-
tem with a gap of about 10%. This result indicates the
unfavorable performance effects of storage heterogeneity,
which is what has motivated us to investigate learning-based
approaches for heterogeneous storage systems. The QoSmet-
rics that we use are explained in Section IV-A.

III. A CONFIGURABLE MODEL-BASED RL FRAMEWORK
In this section, we describe our proposed framework,
CoMoRL configurable model-based RL by which a manage-
ment strategy based on experiences can be effectively learned
for various operation conditions of disaggregated storage
systems.

We formulate an RL-based management strategy in an
MDP with a tuple (S,A, p, r, γ). It consists of a state space
S, an action space A, a state transition probability p : S ×
A× S → [0, 1], a reward function r : S ×A→ R ∈ [0, 1],
and a discount factor γ ∈ [0, 1]. For a storage system, its
management strategy is assumed to intend system perfor-
mance optimization in some given QoS metric during the
whole operation period. Accordingly, the reward function is
designed based on that QoS definition, and the RL objective
is to optimize the overall QoS (e.g., maximize

∑
t OoSt)

for timesteps t through the maximization of the accumulated
rewards.

Figure 5 represents the entire structure of the CoMoRL
framework with a hierarchy for the storage device model
and platform model. The storage device model abstracts the
performance patterns of different storage devices from the
operation logs collected the FIO benchmark tool [23]. The
storage platform model is constructed on top of those learned
storage device models to abstract the behavior of the target
storage system. The composition of the storage device model,
the platform model, and the workload is used as an individual
system setting (Conf. k in the figure) that corresponds to a
specific simulation environment for some scale and configu-
ration. In CoMoRL, a wide range of different environments
can be generated for RL training and they are referred to as
model variants (M in the figure). The management policy
achieved by the RL agent trained through the model variants
can be highly robust to system changes in practice.

It is worth noting that the storage device and platformmod-
els are trained or implemented individually, but the model
variants are rendered cost-efficiently without retraining. That
model configurability makes RL agents robust against a vari-
ety of operating conditions, especially for a target storage
system that does not allow for online RL training.

In the following subsections, we explain the configurable
model structure of CoMoRL and then describe how it is built
using two layered component model types, (1) storage device
models in Section III-A1 and (2) storage platform models
in Section III-A2. With those, we also present (3) the meta-
training procedure for an RL agent in Section III-B, which
can establish a robust management strategy.

A. CONFIGURABLE MODELS
In the RL context, model-based approaches are considered
promising for system optimization because of their sample-
efficient structure and limited interaction with the target
system [24], [25]. For a storage system, it is normally not
feasible to apply RL algorithms online via direct interac-
tion, but offline operation logs can be leveraged to build

VOLUME 11, 2023 14879

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

FIGURE 5. The CoMoRL framework.

an environment model that estimates the system dynamics.
In general, a dynamics model is formulated as given below
where a next state S t+1 is yielded for an input pair of state S t

and action At at timestep t according to a probability distri-
bution p(S t+1 | S t ,At) conditioned on the input pair. Thus,
model learning in model-based RL tends to approximate the
distribution p(·),

(S t ,At)
p(S t+1|S t ,At)
−−−−−−−→ (S t+1). (1)

Once amodel is established, we can train an RL agent through
the model according to the desired management objective of
the storage system. That is, a policy or management strategy
learned by the agent can be optimized for each specific stor-
age system.

In conventional model-based RL, a model is generally
monolithic in that it is fully associated with a specific target
system, because it is learned on a dataset of operation logs.
In the procedure for model learning, the need to adapt to
system changes is not taken into account. This limits the
use of model-based RL for disaggregated storage systems,
i.e., mixed configurations of heterogeneous devices, in which
system changes (scale-in and -out, device upgrades and
replacements, etc.) occur frequently. Continuously collecting
operation logs for model learning and updating after each
sequence of system changes would be a time-consuming and
challenging job. As discussed in Figure 1(b), system changes
can degrade the performance of model-based RL agents in the
absence of retraining procedures.

To address the limitation of model-based RL for storage
systems with frequent system changes and configuration
updates, we explore a compositional model structure with a
two-level hierarchy. Device models are trained on operation
logs to represent the dynamics of individual devices, and a
storage platform model is constructed based on an aggrega-
tion of the device models to represent the dynamics at the
application level. This composition enables us to incorpo-
rate configuration updates to the target system into a single
learned model, thereby facilitating the rapid adaptation of
trained RL agents to system changes.

To that end, we have formulated a disaggregated storage
system as a combination of individual devices and a platform
running on top of those devices. Specifically, we represent a
model for a storage system of N objects (an N -sized object
set O1:N in a state S t = {Ot1:N } at timestep t) in Dsys(·) using
the N -production of an object-wise model Dobj(·). That is,

Dsys(S t+1 | S t ,At) =
N∏
i=1

Dobj(O
t+1
i | At , S t)

=

N∏
i=1

Dobj(O
t+1
i | Oti ,A

t ,Ot[̸=i]). (2)

Given a storage system ofM individual devices, we represent
a subset of objects O1:N in a partition Pj that corresponds to
a specific group of objects that is located and serviced in the
jth device, i.e.,

Pj = {Oi | Oi ∈ Pj}, i ∈ {1, 2, . . . ,N }, j ∈ {1, 2, . . . ,M}

(3)

Considering that objects located on the same storage device
have a larger performance effect on each other than those on
different storage devices, we rewrite the model in Eq. (2) as

N∏
i=1

Dobj(O
t+1
i |O

t
i ,A

t ,Ot[̸=i])

=

N∏
i=1

Dobj(O
t+1
i |O

t
i ,A

t , {Otk |O
t
k ∈ P

t
j })

=

N∏
i=1

Dobj(O
t+1
i |P

t
j ,A

t) =
M∏
j=1

Dstr (P
t+1
j |P

t
j ,A

t) (4)

where Dstr (·) corresponds to the dynamics model of a stor-
age device, which is explained in Section III-A1 below.
By Eq. (2)-(4), we establish that the overall system dynamics
Dsys(·) can be modeled based on the implementation and
combination of Dstr (·).
In the following, we describe how to achieve the storage

device model Dstr (·) and how to combine it with a known

14880 VOLUME 11, 2023

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

platform model so that the overall system model Dsys(·) can
be implemented.

