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ABSTRACT In this paper, a novel integrated SHE-NLC control is proposed for the mitigation of unwanted
lower-order harmonics in the cascaded H-bridge multilevel inverter. The proposed algorithm has been
developed by hybridizing the NLC and SHE methods, in an attempt to keep the merits of both the individual
control. The switching angles and nearest levels are calculated by applying the Genetic Algorithm (GA).
The proposed technique reduces the calculation time and implementation complexity, thus can be a viable
alternative to the real time implementation for SHE. Integrated NLC-SHE control is tested by varying the
modulation index and load dynamics. This technique resulted in the reduction in Total Harmonic Distortion
(THDs) in load voltage and current. Comparative analysis of NLC, SHE and Integrated NLC-SHE technique
is also performed on the CHB nine-level inverter. There is significant reduction in voltage and current THD
values and power losses. Efficiency of the inverter is increased. The efficacy of the proposed control CHB
nine-level is tested on MATLAB Simulink environment and further validated by experimental results.

INDEX TERMS NLC, SHE, harmonic elimination, multilevel inverter, SHE, SHM, genetic algorithm, CHB.

I. INTRODUCTION

Multilevel Voltage Source Inverters (MVSIs) have emerged
as the advanced and modern category of DC-AC converters
or inverters used in various industrial applications including
uninterruptible power supply (UPS), electric drives, renew-
able energy integration, active power filters etc, [1], [2].
MVSIs consists of more semiconductor devices, capacitors
that are powered by DC sources. MVSIs can not only produce
more voltage levels but also can operate at a high-power ratio
as switches will be needed to endure lower voltage stress [3].
Neutral point clamped inverter (NPC), Flying capacitor (FC)
inverter and cascaded H bridge (CHB) inverter appeared as
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the first generation of promising topologies for industrial
applications as compared to the conventional bipolar voltage
source inverters (VSIs) because of the reduction in dv/dt
stress and electromagnetic interference (EMI), improved har-
monic profile of the output voltage [4], [5]. Development of
MVSIs led by extensive research was oriented toward novel
topologies focused on increasing the voltage levels counts [6].
As the initial attempts are being inspired by the concept of
CHB, the hybrid structures of traditional MV SIs such as sym-
metrical and asymmetrical cascaded topology were utilized
for HB, NPC and FC to increase the voltage levels count
and operate with higher efficiency [7], [8], [9], [10], [11].
The asymmetrically series-connected full and half-bridge has
been proposed in [12] for the wide DC-link voltage varia-
tion and to double the levels of the network. In [13], [14]
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asymmetrical cascaded H-Bridge of NPC and conventionally
used two-level inverters have been presented with merits of
low switching frequency operation for high voltage cell and
high dynamic response.

Despite this, hybridizing the conventional MVSIs based
on the symmetrical and asymmetrical cascaded connec-
tion does not optimize the MVSIs design and it signifi-
cantly increases the number of components and separated
DC sources and consequently manufacturing cost [15].
In [16], [17], [18], [19], [20] some innovative MVSIs have
been proposed to produce a notable number of levels as sim-
ilar as sinusoidal waveform without using asymmetrical and
symmetrical connections. In practice, two or more H-bridge
cells are cascaded together to enhance the levels in the output
voltage in the cascaded H-bridge inverter [21], [22]. Thus,
there is an increase in the number of switches as well as the
DC power supply. The system also becomes complex. Thus,
the increment is at the cost of an increase in the number of
components. m-cells with as many dc power supply used in
CHB-MLI can produce 2m+-1 levels in the output voltage.
Conversely, (N—1)/2 dc sources and (2N—1) Switches are
required to generate N levels in the output voltage. The sym-
metric configuration of a CHB inverter needs to incorporate
three DC supplies and twelve switches to generate an output
voltage with seven levels. Similarly, to produce thirteen level
output, the bridge needs twenty-four switches and six dc
supplies. At any instant of time, twelve switches are in ON
state. This increases conduction losses considerably [23].
Assuming 0.5 volts drop across each switch, 12 switches
during operation cause a drop of 6 volts and consequently,
the power loss is quite high under higher current operation.
Thereby, efficiency reduces. A drastic reduction in switch
count has been observed by the implementation of asymmet-
ric configuration in CHB topology. Different DC supply volt-
age combinations in asymmetric CHB can generate various
possible voltage levels [24]. When two cascaded H-bridge
MLI are employed, two voltage sources and 8 switches along
with a battery voltage combination ratio of 1:1 generates a
five-level output voltage while 1:2 generates 7 level output
voltage. A maximum possible output voltage could be gener-
ated with a voltage combination of 1:3, i.e., 9 levels. At most
four switches are in ON state during any instant of operation
in asymmetrical CHB-MLI [25], [26]. There is a sufficient
degree of freedom and redundancy under such configuration.

