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ABSTRACT Automated age estimation from face images is the process of assigning either an exact age or
a specific age range to a facial image. In this paper a comparative study of the current techniques suitable
for this task is performed, with an emphasis on lightweight models suitable for embedded implementation.
We investigate both the suitable modern deep learning architectures for feature extraction and the variants
of framing the problem itself as either classification, regression or soft label classification. The models are
evaluated on Audience dataset for age group classification and FG-NET dataset for exact age estimation.
To gather in-depth insights into automated age estimation and in contrast to existing studies, we additionally
compare the performance of both classification and regression on the same dataset. We propose a novel
loss function that combines regression and classification approaches and show that it outperforms other
considered approaches. At the same time, with a lightweight backbone, such an architecture is suitable for

implementation on embedded devices.

INDEX TERMS Age estimation, computer vision, deep learning, face detection.

I. INTRODUCTION

Automated age estimation (AAE) from face images can be
defined as the process of assigning either an exact age or a
specific age range to a facial image. AAE has a wide scope
of applications in human-computer interaction, security sys-
tems, biometric systems, advertising industry etc. Therefore,
age estimation has become a topic of interest for both industry
and academic community. In spite of a large body of work
dealing with facial age estimation, it is still a challenging
problem, as the aging process significantly differs from one
person to another. This is caused by internal factors such as
genes, changes in the shape and the size of the face, but also
by external factors like lifestyle and living conditions of an
individual [1]. It has been shown [2] that in some cases it is
very difficult to accurately infer the age of a person visually
even for a human. While automated age estimation methods
that approach or even surpass human performance have been
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proposed, there is still significant room for improvements,
especially in unconstrained conditions [3], [4]. Several exam-
ples that have proven difficult to correctly classify in this
study are shown in Fig. 1, along with the closest model
predictions and ground-truth labels.

A typical pipeline of a state-of-the-art age estimation sys-
tem consists of three steps: (i) pre-processing, including
face detection and normalization, (ii) feature extraction, and
(iii) applying the age estimation algorithm (Fig. 2). Regard-
ing feature extraction, AAE systems can be divided into
two groups: (i) systems that use hand-crafted features and
(ii) systems based on deep learning. The systems that use
hand-crafted features work reasonably well on images taken
in constrained conditions (i.e. single face, frontally aligned,
simple background etc.) [1], [5]. However, with recent devel-
opment of in-the-wild datasets, hand-crafted methods have
increasingly been surpassed by deep learning models for
feature extraction. Deep learning models, especially convo-
lutional neural networks (CNNs), have proven themselves
to be more robust to noise, variations in appearance, pose
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FIGURE 1. Examples of erroneous age estimation.

and lighting present in unconstrained datasets [6]. The prob-
lem of automated age estimation can be broadly framed
either as a classification problem or as a regression problem
[1], [7]. When framing age estimation as a classification prob-
lem, the classifier predicts an age group, e.g. ““35 to 39 years
old”. Classification with soft labels is another possibility,
in which class assignments are not binary. When framing age
estimation as a regression problem, the goal is to predict the
exact age as a number, e.g. “29 years old”. Various hybrid
approaches of classification and regression have also been
proposed [7].

In this paper, we perform a comparative study of the current
techniques suitable for the automated age estimation task,
with an emphasis on running age estimation on embedded
devices. Moreover, the intended application is adapting mul-
timedia content to the age of a viewer, which does not require
high age estimation accuracy. We investigate both the suitable
modern deep learning architectures for feature extraction and
the variants of framing the problem itself as either classifica-
tion, regression or soft label classification. To gather in-depth
insights into automated age estimation and in contrast to
existing studies, we additionally compare the performance of
both classification and regression on the same dataset. As the
main contribution, we propose a novel loss function defined
as a linear combination of regression and classification losses,
where instead of manually selecting the linear coefficients,
they are learned from data as trainable parameters of the
model. This is achieved by incorporating constrains related
to the coefficients into the loss function using a modifica-
tion of the augmented Lagrangian formulation. We show
that this formulation of loss outperforms all other consid-
ered approaches and achieves competitive results on FG-NET
dataset. At the same time, with a lightweight backbone, our
system is suitable for implementation on embedded devices.
The new formulation of loss function does not affect the
inference complexity, as it is used only for training.

