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ABSTRACT With the evaluation of cellular network internet data traffic, forecasting and understanding
traffic patterns become the critical objectives for managing the network-designed Quality of Service (QoS)
benchmark. For this purpose, cellular network planners often use different methodologies for predicting
data traffic. However, traditional traffic forecasting approaches are erroneous. As well as most of the time,
traditional traffic forecasts are high-level or a generously large regional cluster level. Also, eNodeB-level
utilizationwith concerning traffic forecasting is not readily available. As a result, user experience degradation
or unnecessary network expansion is triggered based on the traditional method. This research deals with
extensive 6.2 million real network time series Long-Term Evolution (LTE) data traffic and other associate
parameters, including eNodeB-wise Physical Resource Block (PRB) utilization, which focuses on building
a traffic forecasting model with the help of multivariate feature inputs and deep learning algorithms. A state-
of-the-art Deep Learning algorithm-based fusion model is proposed. The combination of different deep
learning algorithms, namely Long Short-TermMemory (LSTM), Bidirectional LSTM (BiLSTM) and Gated
Recurrent Unit (GRU), enables traffic forecasting at a granular eNodeB-level and also provides eNodeB-wise
forecasted PRB utilization. In this research R2 score value for the proposed fusion model is 0.8034, which
outperforms traditional models. Apart from the PRB utilization, QoS threshold was devised as 70% from a
real network experience to trigger soft parameter tuning decisions. Based on the forecasted PRB utilization,
this research proposed a unique algorithm that estimates eNodeB-level soft capacity parameter optimization
for a short-term step-up solution or long-term network expansion to ensure a guaranteed QoS benchmark.

INDEX TERMS LTE networks, machine learning in networking, traffic prediction, deep learning, mobile
network capacity, physical resource block, resource management.

I. INTRODUCTION
Mobile Internet data traffic has been rapidly growing in the
last decades. According to Ericsson Mobility Report (Nov
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2021), by 2027, global mobile network data traffic will be
close to 300 exabytes per month [1]. With the evaluation of
technology, at present and next 2-3 years, LTEwill carry most
of the data traffic where 5G and beyond technology is still
under development, mostly in developing countries. Apart
from that, the LTE network is more mature for carrying a
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load of data traffic as it is already covered by 84% of the
global population as of 2020 [2]. With the growth of mobile
data traffic, several challenges are coming to the surface.
Among them, eNodeB-wise utilization prediction is topmost
because the network quality of services (i.e., Speed, Latency)
is depends on this utilization parameter.

The number of users and their demand for mobile internet
speed with quality is ever-increasing. In Ericsson Mobility
Report 2021 [1], the monthly average internet usage per
smartphone is approx. 11.4 GB, which will be almost four
times by 2027. As well as, location-wise variety of user
behavior gives some extra load to the LTE network or cell. For
example, video traffic is currently getting more popular than
any other chatty or browsing traffic, which is nearly 70% [1].
It has been predicted that video traffic will reach about
79% by 2027, which means more data transfer by mobile
networks. For this reason, it can be easily predicted that,
without proper forecasting of network utilization beforehand,
Mobile Network Operators (MNO) will not handle the user
demand on time which may cause QoS degradation.

A. MOTIVATION
Traffic forecasting is the most sophisticated part of network
dimensioning [3]. Because to make cellular network business
more profitable, investors are always looking for the proper
Capital Expenditure (CAPEX) in the right cell/site/location
and reducing Operational Expenditure (OPEX). Wrong
traffic forecasting may mislead the network dimensioning,
which causes additional CAPEX and OPEX as well as
degradation of QoS.

Apart from that, Deep learning-based approaches have
been studied recently to identify the pattern of sequential data
and classify similar data types together [4]. Different Recur-
rent Neural Networks (RNN) algorithms are used to forecast
multiple time series sequential data types. By knowing the
enormous potential of deep learning algorithms for predictive
measures, the authors were more interested in building a
model to solve one of the most critical problems in cellular
network dimensioning, which is traffic forecasting [5]. In this
work, Modern GPUs are used to run complex deep learning
algorithms with various features in optimistic run time.

The advance is knowing the more accurate traffic and user
demand from the network’s ability to promptly manage the
resource allocation among the connected User, which will
improve the quality of user experience [5]. This work will
help to understand the Mobile network’s traffic behavior.
Also, recommend which eNodeB to trigger expansion with
the help of deep learning algorithm-based traffic forecast and
Utilization correlation chart.

B. PROBLEM FORMULATION
Understanding the traffic demands in a cellular network is
a complex task due to the large and uneven densification
of the mobile users attached to a particular network. Apart
from that, this task becomes more challenging because of the

huge number of different types of devices, and user patterns
are different all the time. Different application data traffic
consumption rate is not the same [6].

From an academic research perspective, one of the
significant challenges is collecting a large set of data for
training a model. eNodeB-wise detail datasets with several
valuable features are not available by MNOs. In most
cases, Call Detail Records (CDR) contain the traffic dataset
in an aggregated format, where there is no segregation
of technology, user count per technology, or per-protocol
category [7]. So, the CDR dataset could not help this research
work that much. Several efforts and initiatives had taken for
data mining to collect the suitable dataset from Operation
Support System (OSS) and radio and core network end.

Network traffic forecasting is one of the significant activ-
ities for network dimensioning because it affects eNodeB-
level utilization. In other words, eNodeB-level traffic and
utilization are directly proportional. As well as, eNodeB-
level utilization affects overall network performance and
user experience. Suppose utilization increased uncontrolled
manner, which means physical resource block (PRB) shared
by additional users. It will hamper user experience as the
same resource is shared bymore users initially not considered
for design. We need to trigger network expansion before the
capacity reaches the threshold point for those cases. If traffic
is not increasing as per the prediction level, eNodeB will be
underutilized, which means wasting resources. The greatest
challenge is that both case network engineers traditionally
can observe the scenario only after it happens in particular
eNodeB in a real network. Then, engineers take the initiative
for resolution with a step-up capacity solution or step-down
in some cases. However, in the meantime (lead time), the
customer suffers from QoS degradation. It would be much
better for network planners/engineers to identify eNodeB-
level traffic patterns and PRB utilization and estimate radio
parameters before it happens in the network. So that network
engineers can initiate actions on time and customers will be
less suffered.

