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ABSTRACT This paper proposes an application to statistically predict the accuracy of single-image
geometric camera calibration that uses given 2D-3D correspondences. Deriving both camera intrinsics and
extrinsics from correspondences between a single image and a 3D shape, is important for the scene analysis
when the optical system of the camera is lost, such as in the analyses of traffic accidents. It is unclear
whether the single-image calibration will be successful in practice, particularly when the number of 2D-3D
correspondences is small, even if we could assign accurate correspondences by manual labor. To this end,
we perform a systematic evaluation of the camera parameter accuracy using synthetic environments. Based
on the statistics observed during the experiments, our application predicts the calibration accuracy from
simple variables (e.g., the area that correspondences could be given). Since the prediction process does not
rely on 3D shapes, it provides an estimate of the success of the calibration before time-consuming processes,
i.e., 3D scanning and 2D-3D correspondence mapping.

INDEX TERMS Camera calibration, traffic accident reconstruction, computer vision.

I. INTRODUCTION
Camera calibration of intrinsic and extrinsic parameters is a
traditional yet essential problem in computer vision. Given
only a single image and a three-dimensional (3D) model of
the environment, the problem of finding the camera param-
eters becomes practically challenging, even though it is of
practical importance.

A major application of single-image camera calibration
with known 3D geometry is to estimate the camera param-
eters for images capturing traffic accidents, which can be
important evidence. During traffic accident reconstruction
(TAR) [1], investigators often estimate the position and
movement of cars and pedestrians from the given evidence
images [2], [3], which are often captured by dashboard
cameras or smartphones. Since the camera parameters of

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

off-the-shelf cameras are generally unknown, camera cali-
bration from the single evidence image is fundamental for
the accurate reconstruction of the target scene [4]. Static
scene geometry may be obtained after the incident with a
3D scanner, while it is difficult to reproduce the same optical
system as when the image was taken because the camera can
be damaged or misaligned.

Geometric calibration methods [5], [6] have been widely
used to estimate camera parameters. In particular, the
methods without relying on planar markers (e.g., Tsai’s
method [5]) can, in principle, be used to estimate both intrin-
sic and extrinsic parameters using the correspondences on an
arbitrary 3Dmodel and a two-dimensional (2D) image.Meth-
ods tailored for single-image calibration are also studied [7].
These geometric methods are known to be valid if the good
(in terms of both numbers and quality) correspondences are
obtained [8], [9].
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FIGURE 1. Challenges in single-image camera calibration in traffic
accident reconstruction (TAR).

It is, however, uncertain that the calibration with a single
image that captures an urban landscape will be successful,
which is often the case of the target scenes of TAR as shown in
Fig. 1. Even if accurate correspondences are given by manual
labor, the number of correspondences will be smaller and
tends to be biased in the image and 3D space, compared
to using a well-designed rig. The image captured with a
dashboard camera (see Fig. 1(a)) contains large areas that we
cannot yield the correspondences (e.g., the sky at infinity, or a
vehicle body moving along with the camera). Besides, most
of the possible corresponding points are often distributed on
three planar surfaces, i.e., the ground and roadside facilities
such as buildings. They are poorly textured, thus limiting
the distribution of the possible corresponding points on the
image. In the case of overlooking a scene (see Fig. 1(b)),
which often occur in security camera images, correspon-
dences can be found in various part on the image; however,
since the variation of distance of the scene is small, it may
affect the calibration accuracy. These issues can lead to inac-
curate or unstable solutions when estimating the position or
speed of cars or pedestrians at the time of the accident.

Our goal is to develop an application that statistically
predicts the accuracy of single-image camera calibration via
comprehensive and systematic experiments. In this study,
we use a traditional geometric calibration method. Since the
instability of the solution is inevitable in single-image cases
with relatively few correspondences, we employ a practical
technique to obtain a reasonable solution by sampling the
initial intrinsics. We evaluate the calibration accuracy with
changing various factors (e.g., the number of correspondence
and distribution in the image) by generating 2D-3D corre-
spondences in synthetic environments. Based on the exper-
imental results, we develop an application that predicts the
calibration accuracy from an image and simple additional
information.