Despite the many advantages of CHB Multilevel inverters,
the problem of harmonics and power losses are still there.
To overcome these challenges various control techniques
are used to suppress these drawbacks. Several switching
techniques have been proposed previously to improve the
switching performance of the converters [27], [28], modu-
lation techniques to improve the power loss division perfor-
mance [29] of MLIs and modified saturated equal loading
PWM [30]. In this paper a different approach has been applied
by hybridizing NLC and SHE techniques to achieve the same
goals of reduced THD in voltage and current waveforms
and switching performance by reducing the computational
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complexity and time for the calculation of switching angles.
Low-frequency controls like selective harmonic elimination
pulse width modulation (SHEPWM), nearest level controllers
(NLC), selective harmonic mitigation (SHM) are widely
used techniques [31], [32], [33], [34], [35], [36], [37], [38].
In SHE, the lower order harmonics are removed by opti-
mal switching of the inverter. This is done by solving the
complex non-linear transcendental equations. The main prob-
lem associated with this control is solving these complex
equations is time-consuming and cumbersome. Applying to
closed-loop operation is also difficult. In the case of NLC,
the switching frequency is the power frequency and also easy
to implement. The major drawback backs are the first one
reduction in voltage levels as the modulation index is varied
and the second one is an increment in the THD values in load
voltage and current. To incorporate the advantages of both
NLC and SHE a new control is proposed in this paper. The
optimal switching angles for the wide range of modulation
index using genetic algorithm [39], [40] has been found
and then corresponding nearest level rounding of values are
calculated to apply these values in NLC. The equations now
relate the nearest level values to the modulation index lin-
early and also keeping the benefits of SHE. In this paper,
to generate 9 levels output voltage waveform, CHB-MLI
with asymmetrical structure, employing two voltage sources
and eight IGBT switches has been used. A novel control
strategy, formed by hybridizing NLC and SHE is used to con-
trol the output voltage. This hybrid control can enhance the
controllability of the output voltage at minimum THD. This
hybrid control scheme has been applied to CHB-MLI and
thorough analysis has been performed under varying loading
and dynamic conditions. This technique has been simulated
in MATLAB/Simulink environment. This hybridized control-
ling technique has been simulated in a MATLAB/Simulation
environment. The scheme has also been simulated for thermal
modelling on PLECS software and power loss analysis has
been performed. The prototype of the cascaded H- bridge
inverter has also been developed and the proposed control
scheme has been implemented.

This paper has been organized as follows: introduction of
cascaded H-Bridge inverter and NLC and SHE is discussed in
section II. Section III discusses the proposed integrated near-
est level controller. Section IV provided the simulation result
analysis and comparative study for the proposed integrated
NLC-SHE control, NLC, SHE techniques, considering vari-
ous circuit parameters. Hardware results have been presented
in section V which is validated by experiment on a prototype
of the MLI. The conclusion is presented at the end.

