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ABSTRACT Color has the exceptional ability to capture visual attention and is also capable of enhancing
positive emotions, leading to a significant impact on human learning and memory. However, the influence
of color on the spatiotemporal dynamics of brain connectivity networks during learning has remained
unexplored. This study aimed to propose an analytical approach based on time-frequency decomposition
and microstate analysis to capture temporal variations in dynamic directed connectivity networks using
electroencephalography (EEG) signals for investigating the influence of visual color on network dynamics
of the brain during a learning task. Wavelet transform and phase slope index were employed to estimate
the dynamic directed connectivity networks of EEG signals. The estimated dynamic directed connectivity
networks were then characterized using graph theoretical analysis. The recurring patterns of dynamic
directed connectivity networks were classified using cluster analysis before the temporal dynamics of
directed connectivity networks were quantified using microstate analysis. Forty-five healthy participants
participated in the experiment, which included memorizing learning materials presented in three different
colors (achromatic, cool, and warm). The results revealed that the dynamic directed connectivity networks
could be grouped into several quasi-stable states and the presence of common and unique brain states
repetitive across frequency bands under individual conditions. A joint analysis of all conditions revealed
that the temporal dynamics (coverage, mean duration, and state transition probability) differed significantly
between the achromatic and colored conditions. Few dynamic brain states were shared between conditions
and tended to remain in particular brain states for a longer duration in specific frequency bands. Our
observations provided the first evidence of temporal dynamics of frequency-specific directed connectivity
networks in the brain during multimedia learning tasks, that is, increased coverage of top-down interactions
in the θ and α bands and switching between top-down and bottom-up interactions (information flow from
anterior to posterior regions and vice versa) in the α band, in colored conditions compared to that of
achromatic conditions. Therefore, these results suggest that several frequency-specific directed connectivity
networks cooperate during knowledge acquisition and may change over time (from one state to another).
The proposed framework captures the temporal dynamics of directed connectivity networks, and provides
implications for monitoring and assessing emotional and cognitive processes in various contexts.

INDEX TERMS Complex Morlet wavelet, directionality index, dynamic directed connectivity network,
electroencephalography, k-means clustering, microstate analysis, phase slope index.
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I. INTRODUCTION
Emotion is a crucial element for optimal learning and
memory, because the learner’s emotional state controls
attention, which influences working memory and long-term
memory processes (encoding, retention, and recall) [1].
In the multimedia learning context, positive emotions
can be induced by applying emotional design principles
in multimedia learning materials using appealing colors
(yellow, orange, pink, green, blue, and purple) and round
shapes (with anthropomorphisms). Studies have revealed that
positive emotions improve learning performance (compre-
hension and immediate recall), intrinsic motivation, cognitive
engagement, and satisfaction [2], [3], [4]. Moreover, it also
creates a learning environment that promotes a positive
perception toward the content and enables more engagement
and interaction with the learning materials. To date, these
studies have been limited to subjective measurements (self-
reported emotional ratings) and behavioral-based assessment
methods (paper-and-pen performance tests). While some
researchers have explored eye-tracking [5], [6], [7] and
heart rate variability [8], [9], both indirect measurements
(quantifying ocular and heart responses make less inference
to brain dynamics). We have limited knowledge of the
effect of emotional design on information processing in
the brain during learning. Hence, this study suggests the
use of an objective and continuous measurement of brain
dynamics (using a functional neuroimaging technique) for
the assessment of the learning process with emotional design
materials, because such method provides direct information
about emotional and cognitive processing in the brain during
learning, which can be a more accurate and reliable result of
the experiment.

Electroencephalogram (EEG) is a most widely used
functional neuroimaging technique for brain research in
capturing dynamic connectivity networks owing to its distinct
advantage—a superior temporal resolution that enables
detection of fluctuations in brain interactions, in addition
to being portable, non-invasive, and low-cost [10], [11].
Previously, we studied the effects of color on emotion,
memory, and brain interactions in relation to emotional-
cognitive processing, using EEG [12]. The interaction
patterns were characterized using graph theoretical analysis
[13]. Experimental results showed that (i) coloredmultimedia
learning materials induce a positive emotional state on the
learner, activate the brain to focus, and process information
resulting in higher performance on memory recall tests (after
30-minutes and 1-month); (ii) the information flows in the
brain are dependent on the color used in multimedia learning
materials design, that is, the directionality indices showed
long-range anterior-posterior connectivity from the prefrontal
and frontal regions to posterior cortical regions in two EEG
bands (theta and alpha bands). These results suggest that
color significantly influences the direction of information
flow, which is consistent with top-down processing when
focused on external stimuli for optimized learning [14],
and is indirectly linked with top-down attentional processes

associated with working memory and emotional regulation
processes [15], [16]. However, our previous study focused
on the static representation of directed connectivity, which
may overlook information about changes in brain-directed
connectivity patterns over time.