Our application is intended to provide users a guide to
acquiring enough information for scene analysis by estimat-
ing the success of the camera calibration for a given set
of variables. Given an image, it helps to make decisions
on whether or not to engage in time-consuming processes
in 3D shape acquisition (e.g., via 3D scanners) and 2D-3D
correspondence mapping (e.g., via manual labor). Also, it can
be used to estimate the number of points or coverage of 3D
shapes to meet the required accuracy. To assess the relia-
bility of TAR and its admissibility as evidence at the court,
predicting the accuracy of the camera parameter estimation,

as well as its stability and confidence intervals, are quite
important. Through experiments in a real-world environment
that mimics traffic accidents, we show that the predicted
accuracy is well in line with the practical scenarios. Our
implementation is available at https://github.com/Kikkawa-
OPP/CalibPrediction.1

A. CONTRIBUTION
We provide a practical analysis of single-image calibration
accuracy and its confidence interval depending on various
factors, which emphasizes the application to predict the cal-
ibration accuracy in practical environments. The prediction
process does not require 3D shapes and 2D-3D correspon-
dences; it thus provides the estimation of the success of the
calibration before time-consuming processes (i.e., 3D scan-
ning and correspondence mapping).

II. RELATED WORKS
Our goal is to provide a quantitative measure and a prediction
tool of the camera calibration accuracy through systematic
evaluation. Our work is thus closely related to camera cali-
bration and its evaluation.

A. GEOMETRIC CALIBRATION
Geometric calibration of camera intrinsic and extrin-
sic parameters is a fundamental technique in computer
vision [10], [11]. Intrinsic parameters are often estimated
using the correspondences on known 3D geometry [5] or
planes [6]. Several different models for camera intrinsics have
been proposed, such as using sixth-order radial distortion [12]
or tangental distortion [13]. These methods, in principle,
optimize both intrinsics and extrinsics, thus can also be used
for extrinsic parameter estimation against a known geometry.

The perspective-n-point (PnP) problem [14], [15], [16] is
to estimate the extrinsic parameters with given intrinsics and
2D-3D correspondences. The PnP problem can be extended
to estimate (a part of) intrinsics like focal length [17], [18].
Recent studies use deep learning to estimate extrinsic param-
eters for the alignment between a camera and a depth sen-
sor [19]. Though slightly different from the calibration using
2D-3D correspondences, recent structure-from-motion (SfM)
methods targeting unordered image collection often compute
camera intrinsics, as well as extrinsics, using numbers of
image correspondences [20], [21].

B. SINGLE-IMAGE FULL CALIBRATION
Even the 2D-3D correspondences on a single image are
given, traditional methods (e.g. [5]) can still achieve a full
calibration (i.e., estimation of both intrinsics and extrinsics).
In practice, this task is often done using calibration rigs [22],
which enables detecting plenty of correspondences. There are
also methods specialized for single-image calibration using
orthogonal planes [23] or lines [24]. Similarly, circles [25],
vanishing points [7], [26], and low-rank textures [27] are

1The code will be uploaded upon publication.
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known to be useful assumptions for single-image calibration.
In the augmented reality application, fiducial markers are
designed for estimating intrinsic parameters [28]. To avoid
the lack of generalization, we will investigate a general
method for geometric calibration, which does not rely on
planar scenes or any other special assumptions.

Recently, single-image calibration using deep learning is
also studied. Some recent methods do not require 3D shapes
but relying on numbers of 2D training images [29]. They,
however, only calculate a rough extrinsics (i.e., place recog-
nition) or partial rotation (i.e., only roll and pitch) [29], [30],
which is difficult for the use in TAR applications.

C. EVALUATION OF CALIBRATION ACCURACY
The accuracy evaluation of camera calibration has a close
relation with ours. Early attempts include the comparison
of distortion models [31] and different calibration meth-
ods [32], [33]. The influences of measurement noise were
also investigated as an important factor for calibration accu-
racy [34]. Several studies perform task-oriented evaluation,
which assesses the influence of calibration error to the accu-
racy of stereo vision [35], [36] or 3D reconstruction [37],
[38], [39]. Also, a recent paper [40] seeks the camera cali-
bration options suitable for autonomous driving applications.