Consequently, we have devised a Non-deterministic Poly-
nomial (NP) hard problem based above-sated situation to
address the solution. NP-hard problems are commonly used
in formalized research problems [8], [9]. This research
question can be classified as an optimization problem as
our objective is to find out the maximum user throughput
(Th)in a particular time for each eNodeB and which is
inversely proportional with PRB Utilization (PRBUt), and
other network contains.

Objective function, Max Th =
1

PRBUt
+ C1 (1)

Here in the objective function (1), the value of constant C1
will change according to the configured radio bandwidth of
each eNodeB. In other words, a user throughput of a particular
eNodeB can vary based on configured bandwidth even in the
same PRB utilization.
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Similarly, future PRB utilization can be computed based
on predicted traffic volume on that node and other factors.
Suppose we want to calculate a cluster of eNobeB (number
of eNodeBs in same geographic are creates cluster) future
performance or PRB Utilization (PRBU). In that case, this
can be possible with predicted traffic volume (Vol), and other
factors i.e., Average user equipment

(
UE

)
, Maximum user

equipment Max (UE), Downtime (DT ), and other unknown
factors C2. Thus, we can write the PRB Utilization equation
as below for a cluster of eNodeBs:

median {PRBUT } × BW ≜ lim
T→+∞

1
T

t+60∑
t+1

∑
e∈E

×
(
VolT ,e+UET ,e−DT ,e

)
+ C2

(2)

In the above equation (2), we have considered only UE
(User Equipment), becauseMax (UE) varies in a certain geo-
graphic area or cluster only because of special circumstances
and social events. Prediction of max UE for a particular
eNodeB could be another research question we will address
in our future work. However, we have considered average
UE in the computation process, representing the number
of connected user equipment in a particular eNodeB for
a specific time frame. eNodeB-wise count of UE for a
particular hour depends on cellular network operators’market
share and population of that eNodeBs coverage area. So,
in most cases, the UE will not change drastically for the
yearly business plan (BP). In standard network conditions,
there is minimum eNodeB downtime (DT ), where DT
negatively impacts traffic volume and PRB Utilization. So,
it’s easily understandable that future traffic is the most vital
thing for predicting utilization as well as user throughput.
If we can rightly predict the traffic or user throughput, then
it’s possible to take action to maintain the quality of service.
In equation (2),

∑
e∈E VolT ,e is the summation of all eNodeB

(E) traffic in a cluster. By taking into consideration all of these
actual network factors, we can simplify the PRB Utilization
equation for one single eNodeB -

PRBUt∈T × BW = lim
T→+∞

1
T

(
VolT ,e+UET ,e − DT ,e

)
+ C2

(3)

As eNodeB-wise bandwidth (BW ) and UE is almost
constant for a particular network planning year, so it can
assume that PRB utilization is directly proportional to
traffic growth and bandwidth of a particular spectrum band.
In equation (2) and (3), time T = {t + 1, t + 2, · · · , t + 60},
that means maximum 60 days hourly future PRB Utilization
is denoted as PRBUt+60, where Volt+60 indicates predicted
traffic volume (unit bits) in the same time frame.

Understanding the unleash potential of deep learning algo-
rithms for time series data prediction, we have built prediction
models for future traffic volume and PRB utilization with
a unique deep learning algorithm fusion strategy. We have
not limited our research work to identifying future traffic

and PRB utilization. Based on an assessment of predicted
PRB utilization from traffic, we develop an algorithm for
radio network parameter estimation for triggering the action
of maintaining network QoS benchmark.

C. RELATED WORK
This research majorly focused on network traffic forecasting
and estimation of radio parameters based on forecasted
traffic. Therefore, we have discussed the state-of-the-art
network traffic forecasting methods and LTE radio parameter
estimation method sequentially. There are some related
works on cellular network traffic forecasting using different
techniques. However, at the same time, only a few researchers
dealt with LTE radio parameter optimization based on
forecasted traffic. In this section, we will discuss how other
related works are different from this research work and what
are the unique contributions of this research paper.

Traffic prediction or forecasting is vital for anticipating
cellular network status, identifying user usage patterns, and
estimating quality-of-service or major resource allocation
parameters [3]. Fang et al. [10] revealed city-scale level
traffic forecasting based on a cell handover-aware graph
neural network. Xu et al. [11] demonstrated the geographical
distribution of forecasted traffic heatmap in a particular
city by analyzing time series data. Kirmaz et al. from
Nokia Bell Lab [12] also illustrate similar research by
dividing the geographic area into pixels. All these three
research [10], [11], [12], focuses on predicting traffic based
on a geographical unit of measurement, and we know a
geographical area could be covered by multiple LTE eNodeB
or cell. However, our research focused on each eNodeB or cell
level of traffic prediction. Another research by Trinh et al. [6]
introduced mobile traffic forecasting with RNN in daily level
time series. Sun et al. in their research work [13] represented
network-level future mobile data estimation based on user
mobility patterns. Any time scale of traffic forecasting may
help network planning activity to some level of degree, but
our developed model will predict traffic at an hourly level.
Hourly level traffic prediction will enable more insights into
time series data and easily convertible to daily level [6].
L. Lo et al. [14] developed a Thresholded Exponential
Smoothing and Recurrent Neural Network (TES-RNN)
model to manage network traffic and resources with Joint
Statistical Modelling and Machine Learning as a hybrid
approach. This research [14] only focused on predicting
traffic anomalies at a particular time, rather than on hourly
or daily regular traffic. Q. Yu et al. exercised Graph Atten-
tion Network (GAT) and Temporal Convolutional Network
(TCN) to model to predict traffic overload considering
large amounts of small-scale redundant data [15]. As long
as the mobile operator’s network planning is concerned,
eNodeB or cell-level granularity is essential. So, unlike most
related research work, we focused on cellular network traffic
forecast at the granular cell level. Each cell is considered a
different eNodeB. Apart from that, there is another benefit
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of evaluating cell or eNodeB-level forecasting, network
planners can easily convert the cell level forecast into city
or province level by simply adding all eNodeB traffic in
that geographic area. There is also different time horizon in
traffic forecasting research works, but considering the real-
life challenges of network planning, we focus on developing
an hourly traffic forecast model. In Summary, granular data
traffic prediction in terms of two major factors (hourly in
terms of time and eNodeB in-network or geography) is the
key difference between our research and other similar works.