Il. RELATED WORK

Automated age estimation has been an actively researched
topic in recent years, as detailed in a number of comparative
surveys [3], [4], [6], [7], [8], [9], [10], [11]. While earlier
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works [1], [5] predominately focused on explicitly modeling
the aging process using various computer vision techniques
and hand-crafted features, current age estimation methods
typically apply some form of deep learning. For example,
in an early application of CNNs, Levi et al. [12] show how
they outperform contemporary state-of-the-art by utilizing a
neural network with only three convolutional and two fully
connected layers. Wang et al. [13] propose using a combina-
tion of feature maps obtained at different layers of a CNN and
manifold learning. A comparative analysis of several recent
CNN architectures is presented in [8]. The authors also dis-
cuss the benefits of transfer learning, as well as the influence
of noise in the images, variations in facial expressions and
pose, ethnicity and other factors on the performance of the
age estimation.

The performance of current automated age estimation
methods has been shown to be equal to or better than human
performance. For example, Han et al. [2] provide an exper-
iment that measures the human accuracy of estimating the
age from an image. On the FG-NET dataset [14], [15], the
reported mean absolute error (MAE) achieved by humans is
4.7 years, while on the PCSO dataset [16] the MAE is 7.2.
The authors show that their proposed hierarchical approach
is capable of performing equally or better than humans on
the age estimation task.

A seminal paper that uses deep learning for age estima-
tion is the work of Rothe et al. [17] that introduces the
Deep EXpectation (DEX) approach. In the first stage of
their system, faces are detected and rotated to a normalized
position, then the bounding box around them is extended
by 40% to include more information, and the normalized
face images are scaled to a standard size. The pre-processed
face images are then fed to a CNN for age prediction. The
DEX system uses the VGG-16 architecture [18] pre-trained
on ImageNet as the feature extraction backbone. Using the
same feature extractor, the authors explore both the regression
and the classification approach to age estimation. During the
training for regression, the authors noted instabilities and
re-phrased the regression problem as classification into one
year wide age ranges. In this re-phrased approach the network
is trained for classification, but inference produces a single
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value obtained by computing the expectation over all classes,
taking into account the mean age values of the classes and
the corresponding probabilities computed by the network.
In the case of classification, the predicted age range corre-
sponds to the output neuron with the highest probability. In all
the experiments, the network is initialized with ImageNet
weights, then further pre-trained on the IMDB-WIKI dataset
introduced in the same paper, and finally trained on the target
dataset. The authors test their system on multiple datasets,
both for apparent and for real age estimation, and report mean
average error of 3.09 years on the FG-NET dataset (exact age
estimation) and the accuracy of 64% on the Adience dataset
(classification into 8 predefined age groups). The authors also
report the so called 1-off accuracy of 96.6%, which treats the
neighboring age ranges as correct prediction.

To increase the accuracy of age estimation, various com-
plex and non-standard models have been proposed. For exam-
ple, Zhang et al. [19] propose several variants of models
called Residual network of Residual networks (RoR) and
achieve the state-of-the-art classification results on the Adi-
ence dataset with the classification accuracy of 67.34% for
the best performing model. A follow-up work [20] further
increases the model complexity by adding a visual attention
mechanism based on LSTM units. Rodriguez et al. [21] also
use attention mechanism to find the most informative image
regions for the task of age estimation. Their attention module
is based on the VGG-16 model trained to predict attention
grid, which is then used to weight feature maps obtained from
the corresponding image patches. Garain et al. [22] propose
gated residual attention network, a deep learning model for
gender and age estimation. They approach the age estimation
problem as a combination of classification and regression.
Guehairia et al. [23] propose a complex pipeline consisting
of feature extraction using pretrained models for facial age
estimation followed by a series of transformations in feature
space for dimensionality reduction. They use deep random
forest classifier to obtain final age estimation.

When age estimation is framed as standard classifica-
tion, the classes are considered independent. However, some
authors utilize the fact that aging is smooth and gradual
and the age labels are ordered. Chen et al. [24] propose
ranking-CNN, a CNN-based framework consisting of a series
of basis binary CNNs, each trained to distinguish whether
the age is less than or greater than a given threshold. The
outputs of these basis CNNs are aggregated to obtain the
final age estimation. Cao et al. [25] propose the Consistent
Rank Logits (CORAL) framework, an architecture-agnostic
framework with theoretical guarantees for rank monotonic-
ity and confidence score consistency. They demonstrate that
their method outperforms the standard cross-entropy loss that
does not utilize the rank ordering. Shin et al. [26] propose
an approach called Moving Window Regression (MWR).
In MWR, training and test images are represented in fea-
ture space, obtained by VGG-16-based encoder network, fol-
lowed by several additional fully connected layers. Each test
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image is then compared to two reference images in feature
space, producing a so-called relative rank (or p-rank) — a
numerical value indicating the relative position of the test
image between the two reference images according to con-
sidered criterion (e.g. estimated age). The process is repeated
iteratively, by selecting new test image pair in each iteration
within the search window centered around the previous rank
estimate, to refine the estimated age rank, until the conver-
gence, i.e. until the estimated rank is at the center of the search
window.