1) STORAGE DEVICE MODEL
Given the dynamics representation of a storage deviceDstr (·)
in Eq. (4), we decompose it into two individual parts, the
dynamics of workloads and the dynamics of actions. Accord-
ingly, we rewrite the model for storage devices as

M∏
j=1

Dstr (P
t+1
j |P

t
j ,A

t)

=

M∏
j=1

∑
P̃t⊂S

Dstr (P
t+1
j | P̃t) ∗Dact (P̃t | Ptj ,A

t)

=

M∏
j=1

Dstr (P
t+1
j | P̃tj) (5)

where P̃t denotes a random variable for partition after an
action At is applied, and Dact (P̃t |Ptj ,A

t) denotes the partial
dynamics influenced only by actions. We assume that the
actions we consider for storage management scenarios, such
as migrating data and setting system parameters, are guaran-
teed to execute. This is because given a target management
scenario, we consider only valid actions in its RL context that
can be interpreted and performed as a sequence of executable
system commands.

Next, we explain how to implement Dstr (P
t+1
j | P̃tj). For

each device, we first collect operation logs including the
pair sets of X = P̃tj and Y = Pt+1j , where X represents
the required IOPS on objects i ∈ Pj and Y represents the
respective serviced IOPS and latency for X . Then, with a
sufficient dataset of logs, it is possible to learn a regression
model that can predict the serviced IOPS and latency of an
object set associated with partition Pj. In our notations, the
followings are used for ith object state oti at timestep t .

• oti .TI and o
t
i .TL denote the required IOPS and latency of

ith object, respectively.
• oti .SI and o

t
i .SL denote the serviced IOPS and latency of

ith object, respectively.

Algorithm 1 represents how to train such a regression-
based storage device model Dstr (P

t+1
j | P̃tj), where j ≤ M ≤.

In lines 3-7, operation logs are collected using FIO running on
an individual storage device j. In doing so, each object oi ∈ Pj
in the device is specified with its IOPS request oi.TI . To gen-
erate FIO flows over multiple objects with different IOPS
requests simultaneously, we use a single FIO job description
file that contains a set of options commonly used for multiple
flows. The options include block size, IO depth, and request
type. In addition, to adjust each flow for an individual object,
we use a configurable option iops_rate that represents the
IOPS request for the object, which is randomly set in line 5.
As a result of FIO execution in line 6, the logs of serviced
IOPS and latency (IOPSfio,LATfio) are collected and added
to data buffer B. This data collection iterates until B is full.

Algorithm 1 Storage Device Model Training

/* Pj : Set of objects stored in jth

device, 1 ≤ j ≤ M,

oi : State of ith object,

{TI , TL, SI , SL},

B : Buffer to store operation

logs,

size : Maximum size of B,
max_iops : Maximum IOPS request

for an object,

θ : Parameters of storage device

model Dstr,

e : Number of epochs */

1 Initialize B, θ
2 for |B| < size do

3 Device ID j← randomInt(1,M)

4 for object oi ∈ Pj do

5 oi.TI ← randomInt(0,max_iops)

6 IOPSfio,LATfio← FIO (Pj, j)

7 B← B ∪ {(Pj, j, IOPSfio,LATfio)}
8 for epoch ∈ [1, e] do

9 for (Pj, j, IOPSfio,LATfio) ∈ B do

10 IOPS,LAT ← InferenceStorage (Pj, j)

11 L←
||LAT − LATfio||1 + ||IOPS − IOPSfio||∞

12 θ ← θ - ∇θL

In lines 9-12, a regression model is trained on the logs in
B using InferenceStorage() in Algorithm 2 and two
losses, the L1 loss for serviced latency and the L-infinity loss
for serviced IOPS. Here, for different device specifications,
we use a single deep neural network (DNN) for model learn-
ing rather than a set of individual DNNs. In our experiments,
a singlemodel trained on various specification datasets turned
out to be robust against the difference of learning and target
systems.

Algorithm 2 represents how to use the storage device
model Dstr (·) to infer the next state Pt+1j including the ser-
viced IOPS and latency, upon an input Pj that is the current
state P̃tj after action execution. We represent the input fea-
tures in the form of histograms in which objects are grouped
according to the range of required IOPS using the interval
l in lines 3-4. For example, an object of 13,000 requests is
represented in the (13000/l)th region. In our implementation,
the maximum IOPS is set to 15000 and l is set to 1000.
Accordingly, the input features are represented as a histogram
with 15 regions. In line 5, the Dstr (·) model itself infers the

VOLUME 11, 2023 14881

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

Algorithm 2 Storage Device Model Inference

/* Pj : Set of objects stored in jth

device,

oi : The state of ith object,

{TI , TL, SI , SL},

l : IOPS interval in a single

range,

Count : Histogram list for oi.TI */

1 def InferenceStorage (Pj, j):

2 Initalize Count

3 for object oi ∈ Pj do

4 Count[oi.TI/l]← Count[oi.TI/l]+ 1

5 IOPS, LAT ← Predict(Count, j)

6 return IOPS, LAT

FIGURE 6. Performance patterns estimated by our learned storage device
model. Each figure shows the predicted performance pattern for each
specific device specification in Figure 3 and Table 3.

predicted serviced performance in IOPS and latency. The
serviced IOPS (IOPS) is a vector of the same size as the input,
representing the ratio for each required IOPS. The serviced
latency (LAT) is a single value, as the average latency of all
requests sent to the same device is assumed to be equal.

Figure 6 shows the inference outputs of our learned storage
model for several devices, confirming that they are consistent
with real measurements in Figure 3.

2) STORAGE PLATFORM MODEL
A storage platform model is used to integrate the state infor-
mation of individual partitions in a unified state, as illustrated

in Eq. (6).

(6)

The storage platform model first decomposes the whole
object set into a set of partitions Pj(j = 1, . . . ,M) based
on the object location for the state, and then it aggregates
the inference outputs by the storage device model for all j.
Algorithm 3 implements this procedure, where the next state
of M partitions is inferred through Algorithm 2.

Algorithm 3 Storage Platform Model Inference

/* S : Entire object set,

a : Action from agent,

Pj : Set of objects stored in jth

device,

oi : The state of ith object,

{TI , TL, SI , SL} */

/* ExecuteAction(), GetState(),

GetReward() are scenario-specific

functions */

1 def Inference (a):

2 ExecuteAction(S, a)

3 for Device ID j ∈ [1,M] do

4 IOPS, LAT = InferenceStorage(Pj, j)

5 for object oi ∈ Pj do

6 oi.SI = IOPS[oi.TI/l], oi.SL = LAT

7 State s, Reward r = GetState(S),

GetReward(S)

8 return s, r

Note that ExecuteAction() is responsible for action
executions whose implementation is not part of our frame-
work specification. Their implementation depends on a given
management scenario and target platform. For instance, a spe-
cific data relocation action between NVMe-oF devices can be
translated into appropriate platform commands and executed.
Similarly, GetState() and GeReward() correspond to
the transition and reward functions in conventional RL for-
mulations, and they are also implemented according to the
management scenario. Several examples of these scenario-
specific functions are discussed and their implementation is
presented in Section IV.