Temporal dynamics of the direction of information flow
in the brain during cognitive and emotional information
processing have been shown to be necessary because brain
interactions are inherently directed and dynamic [17], [18],
and can be examined using a dynamic directed connec-
tivity network analysis. Previous studies have reported the
time-frequency analysis of dynamic directed connectivity
performed through adaptive filters (Kalman filtering [19],
recursive least square [20], and least mean squares [21]),
which are parametric approaches. For example, the time-
varying multivariate autoregressive (MVAR) approach has
been proposed to model time-variant Granger causality [22]
and partial directed coherence [23] using adaptive filters
with coefficients that change with respect to time. However,
the model order and dimensions must be determined before
applying the MVAR model [24], [25]. The selection of
an optimal model order can be challenging because of
the variation in participants, experimental tasks, quality
and complexity of the brain signals, number of channels,
and model estimation techniques used [26]. Although some
approximations have been suggested to help estimate the
model order, such as the Akaike information criterion and
Bayesian information criterion, the accuracy varies with
the different MVAR models used. The classic method of
capturing connectivity dynamics uses a sliding window [24],
[25], in which the selection of the window length is required,
and the signal of a short time window is assumed to be
stationary. The accuracy of the estimation depends on the
number of repetitions of the experimental conditions [26].

An alternative method to capture connectivity dynamics
is via traditional model-free, nonparametric approaches
such as short-time Fourier transform, wavelet transform,
and Hilbert transform to overcome the constraints of
parametric approaches [27]. Nonparametric approaches do
not require selection of the window length (excluding short-
time Fourier transform), model order, model dimension,
etc. Nonparametric methods still require the initial selection
of certain parameters. For instance, wavelet transform
requires the selection of parameters (number of wavelet
cycles and peak frequency) that regulate the trade-off
between temporal and spectral resolution, and this affects
the estimation of functional connectivity [28]. However, the
selection of parameters in nonparametric methods is non-
complex, and several recommendations are provided in the
literature [28], [29].

Although many studies have applied wavelet transform to
EEG data, they have utilized power and phase information
to measure either power spectral density [30] or functional
connectivity [31], [32], [33], which are not able to capture
the direction of information flow between brain regions (for
a deeper understanding of brain dynamics). The power and
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phase information obtained from wavelet transform analysis
can be further exploited to study information flow (directed
connectivity network) in the brain over time. Thus, the result
is a sequence of non-overlapping brain states (only one
dominant state presents at a time), so-called microstates,
that can be analyzed using microstate analysis. Microstate
analysis considers multichannel EEG data as a sequence of
discrete brain states/microstates visualized as topographical
maps remaining stable for a short time before transitioning
into another state. The occurrence of similar maps repeats
over time [34], and changes in microstate are measured by
temporal parameters, including mean duration, coverage, and
state transition probability [35]. Previous microstate studies
have focused on brain functional connectivity networks
during visual oddball tasks [36], mental calculation [31],
mental fatigue [37], and resting states [38], [39]. To the best
of our knowledge, there has been no published microstate
analysis of the effect of color on the temporal dynamics of
frequency-specific directed connectivity during the learning
process. Tracking directed connectivity dynamics in the
brain during the learning process can provide insights into
significant changes in directed connectivity patterns and a
better understanding of how the brain processes information.
Therefore, a data-driven approach for investigating the
temporal dynamics of brain activity during a learning
task, based on dynamic directed connectivity analysis and
microstate analysis using EEG, is a novel method.

This study investigated the temporal dynamics of
frequency-specific directed connectivity networks induced
by visual color during a learning task, using EEG.
This work combines three major techniques:1) wavelet-
based time-frequency decomposition with a phase slope
index [40] was used to extract the time-varying EEG
features for dynamic directed connectivity estimation (time
and frequency domains); 2) graph theoretical analysis was
used to characterize the patterns of directed connectivity
networks prior to the cluster analysis, which was used
to identify recurring patterns of directed connectivity
networks; and 3) the microstate approach was used to
capture the temporal dynamics of directed connectivity
networks in the brain. We hypothesized that different visual
colors (achromatic/cool/warm colors) affect information
processing differently during learning, and the effects could
be detected from directed connectivity network patterns
(i.e., topographical maps) and dynamics (how the directed
connectivity networks change over time).