Geng et al. [27] propose modeling face images with a label
distribution, and introduce two algorithms for learning auto-
mated age estimation from label distributions. Diaz et al. [28]
propose a general framework for converting data labels into
soft probability distributions suitable for ordinal regression,
which addresses problems where class labels follow some
inherent ordering, such as in age estimation. In an experiment
with age estimation on the Adience dataset, they demonstrate
that using soft labels improves the accuracy for about 2% over
baseline. Antipov et al. [29] analyze optimal choices for CNN
training for age estimation, including target age encoding,
loss function, CNN depth, whether pre-training is performed
or not and whether the problem is framed as mono-task or
multi-task. They also show that label distribution encoding
seems to be a better choice for automated age estimation
CNNs than single number encoding. Pan et al. [30] propose
adaptive label distribution learning by complementing the
softmax loss with two additional loss functions: the mean loss
which penalizes the deviation of the predicted distribution
mean from the ground-truth age, and the variance loss which
promotes narrow distributions. This approach is known as
Mean-Variance loss. A similar approach is proposed recently
by Zhao et al. [31]. They also combine softmax and mean
loss, while the variance loss is substituted with the residue
loss that penalizes the residue errors in the tails of esti-
mated age distribution after the top-K pooling operation.
Li et al. [32] observe that the Mean-Variance loss does not
enforce unimodality of the learned distribution and propose
a new variant called Unimodal-Concentrated loss. The uni-
modal loss is used instead of softmax loss and requires that
the learned distribution values get smaller at larger distances
from the ground truth age, and thus promotes unimodality.
The concentrated loss simultaneously penalizes the deviation
of the estimated age from the ground truth and promotes small
variance of the predicted distribution.

While most of the above discussed approaches aim pri-
marily to improve age estimation performance, some other
authors focus on lightweight compact models suitable for
use on more modest hardware resources, while trying not
to sacrifice too much of the age estimation accuracy. Zhang
et al. [33] propose an extremely compact and efficient regres-
sion model named Cascade Context-based Age Estimation
(C3AE). The C3AE model has 1/9 parameters compared
to MobileNets/ShuffleNets and 1/2000 of the parameters of
VGG-16, while achieving performance similar to the DEX
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FIGURE 2. Age estimation pipeline.

model on the FG-NET dataset. Deng et al. [34] propose fusing
age, gender and race features for more precise age estimation.
They argue that the aging process is influenced by gender and
race, and more precise age estimation can be obtained when
gender and race information is present. They use a hybrid
regression-ranking estimator to obtain the exact age values.
The proposed model is relatively compact and suitable for use
on mobile and embedded devices. Greco et al. [35] propose
an effective training method for age estimation CNNs based
on knowledge distillation. The goal of the method is to first
learn age estimation using a more complex neural network
and then distill the knowledge to a smaller, more compact
model.

In our work, we are looking for a reasonably small model
suitable for restricted hardware resources and embedded
implementation, while providing state-of-the-art age estima-
tion accuracy. Moreover, we try to use standard off-the-
shelf models as building blocks in order to benefit from
the availability of pre-trained weights obtained on large
image classification datasets. We combine several of the
ideas described above, such as representing classes with
soft labels, expressing regression by computing expected
value over softmax outputs, and penalizing the deviation of
the mean value of the model output from the ground truth
age [30]. Our best-performing model combines soft-label
classification with regression through a new custom loss
function.

lll. METHODOLOGY

In this work we divide the age estimation pipeline into three
phases as illustrated in Fig. 2. As part of the preprocessing,
faces in the input image are detected and aligned. Then, each
of the cropped face images is passed through a convolu-
tional neural network responsible for facial feature extrac-
tion. Finally, one of the considered algorithms is applied to
estimate either the exact age or the corresponding age group.

A. PREPROCESSING

The preprocessing stage starts with detecting faces in the
input image using a model based on a convolutional neural
network from dlib library [36]. Then, the image is aligned
based on the located facial keypoints (also from dlib) with
respect to the eyes’ positions. The image is rotated around the
center between the eyes so that the eyes become horizontal,
and the face is cropped with the size of detection rectangle.
Finally, the face image is standardized to have zero mean and
variance one and scaled to 256 x 256 pixels (Fig. 3).

VOLUME 11, 2023

Age group

FIGURE 3. Input image preprocessing.