14882 VOLUME 11, 2023

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

In line 2, ExecuteAction() updates the state of each
partition, i.e., (Ptj ,A

t) → P̃tj in Eq. (6), in the storage
platform model. Then, in line 4, InferenceStorage()
(in Algorithm 2) performs the inference of the next state of
each partition, i.e., P̃tj → Pt+1j in Eq. (6). In lines 5-6, for
each object oi ∈ Pj, its serviced IOPS (oi.SI) and latency
(oi.SL) are updated by the storage device model using the
inference outputs. This iteration updates the state of the entire
object set S = {P1:M } = {O1:N } and aggregates the state of
each partition Pj. Once S is updated, in lines 7-8, the next
state and reward values are calculated and returned according
to scenario-specific state representation and reward shaping
functions.

As such, Algorithm 3 can be seen as a conventional step
function in RL, e.g., next state s, reward r = step (action
a), that takes an action as input and returns a next state and a
reward as output.

B. TRAINING AN RL AGENT
Using our configurablemodel to provide a flexible simulation
environment, we train an RL agent to establish learning-based
storage management strategies. In particular, we consider the
temporal changes and variants of a target storage system and
so devise a meta-training procedure with a set of differently
configured model variants.

Algorithm 4 Training an RL Agent

/* M : Model variant,

Bagent : Replay Buffer,

θagent : Parameters of RL,

πθagent : Policy of RL,

T : total timesteps,

Conf : System configuration */

1 Initialize θagent , Bagent
2 for t ∈ [1,T] do

3 if system is changed then

4 Model variantM←Configure (Conf)

5 Initialize st fromM
6 Action at ∼ πθagent (s

t)

7 st+1, r t ←M.Inference(at)

8 Bagent ← Bagent ∪ {st , at , r t , st+1)}
9 for {st , at , r t , st+1} ∈ Bagent do

10 Loss L← RLLoss(πθagent)

11 θagent ← θagent - ∇θagentL

As specified in Algorithm 4, the meta-training procedure
uses domain randomization (DR) [26], [27] by which an
agent is trained through model variants M. Each variant is
created according to a system specification that is configured
by the device group, storage platform, and workload type.

In line 4, Configure() is implemented to render a model
variant for a specific configuration. For example, for a Ceph
storage platform configured to have a group of 4 different
devices with the MSR workload, Configure() produces
the specific model variant for the device group setting, plat-
form andworkload type. For simple algorithm representation,
we assume that a system continuously varies with different
configurations and each one is specified internally in Conf .
Given a model variant, in lines 5-6, the platform model infer-
ence Inference() in Algorithm 3 is used to predict the next
state and reward when the agent’s action at is applied. This
prediction generates transitions (st , at , r t , st+1) for training
the RL agent πθagent .

In our framework implementation, Transformer [28] is
used to train the agent (πθagent in Algorithm 4), so variable sys-
tem scales can be handled. AnM -length vector for partitions
{P1, . . . ,PM } is used for input to the transformer encoder, and
the transformer decoder returns actions, whereM is a variable
for dynamic scaling. Algorithms 1-3 together establish model
variantsM that can be readily configured for training the RL
agent in Algorithm 4. That model configurability facilitates
the meta-learning of the agent, thereby allowing the agent to
adapt to different target system settings.

IV. EVALUATION
In this section, we evaluate the CoMoRL framework. Specif-
ically, we adopt the framework for two storage application
scenarios such as virtual object placement for Kubernetes
volume management and primary affinity control for Ceph
object storage, evaluating the performance of RL policies
learned in the framework across various system operation
conditions.

A. EXPERIMENT SETTINGS
For comparison, we implement the following baseline algo-
rithms in addition to our CoMoRL.
• IOPS-based: this algorithm continuously adjusts the
total amount of IOPS on each storage device to ensure
that the required IOPS remains under some threshold.
Several works for storage performance optimization
have used IOPS-based heuristics [3], [10], but they did
not consider application-level QoS and system changes.
Thus, we test our own simple IOPS-based heuristics for
comparison purposes. For each device, we first estab-
lish the bottleneck point at which the latency starts to
increase dramatically based on its operation logs (Fig-
ure 4), and then use that point to specify the threshold,
such as e.g., a 10% margin from the bottleneck point.

• DR: this algorithm is based on domain randomization
techniques, in which randomly generated system con-
figurations are used to train an RL agent. It is intended
to make RL agents robust to system changes.

• Model-based: this is a conventional model-based RL
algorithm that learns a model from operation logs for
a specific system. Unlike our proposed configurable
model scheme, it uses the monolithic architecture. Using

VOLUME 11, 2023 14883

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

TABLE 1. The hyper-parameter settings of RL.

the collected operation logs of each target system,
we generate a respective model and train an RL agent
for each system.

• Autotiering [3]: this is a state-of-the-art heuristic
method to allocate virtual machine disk files in a multi-
tier all-flash data center. It is intended to maximize the
performance and utility of a data center by estimating the
gain of specific file relocation plans through regression.
Autotiering considers IOPS throughput as performance
metrics and focuses on maximizing IOPS and minimiz-
ing latency, but our framework focuses on specific user
requirements in QoS such as Eq. (7) and (8) which need
to consider the required latency specification.

In RL implementation, we use SAC [29] with the Adam opti-
mizer. Table 1 lists the hyper-parameter settings for training
RL agent of DR, Model-based and ours.

For workload emulation on storage systems, we use two
datasets.

• MSR workload: this contains a set of object-based
workloads based on the MSR-Cambridge I/O trace
dataset [30], which uses 7 days of operation logs of
request time, logical address, object size, and type infor-
mation from 13 servers of the MS data centers.

• ML workload: this contains various machine learning
(ML) workloads generated by a few well-known ML
models, which are considered to represent the majority
of modern data centers. Table 2 lists theMLmodels with
their datasets, batch sizes, and measured I/O throughput
(TP(MB/s)).