The second part of our research is to identify future
network utilization based on predicted traffic and propose
an algorithm for handling expected traffic by estimating
LTE radio parameters. There is some sporadic research on
radio capacity analysis at different times. Jang et al. [16]
develop a model to estimate the resource block usage rate
to solve the fixed-length input problem in the traditional
RNN model. However, this research [16] doesn’t address
how radio parameters can be used to estimate RB usage
rate (RBUR). Hasan et al. [17] proposed an algorithm for
Adaptive Mobility Load Balancing to maintain throughput in
LTE Small-Cell networks, which was a reactive process; any
proactive measure was not defined in [17]. Most importantly,
none of these research works devises any radio parameter
estimation model from predicted future traffic. Our research
investigated this particular issue and proposed an algorithm
that triggers radio parameter solutions based on forecasted
traffic.

D. CONTRIBUTIONS
The major contribution in this research paper are summarized
as follow:

1) We proposed a state-of-the-art fusion model for
forecasting network traffic using different deep learn-
ing algorithms (LSTM, BiLSTM, and GRU), which
increase overall model performance. Unlikemost of the
research, we have considered multivariate inputs for
modeling of forecasting Mobile network data traffic.
We have predicted eNodeB-level utilization (or cell
load) based on forecasted traffic. The eNodeB-level
utilization prediction from deep learning model-based
traffic forecasting technique is one of the significant
outcomes of this research work, which will help MNOs
to decide about network expansion for maintaining
benchmark QoS.

2) To forecast data traffic, we categorize all eNodeBs into
different clusters. In order to obtain clustering accuracy
of time series data, we have considered both Euclidean
and Dynamic Time Wrapping (DTW) algorithm-based
Self Organized Map (SOM). In addition, we have
compared both algorithms for a particular cluster. How-
ever, due to computational accuracy, finally, we have
recommended DTW-SOM for the rest of the analysis.

3) We also proposed a unique radio parameter estimation
algorithm to ensure the Quality of Service (QoS)

benchmark. In this way, the network planner can
initiate plans tomeet customer demand before it crosses
the QoS threshold or causes massive degradation in
customer experience.

The rest of the paper is demonstrated as follows. Data-
set description is presented in section II. Apart from that,
relevant definitions and formulas are also added in the Data-
Set Description section. Then, the proposed System Model
for this research is illustrated in section III, along with
visual and text explanation. Section IV explains a step-by-
step methodology for cellular network traffic prediction.
Model Performance evaluation is discussed with standard
performance criteria in Section V. After that, the Experimen-
tal Outcome derived from the proposed model is shown in
section VI. Later on, the unique contribution of this research
paper, Optimized LTE Radio Parameter Estimation based
on predicted traffic, is articulated in section VII. Finally,
in section VIII, we conclude the paper by summarizing the
overall work and discussing future work.

II. DATASET DESCRIPTION
The LTE 4G dataset was identified and downloaded from
the Operations Support System (OSS) of one of the MNO.
Initially, hourly Data traffic from the Radio Network end
was collected from around 890 eNodeB for 351 consecutive
days, including 8424 samples. After collecting a total of
approximately 6.2 million dataset, data masking was done to
ensure data privacy. Apart from that, other associate features
from eNodeB were collected, i.e., Utilization, Max_UE,
Avg_UE, Cell_TP, User_TP, and traffic. This analysis only
focuses on Downlink (DL) traffic, as it has the most
significant contribution to cellular network utilization.

The Cellular Network dataset contains the following
information and features used in this work:
• eNodeB: eNodeB is the Radio network element of the
LTE network, which is also known as Evolved Node B.

• Traffic: Trafficmeans a combination of Uplink (UL) and
Downlink (DL) internet Traffic from the Radio network
end. The counter formula of traffic is as below:∑

downlink traffic volume for PDCP

+

∑
uplink traffic volume for PDCP

The unit of traffic is Gigabits here.
• Utilization: Utilization indicates the usage of Physical
Resource Block (PRB) in LTE system. The higher
number of utilization indicates more usage of LTE
resources. Utilization can be formulated in counter level
by the below formula:

AvgnumberofusedPRBs
NumberofavailablePRBs

• Max_UE: Maximum number of Users connected at an
instance in a particular node considered as Max_UE.

• Avg_UE: Avg_UE is the average number of connected
Users per hour in a particular node
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• Cell_TP: Cell_TP means Cell Throughput, which is the
sum of all users’ throughput in a particular eNodeB or
any node for a unit time frame. The counter level formula
can be represented as below:∑

downlink traffic volume for PDCP∑
duration of downlink data transmission in a Node

• User_TP: A particular user receives an amount of data
on average, known as User Throughput or User_TP.
In other words, the average number of packets received
by the User in a unit time frame. The counter level
formula for User_TP as below –(∑

DL traffic− DL traffic volume sent in last TTI
)

Data transmit duration except last TTI
During data modeling of traffic forecasting for utilization
prediction, all eNodeB has been classified in different
classes according to their time-series behavior. The detailed
classification procedure will share later part of this paper.

III. SYSTEM MODEL
In this system model section, the cellular network traffic
prediction system model is presented. In Fig. 1, we have
proposed a cellular network traffic prediction model using
deep learning algorithms.

In the First step, eNodeB-wise traffic and other associate
parameters have been collected through a rigorous data
mining process. After collecting data, it is stored in the
local database as LTE data is complex and combines several
underlying features and information. As the key objective of
this research, the model predicts traffic, so after data storage,
we have done Exploratory Data Analysis (EDA) part. As we
know, Exploratory Data Analysis (EDA) is the process of
identifying major features and patterns in datasets. From
EDA, we have identified any data missing in the datasets.

Missing data is filled in two steps. We use the mean of that
particular day of the month for short or discrete data missing
for a particular hour. In case of larger data missing (More
than an hour), we use prediction from the previous trend and
predict the missing period.

After EDA and missing data filling, the dataset is used
in two folds per the system model. In one part, we try to
make a cluster of eNodeB based on their time-series traffic
pattern. The short-term objective of this part is to categorize
similar consumption patterns eNodeBs. So that, later on,
we can compare cluster-wise resource utilization concerning
predicted traffic. As we have 890 eNodeB considered in
this research, performance visualization will not be possible
without clustering. We have followed the SOM-DTW-based
clustering model for time series unsupervised data clustering.
Details of the SOM-DTW model are discussed in the
methodology part.