The remainder of this study is organized as follows.
In Section II, the participants and experimental protocol,
EEG data acquisition and preprocessing, proposed wavelet-
based phase slope index approach for estimating dynamic
directed connectivity networks, graph theoretical analysis
for characterizing patterns of directed connectivity networks,
and clustering analysis for identifying recurring patterns of
directed connectivity networks are described in detail. The
results of the proposed method are presented in Section III,
and a discussion of the results and limitations are presented

in Sections IV and V, respectively. Finally, Section VI
concludes the paper.

II. MATERIALS AND METHODS
A. PARTICIPANTS AND EXPERIMENTAL PROTOCOL
The EEG data were collected from a group of 45 healthy
young adults (18-24 years of age: mean 20.12 (±0.47))
while they performed experimental tasks in our previous
study [12]. All participants were right-handed, had normal or
corrected-to-normal vision and normal color vision, had low
prior knowledge, and were homogeneous cross groups (more
detailed information is included in Supplementary Materials,
Section I). The entire experiment comprised resting-state
with eyes open, learning, self-emotional rating, and memory
tasks (30-min recall and 1-month recall phases), as shown
in Fig. 1. However, only continuous EEG signals during the
learning task were analyzed in this study by investigating
the color-related changes in the microstates of the dynamic
directed connectivity network. During the learning task, par-
ticipants learned and memorized the contents of multimedia
learning materials without taking notes, and were informed
that they would be tested to measure the retention of the
learned contents. Visual illustrations of multimedia learning
materials were displayed in achromatic colors for the control
group (Condition 1: GB&W), cool colors for case condition
#1 (Condition 2: CCI), and warm colors for case condition #2
(Condition 3: WCI). Note-taking was not allowed because it
would i) require deeper processing, ii) interfere with visual
information processing, iii) require more cognitive effort
and time than reading alone, and iv) cause motion artifacts,
all of which would likely alter EEG signals (for further
discussion, refer [12]). The total length of the learning data
was approximately 10.5 min for each participant.

The study protocol was approved by the Medical Research
Ethics Committee of the Royal College of Medicine Perak
(UniKLRCMP/MREC/2018/009). All subjects provided con-
sent, and the study was conducted in accordance with the
Declaration of Helsinki.

B. EEG DATA ACQUISITION
Data were obtained from EEG recordings during a mul-
timedia learning task using eegosports amplifier (ANT
Neuro, Enschede, Netherlands) with 32 gel-based Ag/Ag-
Cl electrodes mounted on an EEG head cap. Electrode
placements were based on the Extended International 10−20
system (10% system). All electrodes were referenced to
CPz and grounded at AFz, according to the manufacturer’s
recommendations (eemagine Medical Imaging Solutions
GmbH, Berlin, Germany). The readings of the electrode
impedance were all maintained at <10 k� and sampled
at 2048 Hz throughout the recording sessions.

C. EEG PRE-PROCESSING AND CURRENT SOURCE
DENSITY
EEG pre-processing was performed following the procedure
described in [12]. Raw EEG signals were preprocessed
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FIGURE 1. Experimental protocol and stimuli. The sequence of task sessions (top), the three versions of
multimedia learning materials for the learning task (bottom) [achromatic-colored illustrations (Condition 1:
GB&W); cool-colored illustrations (Condition 2: CCI); and warm-colored illustrations (Condition 3: WCI)], and a
sample of test questions for the memory recall tests. Only the EEG signals during the learning task (blue box)
were analyzed in the present work by investigating the colored-related changes in the microstates of dynamic
directed connectivity networks. Adapted from [12].

offline to remove unwanted artifacts using BESA Research
6.0 (Besa GmbH, Gräfelfing, Germany). Data with voltage
amplitudes exceeding±100µVwere rejected manually [41].
Artifact-corrected data were then transformed into the
current source density (CSD) via the surface Laplacian
method, which computes the second spatial derivative of
the voltage at neighboring electrode sites using a spherical
spline algorithm [42], [43]. The CSD transformation helps
highlight local electrical activity by diminishing any repre-
sentation of distal activity to determine brain connectivity
at the sensor level (for further discussion, refer [12]).
Finally, the corrected CSD-transformed EEG data were
exported for further analyses using custom-made scripts
and open-source toolboxes in MATLAB (MathWorks, Inc.,
Natick, MA). The open-source toolboxes included— the
(1) Brain Connectivity Toolbox [13] for graph theoretical
analysis and (2) EEGLAB [44] for topographical map
plotting.