As performance metrics, we consider the application-level
QoS, which is averaged for all requests on objects i =
1, . . . ,N . Rather than focusing on latency minimization,
we intend to handle various data-intensive applications with
different requirements in I/O throughput and latency-limit.
Therefore, we formulated our QoS metrics by compositing
the throughput and latency requirements in the following
form.

QoSsys(t) =
1
N

N∑
i=1

QoS(i, t)

QoS(i, t) =

{
1, ifSI ti >= α ∗ TI ti andSL

t
i <= β ∗ TL ti

0, otherwise

(7)

TABLE 2. Configuration of ML workloads.

Here, the per-object QoS(i, t) yields 1 when both the IOPS
and latency requirements, TI ti and TL

t
i , respectively, are sat-

isfied at timestep t and is 0, otherwise. Note that α and β

represent the weights for IOPS and latency requirements,
respectively, and SI ti and SL ti denote the serviced IOPS and
latency, respectively.

Regarding the generality of our framework, we seek to
render the framework agnostic to particular QoS specifica-
tions, because it is feasible to incorporate user-custom QoS
metrics into the learning objectives of RL, as long as they
can be measured online. Therefore, the following metric in a
generalized form is also tested.

QoS+sys(t) =
1
N

N∑
i=1

QoS+(i, t)

QoS+(i, t) = α+ ∗
SI ti
TI ti
+ β+ ∗ clip(1−

SL ti − TL
t
i

2× TL ti
, 0, 1)

(8)

The per-object QoS+(i, t) can be differently defined in terms
of the respective strictness of IOPS and latency requirements.
The hyperparameters α+ and β+ are used to enable a higher
α+ setting for low-latency applications and a higher β+

setting for IOPS-intensive applications.

B. VOLUME PLACEMENT SCENARIO
Using a Kubernetes server cluster running in our lab,
we tested a data placement scenario in which each container
was associated with its persistent volume. In this scenario, the
management strategy accounts for the optimal placement of
volumes on a set of storage tiers, each of which consists of
NVMe/TCP (NVMe-over-TCP) SSDs of the same specifica-
tion and capability. This scenario is similar to Autotiering [3]
in terms of its management mechanism, in which virtual
machine disk files are relocated to a tiered storage system

14884 VOLUME 11, 2023

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

FIGURE 7. Volume placement scenario in a Kubernetes cluster.

TABLE 3. The specifications of storage tiers.

in the all-flash storage data center. In particular, Autotiering
uses heuristic algorithms for VMDK placement based on
several I/O performance features, thereby optimizing the I/O
throughput and latency. Although our work uses a similar
mechanism for tiered storage management, the volume man-
agement by CoMoRL optimizes a given specific QoS defined
in the form of application-specific performance constraints
on both throughput and latency (i.e., Eq. (7) or (8)).

Figure 7 illustrates the volume placement function with our
Kubernetes cluster where multiple NVMe/TCP devices are
categorized as different tiers, e.g.,, Tier 1,. . . , Tier 4, and used
to manage container volumes. In addition to the CoMoRL
framework, we implement several modules including a state
monitor and an action adaptor. The former aggregates the
state information of average IOPS throughput and latency via
Kubeadm, sending it to the RL agent for sequential decision-
making on volume placement. The latter translates the actions
of the RL agent into volume migration commands for differ-
ent storage tiers.

1) IMPLEMENTATION
We set up our small testbed with Kubernetes version 1.24,
where 3 storage nodes and 1 worker node operate. In the
testbed, each storage node containing some specific SSDs
and a network interface is categorized in one of the storage
tiers listed in Table 3 according to its I/O capability. The
storage tiers categorize volumes hierarchically according to
a given volume management strategy. For workload gener-
ation, we execute the FIO container [36] with 4KB-sized
blocks on the worker node, which runs on a system of

an AMD Threadripper 2995WX with 32 cores and 128GB
RAM.

For training anRL agent for volume placement, we develop
the two-staged algorithm with (1) a capacity network
that determines the throughput threshold of each stor-
age device and (2) a selection network that determines
the candidate volumes that will be migrated when the
IOPS request exceeds the throughput threshold. In the
following, we explain the scenarios-specific function
implementation for GetState(), GetReward() and
ExecuteAction(), which are specified in Algorithm 3.
Note that the implementation of these functions allows the
CoMoRL framework to be used for a specific management
scenarios.

Algorithm 5 ExecuteAction (in Volume Placement)

/* S : Entire volume set,

a : Action from agent (capacity

and selection networks),

Pj : Volumes in jth device */

1 def ExecuteAction (S, a):

2 capaAction, selAction = a

3 for j ∈ [1,M] do

4 k ← 0

5 while capaActionj < Pj.TI and k < ρ do

6 if selActionk > 0 then

7 Move ok to High-perf. tier

8 else

9 Move ok to Low-perf. tier

10 k ← k + 1

11 Pj.TI ← Pj.TI − ok .TI

a: STATE
GetState() is implemented to produce state information
for both capacity and selection networks. Specifically, the
state for the capacity network capaStatet includes integrated
information for theM -sized partition set,

capaStatet =
M∑
j=1

{capaStatetj }

=

M∑
j=1

{|Pj|, Ptj .TI , P
t
j .SI , P

t
j .TL, Ptj .SL} (9)

where the number of objects in partition Pj, the total
required IOPS Ptj .TI =

∑
i∈Pj o

t
i .TI , the total serviced

IOPS Ptj .SI =
∑

i∈Pj o
t
i .SI , the average maximum required

latency Ptj .TL =
1
|Pj|

∑
i∈Pj o

t
i .TL, and the average serviced

latency Ptj .SL =
1
|Pj|

∑
i∈Pj o

t
i .SL are calculated individually.