In the next part, we first extracted critical features of the
dataset through feature engineering. Essential feature means
which information has highly correlated with traffic data.
As we considered multivariate inputs for the traffic prediction

model, those inputs have different units. For this reason,
data normalization is necessary to avoid systematic bias.
We have used the min-max method in this work to transform
all multivariate inputs from zero to one. Scaling input data
helps reduce biasness as well as increase the accuracy of
the traffic forecasting model. Equation (4) is used for data
transformation:

zn =
x − xmin

xmax−xmin

(
Newmaxx − Newminx

)
+ Newminx (4)

Maximum data denoted as xmax, and xmin is the minimum
of the data. Newmin and Newmax is the zero and one
respectively [18]. After Normalization and transformation,
we divided data into two parts: test and train. In this research,
we have split the training and test data ratio as 79:21 for
290 days hourly data of 890 eNodeB. The remaining 61 days
of hourly data are kept as a validation dataset.

We have a training model with the help of the fusion
strategy of deep learning algorithms LSTM, BiLSTM, and
GRU, which are discussed in detail in the Methodology
section.

After that, we completed the most crucial segment of this
work, called traffic prediction. Based on predicted traffic with
the help of Deep Regression, we forecast the utilization and
compare overall cluster utilization.

IV. METHODOLOGY
In this section step by step deep learning structure-based
cellular network traffic forecasting will be discussed, along
with different algorithms for time series prediction.

A. AGGREGATION OF DATA SETS
This dataset contains all encrypted eNodeB-wise parameter
information located in a densely populated city in South Asia.
Let’s assume thewhole dataset as aEt = {Ec1t ,Ec2t , . . .Ecit },
Where Et is the sets of all eNodeB and Ecit is the all features
of each individual eNodeB regardless of time (t). So, the
aggregated eNodeB-wise traffic (Tr) in a time frame T is,

A(T ) = 6r(t)∈R(T )E(t)6t∈T a(t) (5)

B. PATTERN IDENTIFY ON DATASET
Pattern identification on the dataset is one of the key elements
before modeling any dataset. In this research, we try to
understand the dataset first because it gives some idea about
how traffic changes over time and the vital contributing hours
for overall data traffic. From the above four figures, we can
quickly identify the pattern of the hourly traffic dataset of
351 days. Below equation (6) used to identify data patterns
per eNodeB.

E(t) =
351∑
i=1

(Traffic in hours) /Number of Days (6)

From Fig. 2, it can be easily understood that traffic is
increasing over the period. We have also noticed the hourly
traffic difference between weekdays and weekends in Fig. 4.
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FIGURE 1. Proposed system model of cellular network traffic prediction and PRB utilization based optimized parameter estimation.

FIGURE 2. Month by month average traffic (GB) per eNodeB.

FIGURE 3. Boxplot of month-by-month average traffic (GB).

The Monthly average traffic box plot is showing the median
(Q2) traffic is increasing in every month Fig. 3. In Fig. 5,
it represents the one special day in a week when traffic is
almost double the rest of the days.

C. FEATURE CORRELATION PLOT
In this research for predicting future eNodeB-wise traffic,
we have collected five additional features, which are
important parameters for predicting cellular network traffic
and understanding the overall LTE network for dimensioning.
For the Fig. 6 correlation (r) plot, we used the below equation
(7) for each pair –

r =
n

(∑
xy

)
−

(∑
x
) (∑

y
)√[

n
∑
x2 −

(∑
x
)2] [

n
∑
y2 −

(∑
y
)2] (7)

FIGURE 4. Weekday vs. Weekend hourly traffic pattern.

FIGURE 5. Daily average traffic (GB).

The graphical plot of correlation Fig. 6, found
that utilization is directly correlated with traffic, whereas
User_TP TP (User Throughput) is negatively correlated with
traffic and utilization. This implies that more trafficwill cause
higher utilization and lower User_TP or degradation of the
quality of services (QoS). Our goal is to keep utilization
at an optimum level from a network design perspective.
If utilization becomes higher, it means intolerable traffic for
that eNodeB; network expansion needs to trigger. By this,
MNOs can keep standard utilization and QoS.

The later part of this research will devise more precious
recommended utilization parameters for keeping QoS in the
desired range.

D. SELF-ORGANIZING MAP (SOM) AND DYNAMIC TIME
WRAPPING (DTW) BASED CLUSTERING
We found a lot of unstructured data from the traffic and
associated parameter dataset. Leveling those data is an
expensive, time-consuming, and challenging task. However,
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FIGURE 6. Correlation Plot from different features.

we had to overcome the unsupervised data leveling challenges
to develop this intelligent traffic forecasting and eNodeB
utilization model. It is well established that supervised
algorithms perform better when data are labeled properly.
More numbers of datasets will increase the accuracy of the
model [19]. In this research work, we have applied Self-
Organizing Map (SOM) based eNodeB clustering based on
their hourly time series data.

SOM is one kind of unsupervised neural network with
only two layers [20]. One input layer and another mapping
layer also work as output layers. In SOM-based clustering,
each neuron of the input and mapping layers is wholly
connected. As per the working principle, each mapping
neuron searches whose weight is most like input vectors
while developing the SOM-based cluster iterationmodel. The
best-matching neuron pair is known as Best Matching Unit
(BMU) [21], [22].

This research work has tried to identify both Euclidean
matching and DTW matching for creating SOM clusters.
Finally, choose the matching algorithm for cluster creation.
In the first phase of work for the Euclidean matching-based
model, Mobile network time series data input is considered
in d dimensional (i.e., there are d input units). So we can
write the input patterns as x = {xi : i = 1, 2, 3, 4, . . . d}.
if, i is the connecting weights between the input unit
and the neurons j in the computing layer can be written
wj =

{
wij : j = 1, 2, 3, 4, . . .N ; i = 1, 2, 3, 4, . . . d

}
. N

Considered as a total number of neurons. According to
Euclidean distance ED between the input vector x and the
weight vector wj for each neuron j –

EDj (x) =

√√√√ d∑
i=1

(
xi − wij

)
∧ 2 (8)

FIGURE 7. DTW matching based 36 SOM cluster according to eNodeB
hourly time series data pattern of 351 days.