Similar to our work, Sun and Cooperstock [9] provide a
systematic evaluation of traditional calibration methods. The
experiment was carried out using synthetic 3D models to
assess the influence of noises and the number of correspon-
dences. However, the previous study focused on the use of
well-designed rigs (i.e., 3D patterns, or 2D checkerboard)
captured with multiple images. For single-image calibration
with urban scenes, the problem becomes notably challenging
in terms of both the number of correspondences and the
distribution of the corresponding points.

III. SINGLE-IMAGE CAMERA CALIBRATION WITH INITIAL
PARAMETER SEARCH
Although proposing a calibration method is not our main
contribution, we here introduce a practical technique for
single-image camera calibration, which is used in our exper-
iment.

Our method estimates both the intrinsic and extrin-
sic parameters from given 2D-3D correspondences defined
between a single image and a 3D point cloud such as
acquired by a 3D scanner. When performing gradient-based
nonlinear minimization like the Levenberg-Marquardt (LM)
method [41], local minima far from the actual solution are
likely to be derived if the number of corresponding points is
small or if there is a bias in the distribution in the image. It is
possible to obtain the initial values of intrinsic parameters by
solving a linear system using singular value decomposition
(SVD) and other methods [5], [6]. However, it is easily
assumed that both the linear solution by minimizing the
algebraic distance and the local solution of the re-projection

error by the nonlinear least-squares method will be unstable,
especially when only a few correspondences are given.

In this study, we restrict the solution space by sampling
the initial values of the parameters that largely affect the re-
projection error. We use a grid search of focal length f =

(fx , fy) and the second-order radial distortion k1, and search
the best intrinsic parameters that minimize the re-projection
error using the LM method. During the grid search, we first
optimize the remaining parameters while fixing {f, k1} at the
grid point, then optimize the all parameters using the given
solution as the initial guess.

A. IMPLEMENTATION DETAILS
Since the calibration functions implemented in OpenCV are
commonly used nowadays, we employ the camera model
based on the definitions in OpenCV, which is slightly differ-
ent from Tsai’s model [5] but includes the sixth-order radial
distortion [12] and tangental distortion [13]. We thus used
the intrinsic parameters consist of focal length f = (fx , fy),
principal point c = (cx , cy), and the distortion coefficients
including three radial k = (k1, k2, k3) and two tangental dis-
tortion terms p = (p1, p2). Similar to traditional methods, this
study uses the mean square of the re-projection error as the
objective function and alternatingly optimizes the extrinsic
and intrinsic parameters by the LM method [41].

For grid search, we sample the initial focal length f =

(fx , fy) converted from the vertical field of view (FoV) α.

fx = fy =

Ih
2

tan α
2
, (1)

where Ih denotes the height of the image. The FoV α is
searched in the range [10◦, 170◦] with an interval of 10◦. For
the distortion coefficients, we initially set k = (k1, 0),p = 0
and sample k1 in the range [−10, 10] with the interval of 0.5.
The initial values of the principal point c are equivalent to the
image center. Although a rough FoV may be obtained from
the specification information of the camera used, the focal
length converted from the FoV using Eq. (1) becomes notably
different from the actual value when the radial distortion is
large, thus it is useful to search for the focal length using the
grid search.

Our implementation is based on calibrateCamera
function in OpenCV. With our single-threaded Python imple-
mentation, the whole process took 1.9 [sec] on a CPU (Intel
i7-8700K, 3.70 GHz) when 50 correspondences were given.

IV. SYSTEMATIC EVALUATION
The heart of this study is to analyze the error factors for
single-image geometric camera calibration to develop an
error prediction application. Previous studies reported that
the noise and the number of correspondences affects the
calibration accuracy via experiments on synthetic 2D-3D cor-
respondences simulating 3D rigs [9]. We also investigate the
factors that are likely affecting when using correspondences
on a single urban image, such as the scene geometry and the
correspondence distribution on the image.
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FIGURE 2. Synthetic environments (densely sampled for visualization).

FIGURE 3. Correspondence generation.