VOLUME 11, 2023 14885

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

The state of the selection network contains a ρ-length list in
which each element specifies the information related to Pj,

selStatetj = {capaState
t
j , capaAction

t
j }

+

∑
oi∈Pj,oi.TI≥TIρ

{oi.TI , oi.SI , oi.TL, oi.SI }. (10)

The first term contains capaStatetj which is used as input
to the capacity network and the output capaActiontj which
is produced by the capacity network. Note that capaActiontj
specifies the throughput threshold of jth device (the device
for partition Pj) and it is calculated by the capacity network.
The second term refers to the state of ρ volumes for each
Pj, which involves required IOPS oi.TI , serviced IOPS oi.SI ,
maximum required latency oi.TL, and serviced latency oi.SL
of ith volume. For efficient processing, the selection network
considers only the top-ρ volumes with high required IOPS
as the candidates to be migrated. In Eq. (10), TIρ denotes
the required IOPS (TI) of the volume with the ρth highest
required IOPS. In our implementation, ρ is set to 10.

b: REWARD
GetReward() is implemented to yield the average QoS in
Eq. (7) or (8) which is based on performance data measured
in the state monitor.

c: ACTION
ExecuteAction() conducts scenario-specific action exe-
cutions, i.e., conducting volume migration across tiers.
It takes the outputs of both the capacity and selection
networks as input, and determines candidate volumes to
be migrated. Algorithm 5 implements the volume place-
ment procedure using the capacity and selection actions
capaActiont and selActiont . In lines 4-9, when the threshold
for Pj (capaActionj ≤ Pj.TI) is not satisfied, some volumes
in Pj are migrated to devices in tiers other than the tier of
Pj. Specifically, ρ volumes are selected for migration using
top-ρ-rankings, selActiontj = selActiontj,1, . . . , selAction

t
j,ρ ,

where each value is set to [−1, 1]. In lines 6-9, this value is
used to indicate the migration direction toward either high-
performance tiers or low-performance tiers. The capacity
and selection networks are jointly trained with this scenario-
specific ExecuteAction() to maximize QoS over time.

2) EXPERIMENT RESULTS
Figure 8 represents the QoS in Eq. (8) achieved upon system
changes and mixed configurations, where Conf. k denotes
a specific system configuration of our testbed. The config-
urations, which have different tiered storage settings and
object sizes, are listed in Table 4, where tiers are specified
by NVMe/TCP SSD types in Table 3. The various Conf.
k emulates temporal system changes, e.g., scale-in and -out,
and evaluates the robustness of our framework. Conf.0 is a
normal configuration in which the storage system is set to be
sufficient to handle all given requests. As expected, no signif-
icant performance difference is observed under such normal

circumstances. The others, Conf.1-11, are set to have exces-
sive requests, and some of them (Conf.10∗ and Conf.11∗) are
unseen configurations that the agent did not experience in
training.While Default supports no migration, the other base-
line methods, IPOS-based, DR, and Model-based, use migra-
tion strategies. The IPOS-based method employs a heuristic
rule as described in Section IV-A, and the DR and Model-
based methods employ RL-based learned strategies.

As shown, under the MSR workload, the RL agent
(CoMoRL) trained using our framework achieves higher QoS
consistently for all Conf.1-11, e.g, 0.7∼5.1%, 1.7∼8.1%, and
11.8∼29.7% higher than the IOPS-based, DR, and Model-
based methods, respectively. Specifically, for Conf.1-9,
in Figure 8(a), CoMoRL shows 2.82%, 4.04%, and 17.68%
higher average QoS than the IOPS-based, DR, and Model-
based methods, respectively. For unseen Conf.10∗-11∗, fur-
thermore, CoMoRL shows 0.75%, 2.09%, and 22.9%
higher average QoS than those baseline methods, respec-
tively. Under the ML workload, in Figure 8(b), CoMoRL
shows 1.91%, 2.60%, and 9.78% higher average QoS than
the IOPS-based, DR, and Model-based methods, respec-
tively. For unseen Conf.10∗-11∗, CoMoRL shows 0.8%,
3.14%, and 17.35% higher average QoS than those baseline
methods, respectively. These results demonstrate that our
approach is robust to system changes under different work-
loads. The superiority is achieved because CoMoRL provides
an efficient mechanism for restructuring models specific to
different system scales and configurations, which enables
meta-training of the RL agents with model variants. Inter-
estingly, the Model-based method shows lower performance
than the others. Conventional model-based RL techniques
require sufficient samples to learn the model for each system
configuration. In our case where it is difficult to collect
sufficient samples due to a wide variety of configurations,
model learning easily ends up with underfitting performance.
This clarifies the benefit of our configurable model.

To discuss the robustness of CoMoRL in a statistical way,
we present the average QoS with 95% confidence intervals
of each baselines methods in Figure 9 and Table 5. For
this comparison, we perform iterative tests on the Conf.1
setting in Table 4 with MSR and ML workloads. As shown,
our CoMoRL achieves not only a higher average QoS than
the other methods but also maintains a lower variance (i.e.,
95% confidence intervals of±1.02% for MSR workload and
±1.29% for ML workload).

In Figure 10, we test different QoS specifications for the
evaluation metric, where Eq. (7) is used in (a), Eq (8) is
used in (b), and the reciprocal of average latency is used
in (c). In using such specific QoS metrics, we reformulate
the reward function accordingly. As shown, our approach
outperforms the others for all cases, achieving higher QoS in
(a) and (b) and lower latency in (c). These results indicate that
CoMoRL is generalized and extensible to different objectives
and optimization scenarios to some extent. In principle, sev-
eral RL agents can be differently trained for given objectives
with a single set of model variants. The decoupled structure of

14886 VOLUME 11, 2023

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

FIGURE 8. Performance in volume placement scenario.

TABLE 4. Storage configurations for volume placement scenario. Each Conf. k corresponds to a configuration tested in Figure 8 with different settings. For
example, Conf. 4 is set to have 1, 1, 2, and 1 devices of tier 1, 2, 3, and 4, respectively. In addition, Volume (a) denotes the total number of objects handled
in (a) the MSR workload and Volume (b) denotes the total number of objects handled in (b) the ML workload.

FIGURE 9. Statistical analysis of CoMoRL.

configuring environment models and RL training allows for
multiple agents that are differently optimized without model
retraining.

In Figure 11, to evaluate the predictability in performance
provided by our approach, we check the serviced latency
of different requests under some confidence, i.e., 90%. The

TABLE 5. Statistical analysis of CoMoRL.

requests are characterized as (a) Critical with a latency con-
straint of 500us and (b) Non-critical with no latency con-
straint. In (a), the red line represents the latency constraint.
As shown, CoMoRL manages to keep the serviced latency
(SL) much closer to the latency constraint than others in
(a) Critical. CoMoRL is intended to meet the required latency
of each object, without necessarily reducing the overall ser-
viced latency. Accordingly, in (b) Non-critical, CoMoRL
shows higher latency than the others.

In Figure 12, to confirm the stability of CoMoRL with
respect to various user requirements, we evaluate the QoS

VOLUME 11, 2023 14887

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

FIGURE 10. Performance with different objectives.

FIGURE 11. Serviced latency under confidence.