D. TIME-FREQUENCY ANALYSIS
The time-frequency decomposition was performed by con-
volving CSD-transformed signals with a family of complex
Morlet wavelets (CMW) [45] to obtain both the time and
frequency features of EEG. The CMW is defined as a
Gaussian-windowed complex sine wave, as follows:

CMW = ei2π fcte−t
2/2σ 2

(1)

where i is the complex operator (i =
√

−1), t is the
time in seconds (s), fc is the peak frequency in hertz
(Hz, i.e., peak frequency and central frequency are used
interchangeably), which is increased from 1 to 60 Hz in
35 logarithmically spaced steps, and σ defines the width
of the Gaussian in each frequency band, which is set to
(σ = s/2π f c) as s increases from 3 to 10 cycles over the
35 frequencies. Each member of the wavelet family was
convolved with the EEG data to yield a separate time series

of complex wavelet coefficients for each frequency, which
are then used to extract power and phase information. A full
spectral density matrix of the multivariate system (containing
auto-spectral and cross-spectral densities) was derived from
time–frequency decomposition via complex Morlet wavelet
convolution in the frequency domain. The canonical EEG
frequency bands of interest were selected for analysis: delta
(δ:1–4 Hz), theta (θ :4–8 Hz), alpha (α:8–13 Hz), beta (β:
13–30 Hz), and gamma (γ :30–48 Hz). These are commonly
used in electrophysiological research related to learning
and memory [46]. In addition, information flow between
different brain regions at different frequencies is associated
with cognitive processes [47], [48], and brain connectivity
networks are transient and dynamic [31], [36]. Thus, if the
data are spatially, temporally, and spectrally resolved (by
analyzing the brain networks as a function of frequency over
time), it can provide more detailed information for capturing
the brain dynamics of cognitive and emotional processes
during learning.

E. DYNAMIC DIRECTED CONNECTIVITY NETWORK
ESTIMATION
Directed connectivity networks are referred to as dynamic
directed connectivity networks derived from the
wavelet-based phase slope index (PSI). Briefly, it involves
a three-step procedure: (i) compute the auto-spectral and
cross-spectral densities of the signals obtained from the
CMW convolution over time-frequency points, (ii) compute
the complex coherency between signals, and (iii) estimate
the dynamic PSI derived from the wavelet-decomposed
EEG signals, which is described in detail in the subsequent
paragraphs and summarized in Fig. 2.

In the first step, (time-dependent) auto-spectral and cross-
spectral densities were computed. The autospectral density at
one brain site ( signal A), also called the power spectrum of
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FIGURE 2. Flowchart for the proposed analytical method named wavelet-based PSI with cluster and microstate analyses for analyzing dynamic
directed connectivity network. First, the time-frequency decomposition was carried out with CMW. The dynamics of the spectral densities and the
phase slope of brain activity (directed connectivity networks) were then estimated. A statistical threshold (9 > |2|, p < 0.05) was applied to the
directed connectivity network (association matrix) as in [40]. After thresholding, a time series of adjacency matrices are obtained, and then, its
topological attributes (i.e., in- and out-degree) are extracted, which gives a measure of the directionality index over time. The cluster analysis was used
to identify recurring patterns of directed connectivity networks in the joint time-frequency domain, and the microstate analysis was used to capture
the temporal dynamics of directed connectivity networks.

A (PA), can be expressed as follows:

SAA (f , t) = PA (f , t) = ⟨SA (f , t) S∗
A (f , t)⟩ (2)

A similar equation to (2) was used to compute the auto-
spectral density for the remaining signals. This yields a
real number (the squared magnitude) using the product of a
complex number and its conjugate. The cross-spectral density
is defined as the expected value of the product of signal A and
the complex conjugate of signal B, as shown in (3).

SAB (f , t) = ⟨SA (f , t) S∗
B (f , t)⟩ (3)

where ∗ denotes a complex conjugate ⟨.⟩ is the expectation
value, SA (f , t) and SB (f , t) are the wavelet-decomposed
EEG signals from brain regions A and B, respectively. Unlike
auto-spectral density, cross-spectral densities are complex
numbers.

In the second step, the complex coherency between any
two signals A and B (CohAB) was computed by dividing
the cross-spectrum with the square root of the product of
the auto-spectrum of A (SAA) and auto-spectrum of B (SBB).
Mathematically, the complex coherency [49] is expressed as

CohAB (f , t) =
SAB (f , t)

√
SAA (f , t) SBB (f , t)

(4)

where SAA and SBB are real numbers, SAB is a complex
number, CohAB is complex-valued coherency.