A. SYNTHETIC ENVIRONMENTS
To assess the influences of the variables (e.g., number of
correspondences) under both ideal and practical scenarios,
we use two types of synthetic 3D scenes: random-3D and
urban-like scenes as shown in Figure 2. We generate these
types of scenes to automatically acquire 2D-3D correspon-
dences by randomly selecting 3D points from the 3D scenes
and projecting them to the virtual camera. In order to obtain
reasonable results, the pose of the virtual camera was ran-
domly set each time (translations ranged from 0m to 100m)

1) RANDOM-3D SCENE
To analyze in a similar setting with a previous study [9],
we prepare random-3D scenes. For this type of scenes,
we randomly select the 3D object points in the view frustum
of the virtual camera, to fulfill the given variables listed in
sec. IV-B. The random-3D scenario simulates an ideal case
for 2D-3D correspondences generation, intending to evaluate
the overall trend of the influence of the variables on the
calibration accuracy, which does not rely on scene geometry.

2) URBAN-LIKE SCENE
We also create urban-like scenes that simulate practical sce-
narios in TAR, which usually deal the roadside images cap-
tured by, e.g., dashboard cameras. As discussed in Sec. I,
we assume the scene geometry of the roadside is mostly com-
posed of three orthogonal planes (i.e., roads and buildings).
Since the road and building surfaces are not perfectly planar,
we add the random noises on the point locations with the
standard deviation of 5 [cm] for the road, and 100 [cm] for
the building. In this analysis, we fix the height of the virtual
camera at 1.5 [m]. This represents the approximate height of
the rear-view mirror, which is the location of the dashboard

TABLE 1. The list of variables used in the systematic experiment.

camera in most cars. We evaluate the calibration accuracy by
changing the road width and the height of the buildings.

For both scenes, the intrinsic parameters of virtual cameras
simulate an actual dashboard camera with a resolution of
1920 × 1080. We use a wide FoV camera, in which f =

(1000, 1010) and k = (−0.3, 0.1, 0.0). We add slight tangen-
tial distortions p = (0.02, 0.01) and shifted principal point
c = (1020, 560), which often occur by windshields. To avoid
the effect of the initial guess of parameter estimation, we ran-
domly translated and rotated the entire scene (i.e., both 3D
points and the camera) before each computation.

B. VARIABLES
For the synthetic experiments, we consider the scene shape
and the quality of 2D-3D correspondence could influence the
calibration accuracy. We, therefore, systematically evaluate
the calibration accuracy by changing these variables. Specif-
ically, based on the existing study for 3D rigs [9], we assume
the calibration accuracy relies on the following factors: cor-
respondence distribution, scene geometry, and noises.

Table 1 summarizes the range and intervals of the variables
we assess during the experiment, which are used to construct
the statistics of calibration accuracy. These variables are
related to the distribution and the quality of correspondences,
as well as the scene characteristics. Given the set of variables,
we randomly sample the 3D points from the point cloud that
are projected in a given bounding box, as depicted in Fig. 3.
We here denote the set of correspondences on 2D image

points and 3D object points as C2D and C3D, respectively.
We use the functions to represent the range r , density ρ, aver-
age µ, and noise level n of the given set of correspondences.
Also, # counts the members of a given set. The variables are
now defined as follows.
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1) SIZE OF BOUNDING BOX CONTAINING IMAGE POINTS
#(B)
#(I)
This variable affects the distribution of 2D image points. Let
I and B as the sets of the pixels representing the image
and a bounding box that contains the corresponding points
C2D (i.e., we only sampled the correspondences in the given
bounding box). The size of the bounding box #(B)

#(I) ∈ [0, 1] is
denoted as the ratio of the area (i.e., the number of pixels) of
the bounding box #(B) in the whole image #(I). During the
experiment, we randomly generated bounding boxes which
match the designated area ratio #(B)

#(I) .

2) CORRESPONDENCE DENSITY ρ(C2D)
We control the number of the corresponding points in the
given bounding box. To simplicity, we denote the correspon-
dence density ρ(C2D) as the number of points par 100×100 =

10, 000 pixels (when using cameras with 1920 × 1080 reso-
lutions).

ρ(C2D) = #(C2D)
100 × 100

#(B)
. (2)

3) REPRESENTATIVE DEPTH µ(d(C3D)) [m] AND RANGE
r(d(C3D))
Letting the depth values of the object points C3D as d(C3D),
we randomly sample the object points in the depth range
defined as

[µ(d(C3D))(1.0−r(d(C3D))), µ(d(C3D))(1.0 + r(d(C3D)))],
(3)

where d(C3D) denotes the depth values of the set of 3D
points. Thus, µ(d(C3D)) and r(d(C3D)) denote the represen-
tative value and the range of the depth as illustrated in Fig. 3.