B. FEATURE EXTRACTION WITH CNN

We consider several standard CNN architectures and take
their convolutional part for feature extraction. Depending on
the variant of the age estimation task (e.g. classification or
regression), we add the corresponding head consisting of two
fully connected layers. The first dense layer with 256 neu-
rons is followed by batch normalization and dropout (with
probability 0.25). The last dense layer has the corresponding
number of outputs.

The considered architectures are the following:

e VGG architecture [18]. It has several configurations
with the same architectural pattern that differ only in
network depth, varying from 11 to 19 layers. All con-
volutional layers have kernel size 3 x 3 with stride
of 1. In this work, we use the convolutional part of
the VGG-16 architecture (13 convolutional layers) as
feature extractor.

o GoogleNet architecture [37]. The network consists of
22 layers and it is based on Inception modules. Features
in these modules are obtained by combining convolu-
tional layers with different kernel sizes. This is based on
the idea that convolution filters of different sizes would
handle objects at multiple scales better. In addition,
GooglLeNet has two auxiliary classifiers used exclu-
sively during training. The purpose of these additional
classifiers is to prevent the vanishing gradient problem
and to provide regularization.

« ResNet architecture [38]. In that model a technique
called skip connections is used to solve the vanishing
gradient problem that appears when training very deep
architectures. The model is composed of blocks of con-
volutional layers with the addition of residual shortcut
connections. In this work, the ResNet50V?2 architecture
is used as a feature extraction backbone.
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« MobileNet [39] is a family of architectures proposed
specifically with the efficiency of execution on mobile
and embedded hardware in mind. The basic idea, intro-
duced with the first generation of the model is the use
of depthwise separable convolutions — the regular con-
volutions are replaced by a series of two computation-
ally lighter convolutions: the spatial 3 x 3 convolution
applied to each input channel separately, followed by a
1 x 1 cross-channel convolution. The MobileNetV?2 [40],
used in our experiments, improves the basic building
block module by using linear bottlenecks and inverted
residuals.

C. AGE ESTIMATION ALGORITHM

We experiment with both age group and exact age estimation.
For exact age estimation, we consider three models: (i) regres-
sion, (ii) fine-grained classification with soft labels, and
(iii) our novel model with custom loss.

1) AGE GROUP CLASSIFICATION

For age group estimation, images are labelled with one of
the age groups. In our experiments the Adience dataset is
used, that defines eight age groups (0-2, 4-6, 8-13, 15-20,
25-32, 38-43, 48-53, 60+), so that we use a classification
model with eight output neurons, and softmax activation
function. Weights of the classification model are learned
by optimizing the categorical cross-entropy loss. Categorical
cross-entropy measures the difference between two probabil-
ity distributions and can be defined as:

| Noc
L=—522 ylogp, (1)
i=1 j=1
where N is the total number of samples, C is the number of
classes, y is ground truth distribution vector (one-hot) and p
is probability vector obtained by the output of the model.

2) REGRESSION MODEL

For the regression model, images are labeled with the exact
age of a person. The model backbone is the same as in
the classification model, but now the model has only one
output neuron, with ReLU activation function. The model
parameters are learned by optimizing the mean squared error
(MSE) loss function defined as:

1
- _ PRV
L=y E] i — 1) @

where N is total number of samples, y; the estimated age and
t; the ground-truth age for the example i.

3) FINE-GRAINED CLASSIFICATION WITH SOFT LABELS

Apart from estimating the exact age from images using a
regression model with one output, it can also be done using
a discrete classification model. By increasing the number
of output classes (i.e., shrinking the age ranges), the dis-
cretization error gets smaller. In [17], output layer of the
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model has 101 output neurons corresponding to the ages
from O to 100. Final prediction can be made as an argmax
of the output layer, or it can be calculated as the expected
value of the output layer. We implemented a similar approach,
with the difference that instead of one-hot encoded labels
used in [17], we use soft labels [28]. The motivation for
introducing soft labels is the fact that classes in this problem
are not independent, but they are ordered — a misclassification
into a neighboring age class should be penalized less than a
larger error. One way of achieving this is by forming ground
truth vectors by assigning non-zero values to neighboring
classes. We adopt the ground truth label vectors computation
from [28]:
e*¢("t»"[)

T SK o)

where ¢(r;, r;) is a metric loss function that penalizes the
distance between the true value r; and the class value r; and
K is the number of classes. We use the squared difference of
class values as function ¢. Final prediction is calculated as
the expected value of the softmax layer outputs:

Vi VrieY 3

K
Yo = D TPk @
k=1
where py are softmax output probabilities, and ry are discrete
years corresponding to each class k. For training, the standard
cross-entropy loss is used (Eq. 1).