Using equation (8) of Euclidean distance matching, all
890 eNodeB divided into 36 clusters. Equation (8) is also
known as a Pythagorean theorem in Cartesian coordinates.
So as per the working principle, Euclidean distance is
the length of a line segment between two points. While
combining similar traffic carrying eNodeB’s in a cluster,
SOM-Euclidean matching will only calculate the based on
two points (starting and endpoints).Whichmay not reflect the
best-represented cluster trend-line for all eNodeBs [21], [23].
To overcome this problem of Euclidean Matching-based
SOM clustering, we have proposed another method that
is called Dynamic Time Wrapping (DTW) driven SOM
clustering. Unlike Euclidean distance, DTW-based clustering
is not only limited to staring and endpoint-based calculation.
Here, in DTW, the Best Matching Unit (BMU) neuron is
searched for a minimal DTW sample of eNodeB-wise traffic
data Fig. 7. We have also used the distance decay kernel
function in the DTW-based distance method [24].

WdtNew =Wdtprevious +2 • Krs •
(
x −Wdtprevious

)
(9)

DTWmatching updates the model based on learning rates,
while Euclidean matching only calculates the distance from
two points. As a result, DTW-SOM enables more accuracy in
cluster representative trend-lines as similar as Fig. 8.

The objective of this clustering to group the eNodeB and
benchmark the performance which is done in later part of the
paper.

E. MULTIVARIATE DEEP LEARNING ALGORITHMS FOR
TIME SERIES TRAFFIC PREDICTION

1) Multivariate Time-Series Traffic Prediction:
Actual Cellular Network traffic is not only related to
the previous data trend. Several factors may affect
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FIGURE 8. DTW-based cluster represented traffic trend line able to
capture each spike or pattern of long traffic trend (circular green marked),
whereas Euclidean based clustered trend line missed those details.

the data traffic volume of a particular eNodeB. For
instance, traffic may fall drastically if an eNodeB
is down for a higher time than regular. As well as
any social and religious event in a particular area
that causes more people to gather under one or
more eNodeBs in that location is also the reason for
increasing traffic. So, considering those real network
dimensioning challenges, we considered Multivari-
ate input-based time-series traffic prediction [25].
If we consider both the factors as affecting elements for
traffic forecasting. In other words, denoting the related
variables by x1,t , x2,t , · · · xk,t and at the end of t time
traffic T1,t can be represent as equation (10)

T1,t = f 1
(
x1,t , x2,t , · · · , xk,t , x1,t−1, x2,t−1,

· · · , xk,t−1 · · ·
)

(10)

After forecasting traffic T1,t , next t+1 time traffic
will be dependent on all previous stage variables.
Considering this logic equation (10) can be written as
below for t+k time predicted traffic Tk,t+k :

Tk,t+k = fk
(
x1,t , x2,t , · · · , xk,t , x1,t−1, x2,t−1,

· · · , xk,t−1 · · ·
)

(11)

As per the working principle of multivariate time
series analysis, where different variables are dependent
on their previous value as well as other feature or
variables [25]. Like univariate time series, the major
objective of multivariate time series prediction is to
get the data forecast. But multivariate function enables
more accurate results with the help of other associate
parameters, which we include in this research work.
As represented in the deep neural network model
architecture in Fig.9, after collecting raw time-series
input data, key features are extracted from dataset.
Later on, we generated time series from this feature
extracted data by using the sliding window technique
algorithm. The sliding window technique works on N-1
historical time series data [26]. The working principle
is after feature extraction, ts function generate the
time series data (as shown in Fig.9) and explained by
algorithm 1.

Algorithm 1 Time-Series Generation With Sliding
Window Technique
Data:
A: array of traffic and feature1

p: number of days in past as sliding window
f: number of total features
Result: return array of X and target Y

initialization;
x, y← 0;
for i← p to length(A) do

append(A[i− p : i, 0 : f ])toX

append(A[i : i+ 1, 0])toY

end
return X ,Y

2) Fusion Strategy in Recurrent Neural Networks:
This research work introduced a fusion strategy in
multiple Recurrent Neural Networks for building a
data traffic forecasting prediction model. We have
proposed Long Short-Term Memory (LSTM), BiL-
STM, and GRU algorithm-driven multivariate Deep
Neural networks for multiple parallel time-series
predictions, as shown in Fig. 9. Based on eNodeB-
wise performance of the RNN model, we proposed the
fusion strategy.
Long Short-Term Memory (LSTM)
The most widely used recurrent neural network
(RNN) algorithm processes the inputs individually.
However, the performance of RNN degraded over long
time series or sequences as it has no memory in
architecture [27].
We have decided to use Long Short-Term Memory
(LSTM) instead of the traditional RNN model to over-
come this memory issue. Long Short-Term Memory
is also an advanced version of the recurrent neural
network (RNN) model; the architecture allows the
model of chronological sequences and their long-range
dependencies more precisely than conventional RNNs.
LSTMs was also designed to deal with the long-term
dependency problem faced by standard RNNs.
As per LSTM architecture for computing forecasting
traffic or any sort of time series data starts with the
calculation of output value from previous time data and
presents input series data which is enabled as an input
of forget gate [28], [29].

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(12)

1Algorithm 1 involves the use of multivariate input data (consisting of
time-series historical traffic, downtime, and user counts) represented as X,
and output data (traffic at t+1) represented as Y. The training data consists of
79%of the total data, with the remaining 21%used as test data. The algorithm
employs a sliding window technique, in which both X and Y are shifted from
one window to the next with respect to array A[i..]. This can be seen in the
third part of Fig. 9.
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FIGURE 9. Architecture of the proposed multivariate Deep Neural Network for multiple parallel time-series prediction.

FIGURE 10. LSTM architecture for predicting future traffic.

Here ht−1 is the output value of the previous time,
as well as xt , denotes the input value of the present
time. ft is the output gate which value rage is (0,1). The
weight of the forget gate is represented asWf , where bi
is the bias of that forget gate. In addition of that, input to
input gate, output value and condition of candidate cell
at input gate can also be calculated through output value
of previous time and the input value of present time,
which can be calculated through the below equations –

it = σ (Wi · [ht−1, xt ]+ bi) (13)

C̃t = tanh (Wc · [ht−1, xt ]+ bc) (14)

Ct = ft ∗ Ct−1 + it ∗ C̃t (15)

Ot = σ (W0 · [ht−1, xt ]+ bo) (16)

ht = Ot ∗ tanh (Ct) (17)

In these equations (14),(15) and (17),Ct is the cell state
of the candidate cell in t time, which value ranges (0,1).
Ot denotes the output gate, it is the input gate, and ht
is the hidden layers in the cell. Here, xt is the cellular
network data traffic. The bias of the network indicates
by b function.
This LSTM is used as a sequential layer for building
traffic forecasting model. This LSTM architecture is
modified from [25] and [30]. From the above equation
(12),(13),(14) and (16) information transfer is based
on dot product outcome. If the dot product result
is zero, it means information is not transferred [27].