4) NOISE ON CORRESPONDENCES n(C2D) [px], n(C3D) [cm]
To the given 2D and 3D corresponding points, we respectively
add the Gaussian noises based on the standard deviation
defined as n(C2D) and n(C3D). While the noises on 2D image
points n(C2D) simulate the errors of feature point detection or
manual correspondence assignment, n(C3D) simulates the 3D
measurement error during laser scan or the fusion of multiple
scans. The direction of the noise vectors is randomly selected.

5) ROAD WIDTH w [m] AND BUILDING HEIGHT h [m] (FOR
URBAN-LIKE SCENES)
During the experiment using urban-like scenes, we also con-
trol the scene characteristics. Since the scenes simulate the
road-side scenario, we change the road widthw and the height
of the road-side buildings h.

C. EVALUATION METRICS
We evaluate the accuracy of intrinsics and extrinsics using
the well-knownmeasures: The re-projection error, the camera
position error, and the orientation error.

1) RE-PROJECTION ERROR (GIVEN CORRESPONDENCE)
ReC2D [px]
We compute the root mean square (RMS) of the re-projection
error ReC2D on the given 2D-3D correspondences.

2) RE-PROJECTION ERROR (ENTIRE IMAGE) ReI [px]
We evaluate the RMS of the re-projection error on equally-
distributed pixels (i.e., grid points at 10 [px] intervals) in the
image, ReI , not only on the given correspondences. This is
computed by the back projection of the pixels to the repre-
sentative depth of the scene, µ(d(C3D)).

3) RE-PROJECTION ERROR (BOUNDING BOX) ReB [px]
In practical TAR scenarios, e.g., to estimate vehicle position,
it is often sufficient to be accurately calibrated in the image
region around the vehicle. In this case, accurate re-projection
errors may not necessarily be required for the entire image.
We, therefore, evaluate the RMS of the re-projection error at
grid points inside the bounding box, ReB, which contains the
corresponding points.

4) POSITIONAL ERROR Epos [cm]
To evaluate the accuracy of the extrinsics, we calculate the
positional error of the estimated camera Epos. This measure
is useful for predicting the accuracy of the self-localization of
vehicles.

5) ORIENTATION ERROR Eori [deg]
Similar to the positional error, we also evaluate the orientation
of the camera Eori. This is computed as the angle between the
optical axes of the estimated and the ground-truth camera.

D. RESULTS
Figure 4 shows the errors on the correspondence projec-
tion ReC2D ,ReI ,ReB and extrinsics Epos,Eori while chang-
ing variables for both scenes. The results shown were gen-
erated by changing each of variables independently, while
fixing the other parameters as a set of the default values
#(B)
#(I) = 1.0, ρ(C2D) = 0.5, µ(d(C3D)) = 20, r(d(C3D)) =

0.6, n(C2D) = 0.7, n(C3D) = 0.5,w = 10, h = 5. For a given
set of variables, we repeated the estimation 1, 000 times using
random correspondences, and the figure shows the mean and
confidence intervals calculated from these samples. Overall,
the results of two (random-3D and urban-like) scenes share
a similar tendency, while the error scale is different due to
the different correspondence distribution on 3D space and
2D planes. We then introduce detailed discussions related to
the correspondence distribution, depth variation, noises, and
scene geometry.

1) CORRESPONDENCE DISTRIBUTION ON 2D IMAGES
If the bounding box size is relatively small (e.g., #(B)

#(I) <

0.6), the estimate outside the bounding box is quite unstable.
Meanwhile, even in more challenging cases, the estimate
inside the bounding box and the camera localization accuracy
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FIGURE 4. Calibration errors in synthetic environments. Black lines: Results using random-3D scenes. Red lines: Results using urban-like
scenes. Each plot visualizes the 50 percentile (median; a solid line) and 95 percentile (confidence interval; a dashed line) values
calculated from 1, 000 samples. The results shown were generated by changing each of variables independently, while fixing the others
as a set of the default values #(B)

#(I) = 1.0, ρ(C2D) = 0.5, µ(d(C3D)) = 20, r (d(C3D)) = 0.6, n(C2D) = 1.5, n(C3D) = 1.0, w = 10, h = 5.

can be improved by giving larger numbers of correspon-
dences ρ(C2D).