Il. CASCADED H-BRIDGE NINE LEVEL INVERTER

Cascaded H-bridge MLI is simple, reliable having a mod-
ular structure. There is no need for clamping diodes in
CHB. As compared to other topologies these features make
CHB more preferable [41], [42], [43]. CHB- MLI can have
both symmetrical or asymmetrical structure. In symmetrical
CHB-MLLI, the equal value of the DC sources is employed.

VOLUME 11, 2023



M. Tariq et al.: Novel Integrated NLC-SHE Control

IEEE Access

4 51 s34

% 3Vdc

g8 Sy

|
4% S8
|

8
G |
Lo/

T

avor

+
T Vdc

S6_,

mi

FIGURE 1. Circuit diagram of CHB nine level inverter.

However, in asymmetrical CHB-MLI, DC sources of unequal
magnitude are employed [44]. In the case of asymmetrical
MLI, more levels can be produced as compared to symmetri-
cal MLI, employing the same number of DC voltage supply
and switches. Each full-bridge or H-Bridge cell is capable
of generating three levels (—Vdc, +Vdc, 0). ‘N’ number of
voltage levels can be generated using the ‘K’ number of DC
sources where N = 2K + 1.

A. NEAREST LEVEL CONTROL (NLC)

Multilevel inverter operation can be categorized based on
the modulation strategies as (1) fundamental and (2) high
switching frequency modulation. As the operation of MLIs
at higher switching frequency leads to considerable switching
losses in the inverter. Thus, in high power applications fun-
damental or low switching frequency (<1KHz) modulation
scheme is preferred in order to avoid the appreciable losses.
The nearest level control works at the fundamental frequency.
This scheme is efficient and fast in terms of implementation
procedures. Nearest Level Control (NLC) operates at 50Hz
or 60Hz and can easily be extended to N levels. It is a
conventional method of control which simply rounds (Y) by
taking the half integer value as the comparing value where
Fround(Y) is the integer close to reference value. A smaller
step size can be used to improve the performance.

For the generation of gating signal to operate, it is then
passed through the switching algorithm. The calculation time
and expense can be reduced by the implementation of digital
logic gate, which ultimately simplifies the switching state.
The major demerit of this control is that the harmonics in
the output voltage. The harmonics in the output voltage is
high for lower modulation index and lesser no. of levels. The
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FIGURE 2. Interrelating of NLC and SHE.

expression for the output voltage wave is

Vour = My X X Ve x cos (wt) (1)

where M, is the modulation index and N is the number of
output levels. Fig. 2 shows the conventional nearest level
control scheme. For optimization purposes, a constant carrier
value can be determined for the conventional NLC method.
By the comparison of reference signal with the distinct near-
est level and switching angle variation, the optimal value of
the constant carrier can be found out. This is called as Opti-
mum NLC (ONLC). Thus, ONLC, which has been applied
in this paper, has emerged as an ideal scheme to generate
staircase output voltage waveform with low THD and high
RMS value. The value of M, which gives lowest harmonics
with the increased RMS voltage is chosen as optimum value.

B. SELECTIVE HARMONIC ELIMINATION (SHE)

SHEPWM technique is used for [31], [32] multilevel inverters
for removing the lower order harmonics. Also, the switching
frequency is lower which makes it suitable for high power
converters. Filter size is also reduced. The major disadvantage
related to the SHE is solving of transcendental equations
every time as the modulation index is changed. Calculation
of switching angles every time is time consuming and cum-
bersome. In this paper, the lower order harmonics that is
3rd, 5th and 7th are targeted and removed. The calculation
of switching angles is done by metaheuristic based iterative
method that is genetic algorithm. GA is used for local filtering
of minima around the best solution. The general flourier
series expansion for nine level inverter for minimizing the
lower order harmonics is given by

V (0f) = ZZI (V) sin (not) )

where V), is the nth harmonic amplitude and now calculate
using equation (3)

v 4,:/,;1” Zoo 1 (k;) sin (nwt) for odd n values
— n=
! 0 Jor even n values.