FIGURE 11. GRU architecture for predicting future traffic.

Information will transfer, in case of dot product
outcome is one.
Bidirectional LSTMs (BiLSTM)
In this research Bidirectional Long Short-Term Mem-
ory (BiLSTM) is also used to create fusion strategy.
While training a system, the BiLSTM model utilized
input data in both directions, which means at first in
right to left, then left to right. This process of twice
the operation of LSTM improves the performance and
accuracy of the BiLSTM model by removing a long-
term dependency [31]. Due to this in some cases model
perform better than LSTM,which is discussed later part
of this paper.
Gated Recurrent Unit (GRU)
In this research for fusion model building GRU is
also used. As GRU is a comparatively recent RNN
model introduced by Kyunghyun Cho et al. in 2014,
which has almost similar architecture compared to
LSTM.ButGRUmodels aremore convenient andmore
straightforward for training and implementation.
Typical GRU model architecture in Fig. 11. This
GRU architecture is modified from [32]. GRU neural
network architecture reduced computational due to its
existence of update and reset gates, which also enables
remembering the cell’s long-term states [33]. The reset
gate in GRU model works similarly to LSTM forget
gate. In GRU, hidden state output at time t can be
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FIGURE 12. Single layer regression with deep neural network.

calculated as below general expression:

ht = f (ht−1, xt) (18)

In equation (18), ht−1 is the hidden state status in
t − 1 time and xt input time series value at t time.
For explaining to the GRU NN model as shown in
architecture (Fig. 11) below equation can be used –

rt = σ (Wr · [ht−1, xt ]) (19)

zt = σ (Wz · [ht−1, xt ]) (20)

h̃t = tanh
(
Wh̃ [rt ∗ ht−1, xt ]

)
(21)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (22)

yt = σ (Wo · ht) (23)

In these equations (19), (20) and (23), Sigmoid function
is represented as σ , which output is (0,1). rt is
the updated, which works for determining stored
information quantity from one movement to another.
Reset gate zt determines the status of information of
the last state, whether the information is kept or erased.
The parameter which needs to train are denoted asWr ,
Wz, Wh, Wo [34], [31], [35], and [33].

F. REGRESSION WITH DEEP NEURAL NETWORK
The regression technique enables solving the task of the
critical problem of predicting continuous value based on
input [36], [37]. In this research, we focused on utilization
prediction after getting the predicted traffic based on the deep
learning model. In this case, Deep Regression can predict
utilization from eNodeB-wise forecast traffic (As shown in
System Model, Fig. 1) from the equation (15)

ŷ = w1x1 + w2x2 + · · · + wdxd + b (24)

Here, w is the weight of input traffic x1 to xd , and b is known
as bias or offset. Weight determines the influence of features
in the model [36], [37] and [38].

V. PERFORMANCE EVALUATION
Model Evaluation Criteria:
The mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE), and squared
correlation (R2) metrics are that considered as evalu-
ation criteria. The equations are used to determine the

FIGURE 13. Sequential model for LSTM, BiLSTM and GRU.

difference between actual and predicted data. [39] The
formula is describing as below in equations (25):

MSE =
1
N

n∑
k=1

(yt − xt)2

RMSE =

√√√√ 1
N

n∑
k=1

(yt − xt)2

MAE =
1
N

n∑
k=1

|yt − xt |

R2 = 1−

∑n
k=1 (yt − xt)2∑n
k=1 (ȳ− xt)2

(25)

Experiment results
The virtual environment setup is done with TensorFlow,
scikit learn, and some standard python libraries like
pandas, seaborn, etc. the system requirement is designed
with OS windows10, processor Ryzen 5 3600, RAM
32GB, GPURTX 3070. The parameter configuration for
creating the model and taking Multivariate input below
structure shows the best evaluation score.
For each model epochs size: 100, batch size: 128, Adam
optimizers with learning rate: 0.001 is considered. For
optimized and efficient training, some callbacks are used
like EarlyStopping: To stop training when a monitored
metric has stopped improving, ModelCheckpoint: To
save the Keras model or model weights at some
frequency and ReduceLROnPlateau: To reduce the
learning rate when a metric has stopped improving.
Fig. 13 proposed multivariate LSTM, BiLSTM and
GRU model for multiple time-series prediction with
5 features and 24-time steps for the prediction process
All site 890 nodes train through the designed model
and make predictions for the next 62 days. Evaluating
the model’s overall accuracy Evaluation Criteria are
combined and shown in Fig. 14. This plot is used to
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FIGURE 14. Regression plots of the models at the training phase.

TABLE 1. Performance of the model in the testing phase.

FIGURE 15. Regression plots of the Fusion Model.

find the predicted and actual values relationship. Also,
Table 1 presents the testing results of the proposed
model.
The observation from each node shows that out of
890 nodes in 65% nodes, BiLSTMprovides a high score,
24% in LSTM and 20% in GRU. As different node
traffic patterns are different, themodel forecast precision
was different. In this scenario, a fusion model was
approached where the best model was selected based
on training accuracy and minimal loss. The prediction
R2 score was 0.8034 for over all system from the
fusion model. The Fig. 15 and Table 2 show that the
proposed model’s experimental results in the testing
phase were optimal. Comparative analysis between the
descriptive statistics of actual and predicted values of all
node indices as outlined in Table 1 indicates that both
data sets retain considerably similar values. A sample
eNodeB’s Traffic patterns with different model and R2

value is also shown in the Fig. 16. The result confirms

TABLE 2. Performance of the fusion model.

FIGURE 16. Actual vs. Predicted traffic based on different Model.

that both actual and predicted data set have similar
basic nature and, therefore, can be concluded that the
proposed multivariate fusion model is capable of time-
series traffic forecasting.