For further investigation, Fig. 5 visualizes the spatial dis-
tribution of the re-projection errors on the image plane by

changing both #(B)
#(I) and ρ(C2D). If the bounding box has an

enough size ( #(B)#(I) ≥ 0.3 for random-3D scenes) and contains
the enough number of correspondences (e.g., ρ(C2D) ≥ 3.0),
the size of bounding boxes #(B)

#(I) did not notably influence
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S. Kikkawa et al.: Accuracy Evaluation and Prediction of Single-Image Camera Calibration

FIGURE 5. Visualization of the re-projection errors for different correspondence distribution (random-3D scene).

the re-projection error inside the box ReB. In such cases, the
camera localization accuracy Epos,Eori are also acceptable
(i.e., Epos < 5 [cm]) intending that the correspondences only
given around the regions of interest can be used for TAR
scenarios only using a local part of the image. Restricting the
bounding boxes of correspondences is theoretically the same
as to use narrow-FoV cameras; in our case, #(B)

#(I) = 0.3 is
converted to the vertical FoV of approximately 30◦, if they
share the same principal point and aspect ratio.

2) DEPTH VARIATIONS
The depth variation affect the accuracy of extrinsics. Larger
depth µ(d(C3D)) with a smaller range r(d(C3D)) leaded the
larger camera positional errors Epos. Only in urban-like
scenes, larger scene depths also led the inaccurate guess for
camera orientation Eori and re-projection errors ReI . The
cause is related to the scene characteristics. Especially when
the road width is narrow, it is difficult to obtain the correspon-
dences far from the camera on the large areas in the image
plane. This is a similar effect when decreasing the size of the
bounding box #(B)

#(I) .

3) NOISES
Noises n(C2D), n(C3D) also influence the overall accuracy,
as reported in [9]. The relationship between the noise levels
and the errors was almost linear.

4) SCENE GEOMETRY
The scene geometry slightly influenced the stability of the
calibration. Regarding the confidence interval, the estimation
in narrow (e.g.,< 5 [m]) or wide (e.g.,> 45 [m]) roads some-
times, slightly, drop the accuracy related to the re-projection

errors and positional errors. In such cases, the scene can be
approximated as a plane.

V. PREDICTION OF CALIBRATION ACCURACY
Based on the systematic experiments, we can easily develop
an application that predicts the calibration accuracy. For
TAR-related analyses such as the localization of vehicles, it is
necessary to measure the scene geometry (e.g., using laser
scanners), which may lead to traffic restrictions. For practical
use cases, therefore, our application leverages users’ prior
knowledge of the target scene, without acquiring 3D point
clouds and 2D-3D correspondences. It can be used for pri-
mary screening of images as possible evidence of the incident
(e.g., traffic accident) to avoid or minimize the burden of
investigators and society. Also, demonstrating accuracy with
confidence interval is important to ensure the reliability of
evidence at court.

In this section, we describe the detail of the application
software as well as experiments using real-world scenes using
our software.

A. APPLICATION DETAILS
As shown in Fig. 6, we suppose to use our application in
pre-survey of geometric camera calibration. The application
estimates the mean and confidence interval of the calibration
errors from the scene type (random-3D or urban-like) and
variables used in our experiment (see Tab. 1). This is simply
doable via the systematic evaluation using the synthetic corre-
spondences that fulfill the given variables as we showed in the
previous sections. While it predicts the success of calibration
for given variables, it can also be used to estimate the lower
or upper bounds of variables that meet a required accuracy
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FIGURE 6. A use case of our application. It can be used to predict the calibration accuracy from multiple measurement plans and examine whether TAR
can be conducted with reasonable accuracy.

FIGURE 7. Dataset for the real-world experiment. As input data for our accuracy prediction software, we acquire (a) images from dashboard cameras,
(b) manual correspondences between 3D models and images. We also measure (c) the ground-truth camera movement acquired by a 3D scanner for the
evaluation purpose.