3
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FIGURE 3. Simulation result of Nine-level switching angles loci for 9-level
inverter over the whole range of modulation index.

where V. is the nominal DC voltage and (nwt = nf) are the
firingangles calculated in the order (0 < wr; ... < wiy < 5)-
k; is the ratio of Vg to Vy.. In this paper, 3rd, 5th & 7th
harmonics in the 9-level are considered to eliminate from
MLI. The primary role of SHEPWM method is to obtain
the switching angles that regulate the fundamental at the
desired level Vesireq With the additional benefit of removing
the unwanted lower-order harmonics for the MIs which has
solutions. The optimized firing angles for the 9-level inverter
having equal DC sources (k; = ko = k3 = kg4 = 1) are
obtained using equation (3).

= 1/3[cos(01) + cos(62) + cos(03) + cos(04)] (4)
[cos3(01) + cos3(02) + cos3(63) 4+ cos3(04)] =0  (5)
[cos(5071) + cos(502) + cos(5603) + cos5(64)] =0 (6)
[cos(761) + cos(702) + cos(763) + cosT(04)] =0 (7)

lIl. PROPOSED INTEGRATED NLC-SHE CONTROL
In this proposed control the benefits of both NLC and SHE
techniques are integrated together. This is done by finding
optimum, triggering angles using GA as shown in Fig. 3, and
then calculating the corresponding nearest values for NLC.
At these values, the desired harmonics are removed. Initially,
the transcendental equations (4) and (5) are solved for finding
optimal angles for removing the desired harmonics for mod-
ulation index range of (0 to 1). Further, nearest levels corre-
sponding to these values are calculated and new polynomial
equations relating the modulation index with nearest values
are found. Mathematically the integration of these two (NLC
& SHE) controls is validated by using the equations (1) to (7).
The general equation for NLC is given in equation (8) in
which V. is given by:

Vie =M, x Vi:-Sina (8)

Here « is the triggering angle in case of NLC. If the modula-
tion of NLC is considered the new equation is:

my X Vge = M X VgSinaxm, = M % Sina 8.1)

N-—-1
o = sinil& where, M = (T) (8.2)

n
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Here the value of N=9, as NLC is being applied on 9-level
inverter. Therefore, M = 4, where N is the number of output

voltage levels.
o i
i1 = Sin 1((Nn—])) (9)
2

where I = 0,1,2,................ (N — 1)/2), my, is the
modulation index for NLC, 0 < mn < 1. Different values of
o can be evaluated using equation (9) and for 9-level CHB
N=9,

ay = sin~! (sin_l (T”)) (10)
ay = sin ! (sin”! (M221)) (11)
@y = sin~! (sin—1 (m’;“)) (12)
aq = sin~! (sin_l (m’;+3)) (13)

Using above equations (10-13), values of o1, oz, o3 and oy
can be calculated for different value of modulation index
M;. Now these values of triggering angles are put into the
equations (4 and 5) of SHE where the 0 is replaced by «.

mq = 1/3[cos(sin™! (sin_1 (%)))
+ cos(sin~ ](sm ! ( n+1)))

+ cos(sin™ (sm !

(%3
(mn+3

+ cos(sin™ (sm !

[cos3(sin7] (sirfl (T)))

1

) (14)

+ cos3(sin~

1

+ cos3(sin™ " sin~

+ cos3(sin~ " (sin™

AAA

)))] =0 (15

(sin”
(
L
[cos(Ssin™ (szn (")))

+ cos(5sin™ !

sin~

! sin~

AAA

)))] =0 (16)

(

+ cos(5sin™ ! (sm
+ cos5(sin~ (
')

[cos(Tsin™ (sm ( ))

+ cos(Tsin™"! (szn (mZH )))
(

U(sin— (mn+2)))