4) HYBRID APPROACH WITH CUSTOM LOSS

The soft-label classifier described above addresses the ordi-
nality of the classes in the age estimation problem. However,
the shape of the ground truth ““distribution” is somewhat
arbitrary and not necessarily optimal for learning the model
parameters. Moreover, the signal of the ground truth exact age
is weakened compared to one-hot classification, as well as to
regression. Therefore, we propose a new hybrid approach,
which combines (i) the cross-entropy loss of predicted and
ground truth soft labels (Eq. 1) with (ii) mean absolute error
(Eq. 5) between the real age and the age computed from
output probabilities.

1 N
L=ﬁ;|yi—ri| Q)
=

A similar approach is presented in [30], where a classifi-
cation model with one-hot encoded labels is trained. There,
besides maximizing the probability of the ground truth class,
the loss function penalizes the difference between the mean
value of the model output and the ground truth age, as well as
the variance of the estimated distribution (for the purpose of
obtaining a narrow output distribution).

We propose to combine the fine-grained classification with
soft labels approach and the regression through a linear com-
bination of the cross-entropy loss (L;) and the mean abso-
lute error loss (L»). Instead of fixing the linear combination
coefficients « and 8, we propose to define them as additional
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model parameters and learn them from data. The combined
loss function can be defined as:

L=o’L; + ,32L2 6)
with the constraint on « and 8:
o+ pr=1 @)

The learnable parameters « and 8 are used squared in order
to prevent negative loss contribution. One way to include the
constraint (7) into the optimization procedure is to add it to
the loss function as an additional regularization term using
the Augmented Lagrangian [41]:

L =d’L + B’L,
i (a2 Ty . 1) + s (a2 Ty . 1)2 (8)

where (11 and pj are hyperparameters of the model. The first
three terms of the function cause > and A2 values to approach
zero, while the last term penalizes the deviation from the
constraint (7).

However, this formulation exhibits one obvious weakness:
if the values of one loss component have significantly larger
values than the other, the corresponding coefficient will tend
to become zero in the optimization process. This situation
would eliminate the possible benefits of combining the two
different approaches. Therefore, we introduce additional two
terms that penalize approaching a or 82 values to zero, and
obtain the final loss function:

L = oLy + B’Ly + 11 (oz2+,32 - 1)

12 (a2+/32 - 1)2 + 13 (1 - 042)2 + 14 (1 — ﬂz)z
©)

where 141, 2, w3 and w4 are hyperparameters of the model.

We choose an appropriate set of hyperparameter values
based on analysis of their relative relations and with respect to
the magnitudes of the loss functions, as well as experimental
validation. We follow [41] in their suggestion that o should
be significantly greater than 1. Furthermore, by looking
at the values of the loss functions during training, we con-
cluded that the values of u3 and 4 should be somewhere
in between the values of x| and w7 in order to influence the
loss function in a meaningful way, defining thereby the rela-
tive relationships between the four hyperparameters. Finally,
we performed a series of experiments with different combi-
nations of values of the four hyperparameters, that confirmed
our qualitative analysis. As an illustration we show training
progress for parameters o> and 82 for two characteristic sets
of hyperparameters in Fig. 4. The experiments also show that
the final age estimation performance is quite similar for dif-
ferent values of the hyperparameters, as long as they are kept
in meaningful ranges. This indicates that the loss function
is relatively robust with respect to the hyperparameter valus.
However, in the experiments, the best results were obtained
for the combination 1 = 0.1, uy = 200, u3 = 10, ug = 10.
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FIGURE 4. Training progress for parameters «2 and g2 for the chosen
hyperparameters (left) and the insufficiently high values of the
hyperparameters p3 and 4 (right).

IV. EXPERIMENTS AND RESULTS

Our goal is to investigate which approach and model are
best appropriate for age estimation. We prefer lighter models
suitable for embedded implementation. Our intended appli-
cation is adapting multimedia content to the age of a viewer,
so that even a rough estimation is satisfactory. To that end,
we explore two main problem formulations: age group esti-
mation vs. exact age estimation, employing several typi-
cal CNN architectures of different complexity, and different
approaches to the age estimation problem.

We evaluate the considered methods on two typical
datasets: Adience for age group estimation and FG-NET for
exact age.

To reduce the risk of overfitting, data augmentation tech-
niques are applied during the training of the models. Input
images (obtained from the preprocessing step) are first scaled
to 256 x 256 and then randomly cropped to 227 x 227 and
randomly flipped horizontally, similarly to [12] and [28].
For testing, central crop of size 227 x 227 is taken. Adam
optimizer is used for training of the models. Initial learning
rate is set experimentally to 0.001 for all models, and reduced
by factor of 0.1 if the loss on the validation set does not
reduce for consecutive five epochs. Also, early stopping is
applied if the result on the validation set does not improve for
consecutive ten epochs. The models are trained for maximally
100 epochs with batch size 64.