TABLE 2. Results of the real-world experiment compared to the prediction by our application. Each row shows a set of input, prediction, and actual
results for an image. For all images, {n(C2D), n(C3D), w, h} were set to {1.0, 1.5, 10, 3}.

in principle. The application, for example, can be used to
predict the minimum number of correspondence or coverage
of 3D scans to meet the given accuracy requirement, which
contribute to minimizing manual labor and traffic restric-
tions. While we can use the pre-computed error statistics
yielded during the previous experiments, re-computing the
statistics for new camera settings (e.g., for different resolution
or largely different FoV) is possible by a reasonable time
(approximately 10 minutes for 1, 000 trials when parallelized
on a CPU, Intel i7-8700K, 3.70 GHz, 6 cores, 12 threads).

B. REAL-WORLD EXPERIMENTS
1) DATASET
To validate our application, we experimented using a
real-world scene shown in Fig. 7. We captured six images

from two dashboard cameras (denoted as A and B in Fig. 7),
which have similar FoV used in the previous experiments,
by changing the position of the cars equipping the cameras.
The resolutions of four images were 1280 × 720 while the
others were 1920×1080 pixels. The captured dataset mimics
traffic accidents, where Scene 1 (1-1 and 1-2) and Scene 2
(2-1 and 2-2) simulate the frontal and rear-end collisions as
shown in Figure 7(c). Image IDs (e.g., 1-1:A) correspond to
the scene name and camera ID.

To acquire the ground truth of the prediction, a 3D point
cloud of the scene was obtained by a laser scanner (Z+F
IMAGER 5010C, Zoller+Fröhlich, Wangen im Allgäu, Ger-
many). Since there is no access to the accurate ground truth
for camera pose, we indirectly evaluated the camera localiza-
tion accuracyEpos via the amount of the car movement, which
was measured as the difference of car positions between two
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FIGURE 8. Determining the variables for the real-world scenario.

frames (e.g., 1-1 and 1-2) captured by the laser scanner.
Figure 7(c) shows the measured values of vehicle move-
ments. We also evaluated the re-projection error on manually
assigned 2D-3D correspondences ReC2D , where the number
of the corresponding points varies from 17 to 35 depending
on the scenes.

2) VARIABLES
Since the real-world scene was mostly composed of near-
planar surfaces, we use the urban-like dataset for the predic-
tion. To determine the bounding boxB, we roughly set an area
containing discriminative points in the given image. Instead
of generating a large number of bounding boxes, we use
the designated bounding box B for the accuracy prediction.
To the correspondence density ρ(C2D), we count the discrim-
inative points on given images. To the noise levels, n(C2D) and
n(C3D), we assumed that the error in correspondence assign-
ment by the human annotator was a few pixels/centimeters.

We approximate the variables regarding the scene geome-
try, according to the prior knowledge that is easy to measure
as shown as Fig. 8. We set w and h as actual road width
and wall height. To the representative depths, µ(d(C3D)) and
r(d(C3D)), we determine them from two measures, the dis-
tance to the nearest point l and the distance between the
nearest and farthest point L as

µ(d(C3D)) ∼ l +
1
2
L, r(d(C3D)) ∼

L
2l + L

.

We fix l = 3 [m] in our experiment since it is usually
realistic to yield discriminative points around the front end

FIGURE 9. Comparison of error distributions between the (subsampled)
real scenes and predicted ones.

of the vehicle. The farthest point depends on the target scene,
we thus select a reasonable point (i.e., semantically discrim-
inative and easy to measure its 3D location by the laser
scanner) from a given image. We empirically confirmed that
the approximation was reasonable since the actual represen-
tative depth calculated from the well-estimated optical center
differs from these approximations by only a few meters at
most.

3) RESULT
Table 2 summarizes the prediction by our application as
well as the ground-truth calibration errors. The last set of
columns indicates the percentile values of the actual errors
across 1, 000 synthetic samples generated by the application
(a smaller percentilemeans a smaller error). Inmost cases, the
real-world results were in the confidence interval predicted by
the application.

4) COMPARISON OF ERROR DISTRIBUTION
To confirm if the confidence intervals yielded by our
application fit the real-world scenario, we compute the
distribution of the positional accuracy of actual 2D-
3D correspondences using subsampled correspondence
sets.