In the final step, the PSI value [40] was estimated from the
complex coherency to capture the causal influence between
the multichannel signals. When the propagation speed was
constant, the phase difference betweenA andB increasedwith
frequency. Hence, the phase spectrum was expected to have a
positive slope if A drove B (A → B), and a negative slope if B
droveA (B → A). The change in the phase difference between
the neighboring frequency bins of the complex coherency is
computed to obtain the PSI for the desired frequency bands.
The PSI estimates the dynamic slope of the phase difference
as a function of frequency at each time point, which can be
expressed as follows:

9̃AB (t) = ℑ

∑
f ∈F

Coh∗
AB (f , t)CohAB (f + δf , t)

 (5)

where CohAB is the complex coherency, ℑ is the imaginary
part (i.e., the multiple of i; for example, if the estimated
PSI is a + bi, the value of the imaginary part is b), δf is
the incremental step in the frequency domain (depending
on its corresponding range), and F is the set of frequencies
over which the slope is summed (F = {δ, θ , α, β, γ },
the five specific frequency bands defined in Section II-D).
Considering the δ band, F satisfies 1 Hz ≤ f ≤ 4 Hz,
and the phase slope of signals between 1 and 4 Hz can
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then be estimated. The same procedure was repeated for the
remaining four frequency bands.

As the PSI was computed between pairs of EEG channels,
the estimated PSIs were stored in an Nc×Nc matrix, which is
equivalent to 171 possible pairwise associations ((N 2

c −Nc)/2,
where Nc =19 is the number of EEG channels: FP1, FP2,
F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8,
O1, and O2), and the diagonal was set to zero so that only
cross-correlation rather than autocorrelation between EEG
signals were considered for directed connectivity networks.
The estimated PSI between signals A and B, 9̃AB at time t
for each frequency band was stored in the form of an off-
diagonal, skew-symmetric matrix, as follows:

9̃AB (t) =


0 9̃12 −9̃13 · · · 9̃1Nc

−9̃21 0 −9̃23 · · · 9̃2Nc
9̃31 9̃32 0 · · · −9̃3Nc
...

...
...

. . .
...

−9̃Nc1 −9̃Nc2 9̃Nc3 · · · 0


(6)

By randomly shuffling the PSI value over frequency bins
2000 times, the estimated outputs of PSI were normalized
against null distributions to correct for any spurious results,
where the t-statistic of the connectivity was compared with
the generated null distribution of equivalent parameters
estimated in random matrices containing the same number of
nodes, connections, and connectivity degrees. Normalization
was used to determine the significant value of PSI (as
permutation testing is an appropriate statistical test as
suggested by [50], [51] to deal with multiple comparisons) by
subtracting the mean of the null distribution (µnull) and then
dividing by the standard deviation of that distribution (σnull)
as follows:

9AB (t) =
9̃AB (t) − µnull(t)

σnull(t)
(7)

After permutation testing, the normalized PSI values
(9) were evaluated at a significance level. The significant
value of |2| where PSI distribution corresponded to 95%
confidence interval of p < 0.05 (two-tailed test) was
applied to the association matrix as in [40]. All subthreshold
connectivity values (9 < |2|) were set to zero, and the
suprathreshold connectivity values (9 > |2|) retained their
original values. Finally, the time series of the adjacency
matrix (the connection matrix that indicates the number of
significant links between nodes in a network) was generated
for each participant and every EEG frequency band. The
topographical properties of the adjacency matrix (time
courses) were quantified using graph theoretical analysis.

F. CHARACTERIZATION OF DYNAMIC DIRECTED
CONNECTIVITY NETWORKS
Graph theoretical analysis quantifies topographical connec-
tivity patterns, and it can be applied to brain connectivity
networks [50]. The node degree was first computed prior

to the computation of the directionality index over time.
The degree of a node i was defined as the number of
links connected to that node, which was determined from
the time series of adjacency matrices. Since an adjacency
matrix generated from PSI values show the direction of
the information flow (directed network), a node’s degree
was computed by dividing it into in-degree and out-degree.
The in-degree (k ini ) denotes the number of incoming flows,
and the out-degree (kouti ) represents the number of outgoing
flows [13] at each time point, which can be expressed as
follows:

k ini (t) =

∑
j∈Nc

Aji(t) (8)

kouti (t) =

∑
j∈Nc

Aij(t) (9)

where Aij is not necessarily equal to Aji and represents the
entry of the adjacency matrix. A node with a high out-degree
value indicates that the region can influence others. Similarly,
a node with a high in-degree value indicates that an area could
be influenced by other regions.