FIGURE 12. Performance with required latency specifications.

performance across different required latency specifications
(i.e., 1500∼4000ms). In this experiment, we add Autotier-
ing [3] to our baselines and observe that Autotiering expe-
riences lower performance due to the fact that the required
latency is not considered. Indeed, our previous experiment
results do not include Autotiering, as it consistently shows
poor performance similar to the IOPS-based method that
also does not consider the required latency. In Figure 12,
CoMoRL achieves 1.81%, 3.48%, 10.13%, and 1.98% higher
QoS than IOPS-based, DR, Model-based, and Autotiering
methods, respectively. When the required latency is too low
or high (i.e., the requirement is too tight or loose), the perfor-
mance gain of CoMoRL decreases. In the other range, i.e.,
2000∼3500ms, the gain increases.

C. PRIMARY AFFINITY SCENARIO
To evaluate the effectiveness of CoMoRL in practice,
we implement and test an autonomous management scenario

FIGURE 13. Primary affinity scenario in a Ceph cluster.

TABLE 6. The specification of OSD tiers.

with a Ceph storage cluster in our lab. Figure 13 illus-
trates such a scenario in which the primary affinity value is
adjusted continuously as part of the self-tuning operation in
Ceph. In Ceph, a data distribution algorithm CRUSH [37] is
responsible for managing placement groups (PGs) that are
located on object storage daemons (OSDs). A set of objects
is grouped as a PG, and a predetermined number of replicas
of each PG are stored on several OSDs. Among several OSDs
holding replica of each, CRUSH chooses one primary OSD
to be responsible for handling requests to its associated PGs.

Specifically, the primary affinity value represents the prob-
ability that an OSD will be chosen as the primary OSD, and
it is initialized as 1. By modifying the primary affinity man-
ually, it is possible for a Ceph administrator to redistribute
request loads over multiple OSDs. By default, all primary
affinity values are set to 1, and thus a uniformly random
distribution is normally expected. If the number of requests
on an OSD becomes too large, it is desirable to lower its
primary affinity value.

In this test, we adopt RL-based strategies to automate the
primary affinity control. In doing so, we implement the state
monitor and action adaptor modules to connect our frame-
work to the Ceph cluster. The state monitor aggregates the
state information about OSDs and PGs, and the action adaptor
translates actions from the RL agent into respective RADOS
commands for setting primary affinity values.

1) IMPLEMENTATION
To test the primary affinity scenario, we set our Ceph Octopus
cluster, where librados [38]-based clients run on a system of

14888 VOLUME 11, 2023

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

FIGURE 14. Performance in primary affinity scenario under the MSR-Cambridge workload.

an AMD Threadripper 2995WX with 32 cores and 128GB
RAM. Each client sends I/O requests to the primary OSD and
receives 4MB-sized objects. Similar to the volume placement
scenario, OSDs are associated with tiers defined in Table 6.
Next, we explain the implementation of scenario-specific
functions.

a: STATE
GetState() is implemented to produce the state informa-
tion for an RL agent’s network, namely the affinity network.
The state affStatet includes

affStatet =
M∑
j=1

{|Pj|, aff tj , P
t
j .TI , P

t
j .SI , P

t
j .TL, Ptj .SL},

(11)

which is similar to Eq. (9), where aff tj denotes the pri-
mary affinity value of jth OSD. Unlike the two-staged agent
with capacity and selection networks in the volume place-
ment scenario, we use a single network for the RL agent,
which produces the primary affinity values of M OSDs.
Because CoMoRL provides a configurable model for training
agents, RL algorithms and the agent structure can be used
selectively. Compared with the former scenario that requires
complex decision-making for volume migration, the primary
affinity control is rather straightforward in terms of action
representation.

b: REWARD
GetReward() is implemented to yield the average QoS.

c: ACTION
ExecuteAction() is implemented based on theM -sized
vector output generated by the affinity network. That output
renders the desired primary affinity value ofM OSDs. In the
action adaptor, the output (action) of the affinity network is
converted into a sequence of RADOS commands to update
the primary affinity value of OSDs.

2) EXPERIMENT RESULTS
Figure 14 shows the QoS achieved by different methods
across configurations, where Conf. k corresponds to one of

TABLE 7. The storage configuration of primary affinity scenario. Each
Conf. k corresponds to a configuration tested in Figure 14.

the specific mixed configurations of tiered OSDs in Table 7.
Our agent (CoMoRL) demonstrates its superiority, consis-
tently outperforming the others in terms of QoS achieved
under the MSR workload. CoMoRL achieves 1.6∼5.6%,
2.6∼7.7%, and 8.2∼16.5% higher QoS consistently for all
Conf.1-6 than the IOPS-based, DR, and Model-based meth-
ods, respectively. Specifically, it shows 5.28% higher average
QoS than the Default which does not control the primary
affinity, and it shows 2.78%, 4.75%, and 10.33% higher
average QoS than the IOPS-based, DR, and Model-based
methods, respectively.

V. RELATED WORK
In the area of data center management and automatic oper-
ation, numerous research works using RL algorithms have
been introduced, e.g., RL-based job scheduler [39], network
traffic optimization [40], [41]. As storage system operation
pertains to the problems of sequential decision-making for
automatic operation and performance optimization, interest
in RL-based automation for storage management has been
raised recently. In Databot+ [10], the object placement on
many SSDs was formulated in the RL context, similar to
our volume placement scenarios, and in ARM [15], the
problem of primary affinity control in Ceph was addressed
usingRL algorithms. Our test scenarios in Section IV, volume
placement and primary affinity, follow the same structure as
those works, but unlike them, we demonstrate the benefits of
CoMoRL’s configurable architecture which enables model
adaptation without retraining to tackle continual storage sys-
tem changes.

Regarding storage system optimization, only a few
research works have considered the storage system hetero-
geneity or used heuristicmanagement algorithms for different
storage configurations. For example, in [3], the Autotiering

VOLUME 11, 2023 14889

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

technique was used to maximize the I/O performance of
virtual machines that run on a multi-tiered storage system in
terms of throughput and latency. Several heuristic rules for
making decisions about the optimal location of virtual disks
were introduced to account for different I/O performance
of storage tiers. For Ceph-based storage systems, a primary
affinity control algorithm DLR was proposed in [42]. DLR
enables the dynamic rebalancing of I/O loads by adjusting
the primary affinity values, and it demonstrates a significant
I/O throughput gain. In [4], the I/O pattern was investigated
specifically for heterogeneous storage systems. Our work
shares a similar purpose, i.e., performance optimization of
multi-tier storage, as that prior research. However, our work
enables zero-shot adaptation to continual system changes
with heterogeneity and facilitates learning-based manage-
ment strategies, by employing the model configurability.