We evaluate the amount of car movement in the real-
world images, which originally have more than 15 cor-
respondences, along with the ground-truth car movement
observed by the 3D scanner. We randomly subsample the
corresponding points from 6 to 15 points (1000 trials for
each) and estimate the car movement based on the calibrated
camera parameters using the subsampled correspondences.
Since each trial yields a single estimation, we can get the
error distribution over the subsampled correspondence sets.
We use the urban-like scene for the error prediction. Figure 9
shows the comparisons between the actual (i.e., subsampled)
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FIGURE 10. Comparisons of calibration accuracy for different geometry complexity. Percentiles of each evaluation metric from 1000 trials are visualized.
Black lines are results from intersection and bare ground scenes. Red lines are predicted values using the urban-like geometry.

and predicted error distribution. Our application reasonably
reproduces the real-world error distribution.

VI. DISCUSSION
We have introduced an evaluation of single-image camera
calibration and a new application that predicts the cali-
bration accuracy for scene analysis with TAR. The accu-
racy of re-projection errors and camera localization in a
practical real-world scene was reasonably estimated via
the error simulation using synthetic environments. Since
our application does not rely on the 3D shape of tar-
get scenes, it can be used for primary screening of
images as possible evidence of the incident to minimize
the burden of investigators (i.e., 3D acquisition, and cor-
respondence assignments) and society (e.g., road traffic
restrictions).

A. GENERALIZATION ABILITY
While we use shape templates mimicking practical scenar-
ios, i.e., urban-like scenes, it is worth discussing the gen-
eralization ability of the error prediction using our model.
To assess the generalization ability of our predefined shape
templates, we conduct an experiment on different types of
synthetic scene geometry that mimic road intersections and
bare grounds. For the prediction of calibration accuracies,
we use urban-like scene approximations. Specifically, we set
the width and height parameters that are the same as the main
road (w = 10 [m], h = 5 [m] at the intersection. For the bare
ground scene, we set large road width (w = 1000 [m]) and
zero height.

Figure 10 compares the calibration errors. The calibration
accuracy for the intersection scene is slightly better compared
to the urban-like scene due to the higher degree of freedom for
the correspondence selection. Since the errors are still inside
the confidence interval by the predictions using urban-like
geometry, we consider our design choice of using the geome-
try mimicking road reasonable. Meanwhile, a practical future

direction for better prediction is to increase the variation
of shape templates for our predictor in addition to random-
3D and urban-like scenes. For the bare-ground scene, the
urban-like template accurately represents the observed scene
geometry.

B. DISTORTION MODEL SELECTION
A number of distortion models have been proposed. Given
a enough number of correspondences, it is known that
using camera models with larger number of parameters
can achieve the accurate camera calibration [40]. However,
through the experiments, we found the complex camera mod-
els are often not suitable for our conditions where the cor-
respondences are only sparsely obtained. Figure 11 shows
the comparison between the models with different num-
ber of radial distortions, where we use three coefficients
for the standard model and six for the complex model.
We observe fault-like artifacts when increasing the number
of distortion parameters. The visualization of re-projection
errors (Fig. 11 (b)) highlights the artifacts appearing along
circumferences.

C. SINGLE-IMAGE RECONSTRUCTION FOR TAR
The estimated camera parameters are essential information
for TAR to estimate the position, shape, and behavior of
target objects (e.g., car). As shown in sec. V, the speed of
cars can simply be computed from the positional difference
between consecutive images. Also, it can be used for esti-
mating how many points or the coverage of 3D scans on
the target scene are needed to meet the accuracy require-
ment of the scene analysis. Although most 3D reconstruction
methods for TAR [2], [3], [4] have used multi-view images,
single-image 3D reconstruction is another promising appli-
cation that broadens the availability of criminal investigation
because the single-image metrology is fundamentally well
studied [42]. We are keen to develop and deploy a whole
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FIGURE 11. Comparisons of different distortion model implementations
for single-image calibration. The complex model using larger number of
distortion coefficients lead fault-like artifacts.

framework for TAR for the actual investigation scenarios,
including the error prediction process proposed in this paper.
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