VI. EXPERIMENTAL OUTCOME
With this system design and trained model, we have
predicted the next two-month traffic as well as forecast
utilization of that particular eNodeBs of the cluster. In this
Table 3,

∑
VolActual : Pre-actual Total traffic (GB) in the

last 2-month,
∑
VolPredict : Post-predicted Total traffic (GB)

in the Next 2-month, Count (PRBUActual): count of sample
utilization > 70% in the pre time frame,Count (PRBUPredict):
count of sample utilization > 70% in post time frame and %
indicate the % change of the pre and post traffic. Based on
that Table 3 shows the cluster-wise total traffic for the last
2-month time frame next 2-month time frame. Also, the table
outlined the count of sample utilization > 70% within the
respective time frame.

VII. OPTIMIZED LTE RADIO PARAMETER ESTIMATION
Several LTE parameters are mainly contributing to the
quality of services. Before proposing an algorithm for LTE
QoS parameter estimation, we need to discuss those key
parameters

1) PHYSICAL RESOURCE BLOCK
A resource block (RB) is the smallest unit consisting of
resource elements in the LTE air interface. One physical
resource block (PRB) spans 12 sub-carriers; each sub-carrier
is 15-kHz spacing corresponding to 180 kHz [39], [40].When
the scheduling algorithm uses full-PRB transmission, the
smallest time-frequency resource that can be scheduled to a
device is one PRB pair mapped over two slots RB; in the
normal CP length total 14 OFDM symbols corresponds to
over 12 sub-carriers as illustrated in Fig. 17.
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TABLE 3. Experimental outcome table.

• 1 RB = 12(Sub-carriers) × 7 (Symbols) = 84 Resource
Elements. (For Normal CP: 7 symbols)

• 1 RB = 12(Sub-carriers) × 6 (Symbols) = 72 Resource
Elements. (For Extended CP: 6 symbols)

2) CHANNEL QUALITY INDICATOR (CQI)
Channel Quality Indicator (CQI) Indicates the quality of the
carriers and reports sent from the UE to eNodeB. The LTE
contains 15 different CQI values ranging from 1 to 15, and
depending on the reports network transmit data with different
transport block size [39], [41].

3) BLOCK ERROR RATE
The ratio of erroneous blocks and the total number of blocks
indicate the Block error rate (BLER). The technique used to
detect errors in the transport block is CRC. If the calculation
does not give the desired results, the receiver will request
HARQ NACK for re-transmission. To ensure service quality,
90% successful transmission at the receiver end means the
typical BLER target should be 10% [42]. If the BLER target

FIGURE 17. Physical resource block the LTE air interface.

is failed to achieve, then more re-transmission might be
required, which causes more radio resource consumption.
Optimized and precious resource scheduling techniques
are required to maintain the targeted QoS benchmark
of maximizing throughput, experience fairness among the
different users, and reducing reduced Block Error Ratio [43].

A. PROPOSED ALGORITHM FOR QOS PARAMETER
ESTIMATION
We have proposed an algorithm for radio parameter estima-
tion based on predicted PRB utilization. As per the algorithm
in the initial step, each eNodeB capacity requirement
(Fig. 18) is estimated based on the assessment of 60 days
of predicted PRB utilization. If 70% sample of 60 days
eNodeB busy hour (NBH) is greater than or equal to 80%
PRB utilization(X). It is recommended for hard capacity
expansion with the implementation of Multibeam Cell Split
Solution [44], New Spectrum addition [45], and planning and
deployment of a new node [45], [46]. New node expansion
always triggers higher capital expenditures. So, it should be
the last option for maintaining QoS [47] if the PRB utilization
(X) lies between 70% ≤ X < 80%, three soft step-up
solutions will trigger according to the estimated parameter to
reduce the PRB utilization andmaintain the QoS. Actual PRB
Utilization will be assessed during the soft step-up solution.
Later in this paper, we have discussed why 70% and 80%
are considered thresholds for triggering action points for
Optimized QoS parameter estimation

Step up Solution 1: Adjustment of CQI Switch:
Downlink CQI adjustment, interactively compensates

for inaccurate CQIs reported by UEs, optimizes MCS
(Modulation and Coding Scheme) selection, and increases
throughput [41]. If the network has moderate or heavy
loads in the downlink, the downlink user-perceived rate will
increase by 1% to 3% after CQI adjustment Fig. 18(a) [26].

Script 1 (CQI Switch adjustment)
MOD CELLALGOSWITCH: LocalCellId=0, CqiAdjAl-

goSwitch = DlVarIBLERtargetSwitch-1 CqiAdjAlgoSwitch
= DlEnVarIblerTargetSwitch-1;
DlVarIBLERtargetSwitch:In Adaptive configura-

tion, The downlink target initial block error rate (IBLER) is
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FIGURE 18. Algorithm for predicted PRB Utilization based QoS Parameter Estimation, (a) CQI switch adjustment, (b) Resource block power
allocation, (c) Radio power allocation for LTE from GSM.

adaptively adjusted from a fixed configuration based on the
Transport Block Size (TBS) to improve spectral efficiency.
The higher the block size, the higher the throughput. In this
scenario, the eNodeB adjusts the target IBLER to 10% for
UEswith large packet services at non-edge locations and 30%
for UEs with small packet services at edge locations.
DlEnVarIblerTargetSwitch:In Enhanced Adap-

tive configuration, the downlink target IBLER is adaptively
adjusted from a fixed configuration based on TBS and as
well as CQI fluctuation. In this scenario, the eNodeB adjusts
the target IBLER to 5% and 10% for slightly fluctuated CQI
values. With heavily fluctuated CQI values, the target IBLER
is 10% and 30% [48].

Step Up Solution 2: PA and PB Power Allocation:
4G LTE RS RE Power (RSRP power) boosting depends

on ρB/ρA parameters Fig. 18(b). this value is determined by
many parameters, such as the max power of the RRU channel
(Pmax), the number of RBs of the cell Nrb, PA, PB etc. Below
describes the impact.

• The higher PA Implies, the lower RS power (ERS), the
smaller cell radius and the higher throughput can get.

• With changing PA, PB need to change as well to make
full usage of power.

TABLE 4. The cell-specific parameter for PB.

• The max value of ERS is determined by (Pmax) and PA.
• To configure RS power, first determine PA, then RS and,
PB is determined following the Table 4 (for 2T cells).