+ cosT(sin~ (sm 1( 1*3)))120 (17)

+ cos(Tsin™

The equations relating stepped nearest level values
(yn) with the triggering angles determined from
selective harmonic elimination (SHE) can be related
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from the following equations:

N

2_ 1) X Mg X sin (o) (18)

AsN=9and0 <m, < 1,

Yn = (

y1 = 4 X mg X sin (ay) 19)
Y = 4 X my X sin () (20)
y3 = 4 X mg X sin («3) 21
y4 = 4 X mg X sin (a4) (22)

Solving these equations from (14) to (22), We get a polyno-
mial function relating the modulation index to the nearest val-
ues of NLC. This function is used in control block to generate
the y,, values for various modulation index variations.

f@) =pixx*+pyxx +p3xx®+pyxx+ps  (23)

The value of pl, p2, p3 and p4 is different for different y.
The set of values for pl, p2, p3 and p4 corresponding to
different y are shown in Table 1. Fig. 4 shows variation of the
Fround values y,, which is the round off value close to integer
value) with the modulation index (Mjy). For y1, its value first
increases with modulation index (M,) then there is a dip and
it again increase with the increasing modulation index. The
value of y», first increases with the increasing modulation
index upto ma=0.5 and then there is slight decrease and it
almost settle at y» = 1.5. For the other two values of y
(that is y3 and y4), initially their values increases steadily
with the increasing modulation index (m,) and then show
a slight dip at the value of m, close to unity. Fig. 4 shows
the control strategy for integrated NLC-SHE control. The
modulation index values are fed to nearest value controller
which using the polynomial function generates the y,, values
which are then compared with the sinusoidal reference signal.
In the next stage these values are then controlled and the
output is rounded off to nearest values. Positive four levels are
generated by this and the negative four levels are generated
in the same way taking the —y;, values. Switching logic is
applied according to the state table.
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TABLE 1. Coefficients of polynomial equation for various NLC values.

NLC values | p1l p2 p3 p4 p5
Y1 -3.314 11.23 -14.82 8.415 -0.1336
Y2 13.13  -2847 15.16 2.531 0.07984
Y3 -14.29 34.16 -27.04 7.872 -0.04477
Ya -3.796  1.506 0.9481 4.613 0.02025
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FIGURE 9. Simulation results of variation of voltage THD percentage with
load percentage.

IV. SIMULATION RESULTS AND ANALYSIS

The proposed control is tested on CHB nine level inverter
using MATLAB Simulink Environment. The source DC volt-
age taken was 100V and switching frequency taken were
the power frequency of 5S0Hz.The topology is simulated for
varying modulation index and THD profile is observed. Inte-
gration of NLC and SHE is verified by the 3D graphs shown
in the Fig. 6. In the figure it is seen that the variation of y; and
o1 with modulation index have widely distributed values. The
relationship is approximately linear as seen in Fig. 6(a). For
y» and «y, the variation in «» is linear but «; is non-linearly
varied for lower modulation index values and nearly linear
around unity modulation index as shown in Fig. 6(b). The
variation in y3, y4 and o3, o4 is almost same just the variation
in y is more as depicted in Fig. 6(c) and Fig. 6(d).

Fig. 7(a) shows the load voltage and current when Modu-
lation index varies from 0.6 to 0.4 for R-L load of 50€2 and
20mH. The voltage waveform have nine levels in the output
at lower modulation index and lower order harmonics are
also mitigated. Fig. 7(b) shows the load voltage and current,
when Modulation index varies from 1 to 0.8 for R-L load
of 50€2 and 20mH. It clearly shows that the load voltage at
all modulation index values has nine levels and peak voltage
is constant at 100V. Fig. 7(c) and (d) shows the change
in the percentage THD in the voltage and current with the
varying modulation index (Ma), when the three different con-
trol techniques namely NLC, SHE and Integrated NLC-SHE
control have been applied on nine level CHB-MLLI. It can be
noticed from the Fig. 7(c) that the percentage THD in the
voltage decreases with the increase in the modulation index
(Ma), the percentage THD is not monotonous but varies in
a zig-zag manner that when the Ma is increased from 0.3 to
0.4 it decreases slightly and for 0.5<Ma<0.8, the percentage
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TABLE 2. Hardware parameters for experimental validation.