In the RL research literature, numerous works have con-
sidered model-based approaches for training agents sample-
efficiently [17], [18], [19], [43], particularly for the cases
in which the target environment makes collecting sufficient
training samples or online learning difficult. In [25], a model-
based RL approach was investigated for low-level quadrotor
flight controllers. In SOLAR [24], a linear quadratic regulator
of model-based RL was developed for vision-based robot
arm manipulation. Model learning for a complex and large-
scale environment is considered to be particularly challenging
in model-based RL. In O2P2 [43] and OP3 [17], the entity
abstraction scheme was employed in a way that the dynamics
model of each entity was learned individually and combined
with others to build a complex environment, e.g., multiple
block stacking. That work focused on the scale and com-
plexity of a vision-based task using a per-object-level dynam-
ics model, but it rarely considered temporal changes. While
model-based RL can be a promising tool for the domains of
large-scale system optimization, thanks to its sample efficient
learning, the adaptation of learnedmodels to continual system
changes has rarely been investigated. Our CoMoRL is the
first framework to adaptmodel-based RLwith configurability
for self-managing storage.

VI. CONCLUSION
In this paper, we proposed the configurable model-based RL
framework CoMoRL for managing storage systems, which
enables the establishment of zero-shot policy adaptation to
continual storage system changes and various operation con-
ditions. In the framework, storage management policies are
achieved through meta-training on a set of model variants,
and so they are able to adapt to unseen system specifications
without retraining. Through experiments with the container
volume placement and primary affinity control scenarios in
our real storage cluster, we demonstrate that RL policies
trained through CoMoRL are robust to different system spec-
ifications and outperform other baseline methods in terms
of achieved QoS. That zero-shot adaptation of the RL poli-
cies is able to facilitate wide adoption of RL-based system

automation in a data center, where the target system specifi-
cation can be frequently changed during operation.

Our direction for future works is to adapt our framework
to system areas other than storage such as task scheduling in
a self-managing GPU cluster and network function manage-
ment in a telecommunication infrastructure. The configurable
model will be used to generate the model variants required
for meta-training, hence allowing the learned management
policies to adapt to operating conditions of different domains.
We are also extending the model architecture in that the
relational dynamics of heterogeneous components in a com-
plex environment can be sample-efficiently learned. This will
provide a technical foundation for facilitating RL-based zero-
touch self-managing systems in various domains.

ACKNOWLEDGMENT
The authors would like to thank anonymous reviewers for
their valuable comments and suggestions.

REFERENCES
[1] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, ‘‘Flash

storage disaggregation,’’ in Proc. 11th Eur. Conf. Comput. Syst., Apr. 2016,
pp. 1–15.

[2] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou,
and I. Koltsidas, ‘‘Crail: A high-performance I/O architecture for dis-
tributed data processing,’’ IEEE Data Eng. Bull., vol. 40, no. 1, pp. 38–49,
Mar. 2017.

[3] Z. Yang, M. Hoseinzadeh, A. Andrews, C. Mayers, D. T. Evans, R. T. Bolt,
J. Bhimani, N. Mi, and S. Swanson, ‘‘AutoTiering: Automatic data place-
ment manager in multi-tier all-flash datacenter,’’ in Proc. IEEE 36th Int.
Perform. Comput. Commun. Conf. (IPCCC), Dec. 2017, pp. 1–8.

[4] J. Zhou, Y. Chen, W. Xie, D. Dai, S. He, and W. Wang, ‘‘PRS: A pattern-
directed replication scheme for heterogeneous object-based storage,’’ IEEE
Trans. Comput., vol. 69, no. 4, pp. 591–605, Apr. 2020.

[5] C. Wu, C. Ji, Q. Li, C. Gao, R. Pan, C. Fu, L. Shi, and C. J. Xue,
‘‘Maximizing I/O throughput and minimizing performance variation via
reinforcement learning based I/O merging for SSDs,’’ IEEE Trans. Com-
put., vol. 69, no. 1, pp. 72–86, Jan. 2020.

[6] S. Yoo and D. Shin, ‘‘Reinforcement learning-based SLC cache tech-
nique for enhancing SSD write performance,’’ in Proc. USENIX Workshop
Hot Topics Storage File Syst., Jul. 2020, pp. 1–7. [Online]. Available:
https://dl.acm.org/doi/10.5555/3488733.3488740

[7] W. Kang, D. Shin, and S. Yoo, ‘‘Reinforcement learning-assisted garbage
collection to mitigate long-tail latency in SSD,’’ ACM Trans. Embedded
Comput. Syst., vol. 16, no. 5s, pp. 1–20, Oct. 2017.

[8] W. Kang and S. Yoo, ‘‘Dynamic management of key states for reinforce-
ment learning-assisted garbage collection to reduce long tail latency in
SSD,’’ in Proc. 55th Annu. Design Autom. Conf., Jun. 2018, pp. 1–6.

[9] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, ‘‘Learning scheduling algorithms for data processing clus-
ters,’’ in Proc. ACM Special Interest Group Data Commun. (SIGCOMM),
Aug. 2019, pp. 270–288.

[10] K. Liu, J. Peng, J. Wang, B. Yu, Z. Liao, Z. Huang, and J. Pan, ‘‘A learning-
based data placement framework for low latency in data center networks,’’
IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 146–157, Jan. 2022.

[11] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, ‘‘CFR-RL: Traffic
engineering with reinforcement learning in SDN,’’ IEEE J. Sel. Areas
Commun., vol. 38, no. 10, pp. 2249–2259, Oct. 2020.

[12] S. Troia, F. Sapienza, L. Varé, and G. Maier, ‘‘On deep reinforcement
learning for traffic engineering in SD-WAN,’’ IEEE J. Sel. Areas Commun.,
vol. 39, no. 7, pp. 2198–2212, Jul. 2021.

[13] P. Pinyoanuntapong, M. Lee, and P. Wang, ‘‘Delay-optimal traffic engi-
neering through multi-agent reinforcement learning,’’ in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2019,
pp. 435–442.

14890 VOLUME 11, 2023

S. Jeong, H. Woo: Configurable Model-Based RL Framework for Disaggregated Storage Systems

[14] J. Kossmann, A. Kastius, and R. Schlosser, ‘‘SWIRL: Selection of
workload-aware indexes using reinforcement learning,’’ in Proc. Int. Conf.
Extending Database Technol., Mar. 2022, p. 155.