All experiments have been performed on a standard PC
with Intel i7 processor and NVIDIA RTX 2080Ti GPU.
However, the final model is intended to be used on a variety
of embedded platforms, ranging from embedded PCs without
a GPU to specialised embedded computers with a dedicated
GPU such as NVIDIA Jetson family.

A. DATASETS

There are many age-related datasets tailored to various age
estimation tasks (real and apparent age estimation, exact age
or age group estimation). A comprehensive overview can be
found in e.g. [4]. To train and evaluate our models, we used
three datasets: IMDB-WIKI for model pretraining, and two
typical benchmark datasets: FG-NET and Adience for final
training and evaluation.
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o IMDB-WIKI [17] is the largest publicly available
dataset with age annotations, containing images taken in
unconstrained conditions. It contains 523,051 images of
20,284 subjects with ages ranging from 0 to 100 years.
Images were automatically crawled and labelled so that
there are many incorrect or missing labels. As we use
this dataset for pretraining purposes only, we decided
to improve the quality of the dataset by using a sim-
ple filtering technique: images with age annotations
obviously erroneous (age under 0 or above 100 years)
are removed, as well as the images with the pro-
vided face detector scores indicating that face detection
was not unique (either none or multiple faces were
detected). The cleaned version of the dataset contains
221,641 images.

o FG-NET [5], [15] is a publicly available dataset con-
taining 1,002 images of 82 different subjects with ages
ranging from O to 69. Each image is labeled with the
exact age of the person in years. Images were collected
by scanning photographs of subjects found in personal
collections, so it contains variations in head poses, facial
expressions, and illumination. For evaluation on the
FG-NET dataset, we follow the widely used leave-one-
person-out (LOPO) protocol [15].

o Adience [42] is a collection of images captured in
real, unconstrained conditions. As the source of images,
Flickr albums were used, so that noise is present in
the images and there are variations in appearance,
pose and lighting. The dataset contains 26,580 images
of 2284 individuals. Images are labeled with one of
eight age groups: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43,
48-53, 60+. For evaluation, the 5-fold cross validation is
applied, using the folds prepared by the authors of the
dataset.

During age group estimation experiments, we observed
that in the pretraining dataset IMDB-WIKI) some age groups
are significantly underepresented (age groups 0-3, 4-7,
8-13 represent less than 2% of the dataset). We tried to
alleviate that problem using several standard procedures:
oversampling underrepresented classes, undersampling over-
represented classes, weight balancing, and focal loss [43].
None of those approaches to pretraining improved accuracy
on Adience dataset so we decided to extend the pretraining
dataset with additional images for underrepresented classes
collected from additional face datasets (UTKFace, AgeDB
and APPA-REAL). This extension improved the accuracy
on Adience, so for the rest of the experiments the extended
dataset was used for pretraining.

B. EVALUATION MEASURES AND PROTOCOLS

We evaluate two age estimation settings: the exact age and
the age group estimation, for which we use two different
measures.
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For exact age estimation the mean absolute error (MAE) is
used:

1 n

MAE = ; |y — v (10)

where n is the total number of samples, y; is the ground truth
age and y,, is the estimated age.

Another often used performance measure for exact age
estimation is the so-called cumulative score, which represents
the classification accuracy for different allowed deviations of
the estimate from the ground truth age. That allows to display
the performance as a graph, giving a better insight into the
estimator behavior (cf. Fig. 7). Sometimes only a single value
from the graph is given, usually the cumulative score for error
within 5 years — CS(5).

Age group estimation is evaluated by accuracy:

Acc = L (11)
n

where 7 is the total number of samples and n7 the number of
correctly classified samples.

Considering the task at hand, the classification accuracy is
not very informative since it does not take into account the
amount of estimation error in the case of misclassification.
For some applications, a misclassification into a neighboring
class could be acceptable. Therefore, the so-called /-off mea-
sure is used, representing the accuracy when the classification
into a neighboring class is considered correct.

The age estimation algorithms are usually evaluated using
some variant of cross-validation. The Adience dataset has five
prepared subject-exclusive folds that are used for standard
5-fold cross validation [42]. Each fold is used for validation,
while the remaining four are used for training, and then the
average score is reported, together with the standard devi-
ation. The FG-NET dataset is rather small (1002 images,
82 subjects), so that we follow the leave-one-person-out
(LOPO) cross validation protocol [14], [15].