SNo. Parameter Exp:!’r:lmu :ntal Quantity
1 DC Source Voltage 100V 1
2 Peak to Peak Voltage 100V -
3 Frequency 50Hz -
4. Switching Frequency S0Hz -
5 Capacitors 4700uF,50V 2
6 Resistive Load 30Q,60Q,120Q 2
7 Inductive Load 40mH 1
8. Controller EMS320F2837 1

) \ L DC supply

(Inductor+resitor)

" load IGBT ASSEMBLY

A

rent Probe

FIGURE 10. Hardware setup for experimental validation.

voltage THD increases and again starts decreasing till Ma
becomes unity and when operated under over-modulation
range (1<Ma<1.2), it again starts increasing and reach a
value of around 12%. Percentage THD voltage variation for
SHE control firstly, sharply decrease till Ma=0.8 and then
start decrease with relatively low gradient. Corresponding
to NLC control, it first decrease slowly till Ma=0.8, then
sharply decreases till Ma=1 and then again increases in the
over-modulation region. In Fig. 7(d), the percentage THD in
the output current remains lowest for the whole range of M,
variation. On the other hand, percentage THD in the current
remains almost same for individual NLC and SHE control.
Fig. 8, shows the variation in the percentage THD in the
voltage with the change in the DC source voltage. It can
be noticed that for the range of DC source voltage from
50V to 300V, the percentage THD voltage corresponding to
integrated NLC-SHE control found to be least, compared
to other two controls (NLC and SHE), whereas as the DC
source voltage is increased above 300V, Percentage voltage
THD becomes comparable with that corresponding to SHE
control. For a range of the DC source voltage variation from
50V to around 170V, percentage THD in the load voltage
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FIGURE 11. Experimental Output voltage and current waveforms
(a) (a) change of Ml (0.6 to 0.4) with RL load (b) change of MI (1 to 0.8)
with RL load (c) for variable load.

corresponding to NLC is lesser compared to SHE and when
DC source voltage is increased above this value, Percentage
THD becomes comparable. In Fig. 9, the variation in the
percentage THD in the load voltage with the load percentage
has been depicted, when the three different controls (inte-
grated NLC-SHE, NLC and SHE) have been applied. It can
be noticed that the percentage THD in the voltage variation is
least for integrate NLC-SHE control followed by individual
NLC and SHE for a wide variation in the load percentage
(30% to 120%).

V. EXPERIMENTAL RESULTS
A 200V-600W experimental prototype has been designed to
check the operability and confirming the simulation results
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FIGURE 12. Hardware Voltage THD spectrums for (a) Mi=1 (b) MI=0.8 (c) MI=0.6 (d) MI=0.4.