Next, the directionality index (DI), which indicates the
direction of information flow for each frequency band, was
obtained by computing the difference between out-degree and
in-degree vectors, as expressed by

DI i(t) =

∑
kouti (t) −

∑
k ini (t) (10)

A positiveDI value indicates that the EEG channel behaves
like a source/sender, whereas a negative DI value indicates
a sink/receiver. Each directionality index of the directed
connectivity network at time point t(t = 1, 2 . . .NT ) was
stored in a row vector Vt : 1 × Nc and resulting in a
feature matrix of NT × Nc (for each frequency band), where
NT =6300 and Nc =19. This feature matrix was used as the
input data for cluster analysis.

G. CLUSTER ANALYSIS
Cluster analysis was used to capture recurring patterns of
directed connectivity networks in the joint time-frequency
domain. The assumption was that patterns of directed connec-
tivity networks may reoccur at both time and frequency. The
cluster analysis was based on a data-driven (unsupervised)
approach—K -means clustering [52] to partition the NT -
observations of the feature matrix into mutually exclusive
K clusters (K ≪ NT ) according to the measured distance
so that each observation could be grouped into the most
similar cluster, where rows and columns of the feature
matrix corresponded to observations and EEG channels,
respectively. Each observation belonged to only one state
at a time (nonoverlapping clusters). In other words, each
pattern of the directed connectivity network was assigned
an index of its closest cluster. This produces a time series
of the corresponding cluster indices for each participant and
EEG frequency band. The initial parameters for k-means
clustering analysis were predefined as follows: The number
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of clusters is set as K = 16. This was selected based
on the explained variance [35], which was computed as a
function of the number of clusters (with a search range of
2−20 and explained variance cut-off at >0.90≡90%). These
16 clusters accounted for 92.6% of the total variance in
EEG data. The simulations for 16 initial centroid positions
were selected from the feature matrix at random (kmeans
implements the k-means++ algorithm by default), and the
k-means algorithm was repeated 500 times with a new initial
cluster centroid on the same data to find the best cluster
centroids for each of the datasets [33], [38], where the best
cluster centroids represent the final centroid locations — 1)
with the minimum within-cluster sum of point-to-centroid
distances (sumd) among all the re-runs/replicates, 2) when
the centroids of newly generated clusters were no longer
changing, or 3) when the maximum number of iterations
was reached. The maximum number of iterations (MaxIter)
was set to 1,000 for solution convergence and computation
time efficiency. On average, the algorithm required less than
250 iterations for convergence in all 500 reruns.

Two cluster analyses were performed. For the first cluster
analysis, recurring patterns of directed connectivity networks
in the joint time-frequency domain for each condition were
determined separately by concatenating NT × Nc matrix
along the five frequency bands, which eventually provided
a specific set of topographical maps corresponding to each
condition: GB&W, CCI, and WCI. Pearson’s correlation
analysis was performed to investigate the correlation between
topographical connectivity patterns and topographical maps
that were unique to a particular experimental condition.

For the second cluster analysis, the temporal dynamics
of the common patterns of directed connectivity networks
shared between conditions were determined and compared by
concatenating the NT ×Nc matrix with frequencies, subjects,
and conditions. The term brain state refers to the recurring
patterns of the directed connectivity networks identified in
the cluster analysis as analogous to that of microstates, which
can be analyzed using microstate analysis.

H. DYNAMIC STATE COMPUTATION (MICROSTATE
ANALYSIS)
Following the cluster analyses, the temporal parameters of
coverage, mean duration, and state transition probability were
evaluated for each of the 16 identified states.

Coverage (Cov) is the percentage of time covered by a
given state [35], which can be represented by

Cov(%) = (nd
/
no) × 100 (11)

where nd is the number of times a state is dominant and no is
the total number of observations.

Mean duration (MD) is the amount of time the brain stays
at a particular state or the average time in milliseconds (ms)
covered by a given state [35], which can be expressed as

MD(ms) =

∑
nl

/
nt (12)

where nl is the length of time a microstate remains stable and
nt is the total time.

The state transition probability (STP) is the probability
of switching between different states and is represented
in the matrix form of K× K (i.e., state × states).
The MATLAB implementation steps of the wavelet-based
PSI with cluster and microstate analyses are summarized
in Algorithm 1.