[15] R. R. Noel, R. Mehra, and P. Lama, ‘‘Towards self-managing cloud storage
with reinforcement learning,’’ in Proc. IEEE Int. Conf. Cloud Eng. (IC2E),
Jun. 2019, pp. 34–44.

[16] MiniNet. Accessed: Nov. 1, 2022. [Online]. Available: http://mininet.org/
[17] R. Veerapaneni, J. D. Co-Reyes, M. Chang, M. Janner, C. Finn, J. Wu,

J. Tenenbaum, and S. Levine, ‘‘Entity abstraction in visual model-
based reinforcement learning,’’ in Proc. Conf. Robot Learn., Oct. 2020,
pp. 1439–1456.

[18] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,
K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine,
A. Mohiuddin, R. Sepassi, G. Tucker, and H. Michalewski, ‘‘Model-
based reinforcement learning for Atari,’’ 2019, arXiv:1903.00374.

[19] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, and T. Lillicrap,
‘‘Mastering Atari, go, chess and shogi by planning with a learned model,’’
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[20] Z. Guz, H. Li, A. Shayesteh, and V. Balakrishnan, ‘‘NVMe-over-fabrics
performance characterization and the path to low-overhead flash disaggre-
gation,’’ in Proc. 10th ACM Int. Syst. Storage Conf., May 2017, pp. 1–9.

[21] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury, ‘‘Effi-
cient user-level storage disaggregation for deep learning,’’ in Proc. IEEE
Int. Conf. Cluster Comput. (CLUSTER), Sep. 2019, pp. 1–12.

[22] A. Klimovic, H. Litz, and C. Kozyrakis, ‘‘Reflex: Remote flash ≈ local
flash,’’ ACM SIGARCHComput. Archit. News, vol. 45, no. 1, pp. 345–359,
2017.

[23] FIO. Accessed: May 17, 2022. [Online]. Available: https://linux.
die.net/man/1/fio

[24] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine,
‘‘Solar: Deep structured representations for model-based reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., Jun. 2019, pp. 7444–7453.

[25] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and
K. S. J. Pister, ‘‘Low-level control of a quadrotor with deep model-
based reinforcement learning,’’ IEEE Robot. Autom. Lett., vol. 4, no. 4,
pp. 4224–4230, Oct. 2019.

[26] R. Volpi, D. Larlus, and G. Rogez, ‘‘Continual adaptation of visual
representations via domain randomization and meta-learning,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 4443–4453.

[27] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
‘‘Domain randomization for transferring deep neural networks from simu-
lation to the real world,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2017, pp. 23–30.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1–11.

[29] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, ‘‘Soft actor-critic algorithms
and applications,’’ 2018, arXiv:1812.05905.

[30] D. Narayanan, A. Donnelly, and A. Rowstron, ‘‘Write off-loading: Practi-
cal powermanagement for enterprise storage,’’ACMTrans. Storage, vol. 4,
no. 3, pp. 1–23, Nov. 2008.

[31] P. Zhu et al., ‘‘VisDrone-DET2018: The vision meets drone object detec-
tion in image challenge results,’’ in Proc. Eur. Conf. Comput. Vis. Work-
shops, Sep. 2018, pp. 1–30.

[32] G. Jocher et al., ‘‘Ultralytics/YOLOv5: V3.1—Bug fixes and
performance improvements,’’ Ultralytics, Los Angeles, CA, USA,
Tech. Rep., Oct. 2020, doi: 10.5281/zenodo.4154370.

[33] T.-Y. Lin,M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis., Sep. 2014, pp. 740–755.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[35] M. Tan and Q. Le, ‘‘Efficientnet: Rethinking model scaling for convo-
lutional neural networks,’’ in Proc. Int. Conf. Mach. Learn., Jun. 2019,
pp. 6105–6114.

[36] FIO Docker. Accessed: May 17, 2022. [Online]. Available: https://hub.
docker.com/r/xridge/fio

[37] S. Weil, S. Brandt, E. Miller, and C. Maltzahn, ‘‘CRUSH: Controlled,
scalable, decentralized placement of replicated data,’’ in Proc. ACM/IEEE
SC Conf. (SC), Nov. 2006, p. 31.

[38] Librados. Accessed: May 17, 2022. [Online]. Available: https://docs.ceph.
com/en/latest/rados/api/python/

[39] F. Li and B. Hu, ‘‘DeepJS: Job scheduling based on deep reinforcement
learning in cloud data center,’’ in Proc. 4th Int. Conf. Big Data Comput.,
2019, pp. 48–53.

[40] C. Tessler, Y. Shpigelman, G. Dalal, A. Mandelbaum, D. Haritan Kaza-
kov, B. Fuhrer, G. Chechik, and S. Mannor, ‘‘Reinforcement learning for
datacenter congestion control,’’ ACM SIGMETRICS Perform. Eval. Rev.,
vol. 49, no. 2, pp. 43–46, Jan. 2022.

[41] L. Chen, J. Lingys, K. Chen, and F. Liu, ‘‘AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,’’
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 191–205.

[42] R. R. Noel and P. Lama, ‘‘Taming performance hotspots in cloud storage
with dynamic load redistribution,’’ in Proc. IEEE 10th Int. Conf. Cloud
Comput. (CLOUD), Jun. 2017, pp. 42–49.

[43] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and J. Wu,
‘‘Reasoning about physical interactions with object-centric models,’’ in
Proc. Int. Conf. Learn. Represent., May 2019, pp. 1–12.

SEUNGHWAN JEONG received the B.S. degree
from the Department of Software, Sungkyunkwan
University, in 2018. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, Sungkyunkwan Uni-
versity. His research interests include intelligent
application, reinforcement learning, and storage
system management.

HONGUK WOO (Member, IEEE) received the
B.S. degree in computer science from Korea Uni-
versity, Seoul, in 1995, and the M.S. and Ph.D.
degrees in computer science from The Univer-
sity of Texas at Austin, Austin, TX, USA, in
2002 and 2008, respectively. From 2008 to 2018,
he worked at Samsung Research, Samsung Elec-
tronics, as a Principal Engineer and the Vice
President. Since 2018, he has been working
with the Department of Computer Science and

Engineering, Sungkyunkwan University, Suwon, South Korea, and he has
been working as an Associate Professor, since 2022. His research inter-
ests include intelligent cyber-physical systems, self-managing systems, and
machine learning.

VOLUME 11, 2023 14891

http://dx.doi.org/10.5281/zenodo.4154370