for validating the simulation results obtained by applying
the proposed integrated NLC-SHE control. The dynamic
behavior of the load and modulation index is tested on hard-
ware prototype. The output frequency and switching frequen-
cies selected are same that is S0Hz. The maximum input
voltage is 100 Volts. Experimental setup has been shown
in Fig. 10. The gate pulses are generated by Texas DSP
TMS320F28379D and the dead time was taken as 5 micro-
seconds. The Fig. 11, (a) and (b) depicts the results obtained
after hardware implementation of the CHB Inverter with the
proposed integrated NLC-SHE control. Fig. 11(a) and (b)
shows the effects of the applied control on the load voltage
and current THD waveforms with a wide variation in the
modulation index (Ma). In Fig. 11(a), the modulation index is
varied from 1 to 0.8 and in Fig. 10(b), Ma is varied from 0.4 to
0.6. In Fig. 11, As there is a drawback of NLC that at lower
value of Ma, the number of levels decreases considerably
and voltage waveshape distorts, but it can be noticed from
the Fig. 11(a) and (b) shows that with the application of
the proposed control, the number of voltage levels as well
as the voltage magnitude remains unchanged. In Fig. 11(c),
the changes in the voltage wave shape, number of levels and
current waveshape with the change in the load impedance is
depicted. The load impedance is varied from (30€2, 20mH) to
(50€2, 20mH) and it can be noticed that unlike conventional
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NLC, the change voltage waveshape with load variation is
negligible and the number of levels in the voltage waveform
remains same and the load current changed accordingly. Volt-
age harmonic spectrums for different modulation indices are
shown in Fig. 12 and is measured using Fluke 434 Power
Quality Analyzer. Itis seen that the lower order harmonics are
mitigated from the load voltage output for the whole range of
modulation index. The following hardware results are found
to be consistent with the simulation results with the proposed
integrated NLC-SHE control and confirms its satisfactory
operation.

Power loss analysis has been performed by PLECS Sim-
ulation software and also verified on actual hardware. Loss
breakup is shown in Fig. 13(a). Comparative analysis of
losses in NLC, SHE, Integrated NLC-SHE is performed.
Fig. 13(a) clearly shows the switching and conduction losses
in employing all the three control techniques. In Fig. 13(b),
shows the variation in the percentage efficiency with the
varying output power (0-600W), when the three different con-
trol techniques namely NLC, SHE and integrated NLC-SHE
control have been applied. It can be noticed that although
the percentage efficiency values are close for all the controls,
but for most of the values of output power, the percentage
efficiency is lowest for SHE and in the range of 100-350W,
the percentage efficiency is highest for integrated NLC-SHM
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FIGURE 14. Power loss distribution for (a) varying modulation index for
proposed control (b) across each switch.

control. Fig. 14(a) shows the power loss distribution of the
inverter under the varying modulation index (M,). From the
bar graph, it can be easily observed that as the modulation
index is increased from M, = 0.6 to M, = 0.8, switching
losses increase slightly whereas the conduction losses are
decreased. At M, = 1.0, there is considerable decrease in

22218

the switching losses as it get decreased from SW to approxi-
mately 2.5W. When the modulation index is increased further
above unity (ie over-modulation operation), it was observed
that the inverter with hybrid NLC-SHE control exhibit even
better performance in terms of power losses (as both switch-
ing and conduction losses are lesser compared to lower mod-
ulation index range). It can be seen from Fig. 14(b) that when
NLC-SHE control has been applied on CHB inverter, the
power losses across each individual switch is approximately
equal as the voltage stress is also evenly distributed. Proposed
technique resulted in lesser losses and higher efficiencies over
the wide range of rated power.

VI. CONCLUSION

This paper proposes novel integrated NLC-SHE control.
It incorporated all the benefits of SHE and NLC. Non-linear
transcendental equations are changed to linear polynomial
equations reducing the complexity and calculation time. The
efficacy of the proposed control is tested by simulation
and validated experimentally. The THD percentage in load
volatge and current is lesser in case of Integrated NLC-
SHE, compared to conventional NLC and SHE control. The
simulation results also proved that the targeted 3", 5™ and
7™ harmonics have been reduced and the total voltage levels
in output remain nine for wide range of modulation index.
The prosed control is compared and found to be superior than
the traditional NLC and SHE control. Power loss analysis
was done using the PLECS software and losses were found
to be minimum when the proposed control based triggering
pulses were applied. Efficiency of the inverter also improved
by applying the proposed control. Experimental results val-
idated the simulation results and verified the operation of
inverter under dynamic loading and changing modulation
index. Future work could be extension of selective harmonic
mitigation techniques with NLC which will target all the
harmonics upto 49" order.
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