C. AGE GROUP ESTIMATION EXPERIMENTS

In the first set of experiments we applied several com-
mon backbones (GoogLeNet, VGG-16, ResNet50V2,
MobileNetV2). For all experiments we add the same classifi-
cation head having 8 output neurons as dictated by Adience
age groups. Following good practices described in [17],
we pretrain our models on IMDB-WIKI. For pretraining,
we split the dataset randomly in the ratio of 80:20 for training
and validation. Here we also try to explore the effects of
initializing the pretraining backbone with ImageNet weights,
compared to random initialization.

The results (Table 1) show that all considered architec-
tures (with suitably tuned hyperparameters) achieve similar
results, regardless of the model complexity and even of the
initialization. The results are similar to other state-of-the-
art approaches, but somewhat worse (Deep Attention [21]
achieves 61.8%, DEX [17] 64%, and Deep RoR [19] 67.34%
accuracy).
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TABLE 1. Results on adience dataset.

Model (initialization) | Adience accuracy (%) | 1-off | Parameters
ResNet50v2 (random) 58.6 (x4.7) 93.8 (1.4) 24.26M
ResNet50v2 (Imagenet) 58.9 (#4.3) 93.3 (x1.2) 24.26M
GoogLeNet (random) 57.3 (#4.0) 94.0 (£4.4) 8.5M
GoogLeNet (Imagenet) 59.7 (#4.1) 94.3 (£5.0) 8.5M
VGG-16 (random) 58.0 (£5.3) 93.1 (£1.7) 27.6M
VGG-16 (Imagenet) 59.4 (+4.1) 92.9 (£1.6) 27.6M
MobileNetV2 (random) 60.0 (+4.8) 94.1 (£1.2) 2.6M
MobileNetV2 (Imagenet) 61.1 (+3.9) 94.9 (+1.3) 2.6M
Deep Attention [21] 61.8 (£2.1) 95.1 (20.03) >138M
DEX [17] 64.0 (+4.2) 96.6 (+0.9) 138M
Deep RoR [19] 67.34 (+3.56) 97.51 (+0.67) -

Real age: 8-13
Estimation: 8-13

Real age: 60+
Estimation: 60+

Real age: 25-32
Estimation: 25-32

Real age: 38-43 .
Estimation: 38-43

Real age: 0-2
Estimation: 0-2

Real age: 15-20
Estimation: 15-20

FIGURE 5. Examples of images with correct age group predictions on
Adience dataset obtained by the MobileNet-based model.

Still, the 7-off measure (almost 95%) shows that such an
approach can be used for rough age estimation in our target
application. Since we aim the execution on embedded hard-
ware, we prefer a lighter model such as MobileNet, which
moreover obtains the best accuracy in our experiments. Some
examples of age predictions obtained by the MobileNet-based
model are shown in Fig. 5 and Fig. 6.

D. EXACT AGE ESTIMATION EXPERIMENTS

For exact age estimation the three models described in
section III-C are compared on FG-NET dataset, using LOPO
protocol. For all exact age estimation experiments we chose
(i) MobileNetV?2 architecture because it achieved the best
results on the age group estimation task, while being the light-
est model, and (ii) ResNet-50V2 as a representative of large
capacity models. The obtained results are given in Table 2,
together with a few state-of-the-art results.

The table shows that performance of our hybrid model
with custom loss is better than both regression and classi-
fication with soft labels, regardless of the applied feature
extraction backbone. Moreover, the lighter model performs
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Real age: 60+
Estimation: 38-43

Real age: 38-43
Estimation: 8-13

Real age: 8-13
Estimation: 15-20

FIGURE 6. Examples of images with wrong age group predictions on
Adience dataset obtained by the MobileNet-based model.

TABLE 2. Results on FG-NET dataset.

Model | FG-NET MAE (LOPO)

Regression — MobileNet 2.92 (£1.36)
Regression — ResNet 2.77 (£1.16)
Soft labels — MobileNet 2.67 (£1.39)
Soft labels — ResNet 2.55 (1.37)
Custom loss — MobileNet 2.40 (x1.34)
Custom loss — ResNet 2.46 (x1.44)
DEX [17] 3.09
Age difference [44] 2.80
Mean-Variance Loss [30] 2.68
C3AE [33] 2.95 (£0.17)
AL-RoR-34 [20] 2.39
Deng et al. [34] 2.59
Guebhairia et al. [23] 3.05
Adaptive Mean-Residue Loss [31] 3.61
Moving Window Regression [26] 2.23

better than the more complex one, further encouraging our
intention to use it for embedded application. In comparison
with other state-of-the-art models, our model performs very
competitively. The obtained MAE is close to that of the
best performing Moving Window Regression approach [26],
while our model is significantly simpler. Their model is based
on VGG-16 backbone, followed by fully connected layers
and iterative MWR process for ordinal regression, while our
model uses MobileNetV2, which is much more appropriate
for embedded platforms. It is worth noting that our loss
function modification does not influence the inference com-
plexity. Some examples of age predictions obtained by our
hybrid approach are shown in Fig. 8 and Fig. 9.
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FIGURE 7. Cumulative score graph for MobileNet-based model with
custom loss on FG-NET dataset.