The following definition from 3GPP. 36.213 protocol:
TypeA: the PDSCH OFDM symbol without RS
TypeB: the PDSCH OFDM symbol with RS
EA: the power of one element in TypeA, inW
EB: the power of one element in TypeB, inW
ERS: the power of referenceSignal, in W
RS: referenceSignal = 10log (ERS ∗ 1000), in dbm
Pmax : the max power of RRU channel, inW
Nrb: the number of RBs in the cell
ρA = EA/ERS
ρB = EB/ERS
PA = 10log (ρA) = 10log (EA/ERS)

ρB/ρA = EB/EA
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TABLE 5. The cell-specific ratio ρB/ρA.

Script 2 (PA and PB Power Allocation):
MOD CELLDLPCPDSCHPA: LocalCellId=0,

PaPcOff=-3 dB; MOD PDSCHCFG: LocalCellId=0, Pb=1
PaPcOff: Indicates the PA to be used when PA adjustment
for PDSCH power control is disabled, DL ICIC is disabled,
and the even power distribution is used for the PDSCH [49].
Pb: Indicates the Energy Per Resource Element (EPRE)

scaling factor index on the PDSCH. The value of this
parameter and the antenna port control this scaling factor.

After executing script 2, PRB utilization (X) is expected to
reduce by 70%. But if it does not happen next script will be
executed.

Step Up Solution 3: Dynamic Radio Power Allocation
from GSM:

As per definition, Dynamic Cell Power Off is a BSC
feature [49] that enables power dynamically off or on the
TRXs (in GSM Cell) based on the traffic demand of the co-
coverage cell within a certain time frame. When LTE load
is high, some radio power allocates from existing GSM PA to
LTE PA through GSM TRX shutdown Fig. 18(c). In this way,
the LTE network can be boosted up to 20W PA power.

Dynamic Power Allocation:
SET GCELLDYNTURNOFF: IDTYPE=BYID,

CELLID=0, TURNOFFENABLE=ENABLE, SAMECVGC
ELLIDTYPE=BYID, SAMECVGCELLID=1, TURNOFF
CELLSTRTIME= [Time PRB Util>70%], TURNOFFCELL
STPTIME= [Time PRB Util<70%] TURNOFFENABLE: to
enable the Dynamic Cell Power
SAMECVGCELLIDTYPE: Index type of a co-coverage

cell. If the coverage area of a cell is under the coverage area
of another cell, the cell can be disabled during off-peak hours.
In this situation, another cell is considered as the co-coverage
cell of the cell.
TURNOFFCELLSTRTIME: Start time for dynamically

disabling a cell.
TURNOFFCELLSTPTIME: End time for dynamically

disabling a cell.
After executing script 3, PRB utilization still persists above

70% then we have no other option rather implement a long-
term solution with node expansion.

B. IDENTIFYING QOS BREAKDOWN POINT FROM PRB
UTILIZATION
The main objective of this sub-section is to identify the
quality of service or user throughput (User_TP) breakdown
point from the PRB utilization graph. This part is significant

FIGURE 19. User Throughput (User_TP) vs. PRB Utilization Graph.

to point out in different networks; based on the identified
threshold point network engineers can decide whether they
will move for step-up or long-term solutions (Fig. 19). We
have collected 890 eNodeB 120 days hourly PRB Utilization
and User Throughput (User_TP) data for regression plot
from a live operator network data. We found that when PRB
Utilization hits 70% and above, user throughput degraded by
50% (from 5 Mbps to 2.5 Mbps). 50% degradation means
severely impacted user experiences. Responsible engineers
must immediately trigger step-up solutions to reduce PRB
utilization and enhance user experience. Similarly, when
PRB utilization goes above 80%, we found that almost zero
user throughput means no QoS. This threshold point will
vary network-wise. We have considered reference live from
an LTE network configured in 1800 Mhz and per eNodeB
frequency bandwidth 10 Mhz.

Limitations: Apart from that, the proposed model has a few
limitations too. The model will perform well in any normal
day scenario. However, themodel’s performancemay slightly
degrade during any social gathering, when the number of
users of a certain place will increase massively compared
to a typical day. As well as, while designing the algorithm
for soft parameter tuning, we primarily focused on LTE
capacity enhancement. Due to this dynamic resource-sharing
technique from GSM to LTE, GSM networks may rarely
face resource constraints. This issue can be solved through
optimization techniques. In addition, computational power
needs to enhance with respect to increasing the number of
eNodeB.

VIII. CONCLUSION
This research innovatively devises a fusion model in a
combination of three deep learning algorithms for the most
granular level cellular network traffic prediction as a solution
of NP-hard optimization of user throughput maximization.
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In addition, a DTW-based self-organized map (SOM) makes
cluster mapping of different eNodeB time series data easy.
Besides that, considering the reference LTE network radio
configuration, the QoS breakdown threshold point is also
determined by correlating to the PRB Utilization graph,
which is 70%.

The accuracy of the proposed model is increased by
6.6− 7.0% using the Fusion Strategy in RNN and maintains
excellent R2 score i.e., 0.8034, which represents a very
precise prediction of network traffic volume. In the next level,
a rigorous parameter estimation algorithm was proposed for
triggering a dynamic capacity step-up solution two months
in advance with optimized radio power allocation based on
predicted LTE network traffic and PRB utilization. The pro-
posed algorithm for network capacity optimization is another
novelty of this research, that would help network engineers to
plan and execute soft parameters before the quality of service
(QoS) degrades compared to the benchmark. Thus, customers
will be less sufferer from capacity expansion lead time from
the MNO side.

One drawback of this model is that, the proposed
deep learning model may require additional computational
resources to predict traffic for a large number of eNodeB
setups or public gathering events. Apart from that, lower
technology (GSM) get less priority while designing the
model to allocate more radio resources on demand-
ing higher technology (LTE). Additional optimization
effort (i.e., traffic shifting to neighbor cell) may easily
resolve GSM rare case resource allocation issue (if any).

In the future, we will address the prediction of traffic
peaks during social events of a particular geographical area
or eNodeB serving area by adopting a Restricted Boltzmann
Machines (RBM) with Conditional Random Fields (CRFs).
In addition to that, we will also focus on smooth dynamic
resource allocation in heterogeneous complex networks
system, including GSM, LTE, 5G, and beyond technology of
a particular period based on forecasted traffic and customer
demand.
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