Algorithm 1Wavelet-Based PSIWith Cluster andMicrostate
Analyses
Input: Multichannel EEG signals, xi (t), where i = 1, 2, . . . ,Nc
Output: Network measures Xnorm, Cov, MD & STP
Step 1: Complex Morlet wavelet convolution

• Define x-, y- and z-coordinates for the 19 electrodes
• Compute the CSD using the function laplacian_perrinX.m
• Create the CMW using (1)
• Convolute CMW with the xi (t)

Step 2: Dynamic directed connectivity network estimation
• Compute the SAA (f , t) and SBB (f , t) using (2)
• Compute the cross-spectral matrix SAB (f , t) using (3)
• Compute the complex coherency CohAB(f , t) using (4)
• Compute the wavelet-based PSI 9̃AB (t) using (5)

Step 3: (dynamic) Graph theoretical analysis
• Perform the 2000 permutations of directed connectivity

matrices
• Compute the normalized wavelet-based PSI 9 (t) using (7)
• Extract the in-degree (k ini ) using (8)
• Extract the out-degree (kouti ) using (9)
• Compute the directionality index (DI i) using (10)
• Perform the 2000 permutations of random networks (using

Brain Connectivity Toolbox function ‘‘randmio_dir’’)
• Compute normalized network measures Xnorm using (13)

Step 4: Cluster analysis and dynamic state computation
• Perform k-means clustering
• Compute the coverage (Cov) using (11)
• Compute the mean duration (MD) using (12)
• Compute the state transition probability (STP) using HMM

I. STATISTICAL ANALYSIS
In the network analysis, the computed k ini , k

out
i and DI i

were normalized by random networks, which resulted from
randomization of the corresponding directed connectivity
matrices [50], [51]. Permutation testing has been widely
used in EEG connectivity analysis as it helps reduce the
would-be false-positive results (also known as Type 1 error)
and allows multiple comparisons, that is, the multichannel
time series of directed networks (a similar approach used
in [36], [53], [54]). Randomization was repeated for 2000
permutations. At each permutation, a random network was
generated from the estimated directed connectivity network.
The connections of the directed connectivity network were
randomly rewired, while preserving the in-degree and out-
degree distributions. The normalized network measure Xnorm
is obtained as follows:

Xnorm =
Xnetwork
⟨Xrandom⟩

(13)
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FIGURE 3. Topographical maps of the 16 brain states and their corresponding frequency histograms for (A) GB&W, (B) CCI, and (C) WCI conditions.
The color map was set in the interval [−4, 4] and represents the flow of information (warm colors represent drivers, whereas cool colors represent
recipients). Histograms illustrate the mean frequency of the coverage across frequencies (x-axis denotes the five bins of EEG frequency bands (δ, θ , α,
β, γ ) and y-axis denotes the number of occurrences set in the interval [5], [7]).

whereXnetwork is the computed network properties of directed
connectivity (k ini , k

out
i and DI i), and ⟨Xrandom⟩ is the average

of 2000 random network properties.
The second stepwas to compare the differences in temporal

parameters between frequency bands with respect to clusters
based on (1) individual conditions (GB&W, CCI, and WCI)
and (2) between conditions (GB&W vs. CCI vs. WCI).
Two statistical tests were performed. First, the coverage of
the clusters was calculated for each EEG frequency band,
which was separated into five conditions, with each condition
representing one EEG band. One-way repeated-measures
analysis of variance with the EEG frequency bands (δ, θ , α,
β, and γ ) as within-participant factors was used to determine
whether there was a significant difference in Cov between
frequency bands for each condition. When comparing the
differences in cluster coverage between bands with respect
to clusters of the conditions, Bonferroni post-hoc tests were
run on ten different combinations of the five frequency bands
(nCr combinations, where n = 5 and r = 2). To minimize
the risk of type-I errors, Bonferroni adjustment was made
for multiple comparisons, resulting in a new significance
level of 0.05/10 = 0.005 (p < 0.005). Second, a one-way
multivariate analysis of variance (MANOVA) and Tukey’s
HSD post-hoc test for multiple comparisons (p < 0.05) were
conducted to determine significant differences between the
conditions for the Cov and STP of the clusters on the five
frequency bands. A nonparametric Kruskal-Wallis H test was
performed because MD data were not distributed normally,
followed by Mann-Whitney U post-hoc tests (p < 0.05)
to determine statistically significant differences between
conditions. All statistical analyses were performed using
the software packages—MATLAB (MathWorks Inc., Natick,
MA) and SPSS Statistics version 23 (IBM, Armonk, NY).

III. RESULTS
The experimental results are presented in this section. They
are divided into two main parts. The first part examined
the recurring patterns of directed connectivity networks
across frequency bands that corresponded to each condition
individually, which was obtained by the first cluster analysis.
The second part examined the repeated patterns of directed
connectivity networks across frequency bands that were
shared among all participants, which was obtained from the
second cluster analysis.