Real age: 16
Estimation: 15.02

Real age: 2
Estimation: 1.90

Real age: 37
Estimation: 37.53

Real age: 25
Estimation: 26.70

Real age: 61
Estimation: 59.38

Real age: 4
Estimation: 3.47

FIGURE 8. Examples of images with small age estimation errors on
FG-NET dataset obtained by the MobileNet-based model.

Real age: 3
Estimation: 9.07

Real age: 18
Estimation: 30.19

Real age: 61
Estimation: 47.10

FIGURE 9. Examples of images with large age estimation errors on
FG-NET dataset obtained by the MobileNet-based model.

To get some more insight into the performance of our
hybrid model with MobileNet backbone, we show the
cumulative score graph (Fig. 7). We can see from the
graph that CS(5) = 87.3%. For comparison, the best
performing Moving Window Regression approach obtains
CS(5) =91.1%.
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TABLE 3. Classification results on FG-NET dataset.

Model | Accuracy (%) | 1-off

MobileNetV?2 classification 70.3 (£15.6) 96.0 (£7.4)
MobileNetV2 regression 62.5 (x14.1) 97.8 (4.8)
MobileNetV2 custom loss 73.7 (x15.1) 97.6 (£6.9)

E. COMPARING EXACT AGE WITH AGE GROUP
ESTIMATION

In previous two sections we tried to evaluate the capability of
a light convolutional architecture for age estimation task in
order to select the most appropriate approach for our applica-
tion. However, the two problem formulations (age group vs.
exact age) are tested on different datasets and with different
quality measures, so that it is still difficult to compare the
results. While 61% accuracy obtained on age group estima-
tion task seems modest, the /-off measure of 95% gives a
much more optimistic view having in mind that we need only
a rough age estimation. On the other hand, the results with
exact age estimation approach (MAE of 2.5 years, which
is current state-of-the-art on FG-NET dataset) seems very
promising. However, in order to get a better insight, it would
be interesting to apply both approaches to the same dataset.
One way to do that would be to apply an exact age estimator to
the age group estimation task: the exact age estimate could be
simply put into the corresponding age group, thus obtaining
classification.

Since Adience dataset does not have exact age labels,
we cannot use it for training the exact age estimator. There-
fore, we adjusted the FG-NET dataset by adding the age
group annotations using the same groups as in Adience, and
used it to train our age group classifier. Then we compared
the classification performance of the age group classifier with
classification based on exact age estimation. We present only
the results for MobileNet based models, which are best suited
for our application.

The results show that classification model performs better
on FG-NET dataset than on Adience, i.e. we can conclude
that FG-NET can be considered an easier dataset. It is not sur-
prising since Adience images are taken in less restricted con-
ditions (‘“‘in-the-wild”’), while FG-NET contained scanned
document photographs. Regarding the considered methods,
simple regression model performed worse on the classifica-
tion task than the model trained specifically for classifica-
tion. However, the exact age estimation model with custom
loss (that combines soft label fine-grained classification with
regression) obtained the best results.

V. CONCLUSION

We considered several approaches to age estimation prob-
lem. All evaluated architectures used standard convolutional
backbones for feature extraction, while the output head was
configured according to the defined task. In all experi-
ments we pretrained the backbone on a large face image
dataset (IMDB-WIKI). The first approach was based on
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classification into predefined age groups and it was evaluated
on Adience dataset. The experiment showed that models
using backbones of very different capacity obtained similar
results, thereby supporting the application of a lighter model
appropriate for embedded implementation. The next series of
experiments explored several model configurations for exact
age estimation: simple regression, fine-grained classification
with soft labels, and our novel hybrid approach combining
regression with soft-label fine-grained classification through
(our original) custom loss. The hybrid approach performed
the best, obtaining the state-of-the-art result on FG-NET
dataset. A final experiment was designed to compare different
approaches on a common task and dataset. To that end we
adapted the exact age dataset FG-NET for age group estima-
tion task. Our hybrid approach outperformed both classifica-
tion and regression models.
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