A. RECURRING PATTERNS OF DIRECTED CONNECTIVITY
NETWORK ACROSS FREQUENCIES AT THE INDIVIDUAL
CONDITION
The reoccurrences of the directed connectivity network
across frequency bands corresponding to the GB&W, CCI,
and WCI conditions, in the form of topographical maps
together with their frequency histograms, are presented
in Fig. 3(A)–(C), respectively. Topographical maps are
the identified recurring patterns of directed connectivity
networks represented by the centroids of k-means clusters.
The histogram of the coverage of microstates indicates
the EEG frequency bands at which a brain state tends
to recur (so-called dominant/frequently occurring states).
Certain brain states are seen to be more dominant than
others at specific frequency bands. The results showed a
higher percentage of coverage (>5%) than the average
value, as summarized in Table 1. There was more than
one dominant state in each frequency band (except for the
delta band of the WCI condition). This demonstrates the
dynamics of multiple-directed connectivity during a learning
task. In addition, the dominant states were shared by more
than one frequency band that was mostly found between θ
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TABLE 1. Dominant states of the directed connectivity network at five frequency bands (δ, θ , α, β, γ ) during each of the GB&W, CCI, and WCI conditions.

and α bands or between β and γ bands. This finding was
the first to demonstrate the temporal dynamics of directed
connectivity patterns at five canonical EEG frequency bands
and highlight the color-induced differences in directed con-
nectivity patterns during a learning task using EEGmicrostate
analysis.

In addition, the results of the correlation analysis for topo-
graphical connectivity patterns between conditions showed
that few directed connectivity network maps had a strong
correlation (r > 0.7) depending on the selected conditions for
the analysis, indicating the similarity of directed connectivity
networks between conditions. This indicates that there are
common brain states among the three conditions. The results
are as follows.

1) Two maps between GB&W and CCI were strongly
correlated, GB&WK6 with CCI K13 (r = 0.9060) and
GB&W K9 with CCI K12 (r = 0.9190).

2) The five maps between GB&WandWCI were strongly
correlated: GB&W K2 with WCI K1 (r = 0.9550),
GB&W K5 with WCI K12 (r = 0.9426), GB&W K6
with WCI K5 (r = 0.9711), GB&W K9 with WCI
K14 (r = 0.9768), and GB&W K10 with WCI K16
(r = 0.7570).

3) Seven maps between CCI and WCI were strongly
correlated: CCI K5 with WCI K1 (r = 0.740), CCI K6
with WCI K3 (r = 0.7125), CCI K10 with WCI K7
(r = 0.7074), CCI K11 with WCI K12 (r = 0.8047),
CCI K12 with WCI K14 (r = 0.9378), CCI K13 with
WCI K5 (r = 0.9319), and CCI K16 with WCI K2
(r = 0.7969).

Conversely, the correlation analysis results also demon-
strated that some brain states had no significant corre-
lation between the conditions, indicating that they are
unique connectivity patterns for a particular condition.
The identified brain states (common and unique directed
connectivity patterns) could only be identified using a
joint time-frequency analysis, where the temporal dynamics
of the connectivity patterns could be assessed at dif-
ferent frequency bands. If directed connectivity is esti-
mated by averaging the connectivity maps over the entire
EEG recording time, the changes in connectivity patterns
between brain regions might be wiped off. Therefore, a
dynamic analysis of the information flow between different

FIGURE 4. The 16 topographical maps of directed connectivity networks
shared by all participants, with color map set in the interval [−4, 4];
Histograms illustrate the mean frequency profiles of the coverage (x-axis
denotes the five bins of EEG frequency bands (δ, θ , α, β, γ ) and y-axis
denotes the number of occurrences set in the interval [5], [7]).

brain regions must be monitored for the cognitive and
emotional information processing that gives rise to our
behavior.

Next, the microstate features (including coverage, mean
duration, and STP) were extracted, and differences between
five frequency bands for the 16 states at each condition were
statistically assessed using statistical tests, as described in
Section II. Post-hoc tests revealed statistically significant
differences in coverage and mean duration between the five
frequency bands. A significant increase in coverage of long-
range anterior-posterior connectivity from the prefrontal and
frontal regions to the posterior cortical regions and vice versa
(from posterior to anterior connectivity) was found in the θ

and α bands for all conditions, and the increased coverage
of short-range connectivity (within anterior regions, within
posterior regions, and information flow from left to right
hemisphere) was observed in the δ band and higher frequency
bands (β and γ ). Moreover, the overall mean duration of the
microstates was longer in the lower frequency bands (δ and
θ bands) than in the higher frequency bands (α, β and γ

bands) for all conditions. The trends of all significant dif-
ferences in the mean coverage between frequency bands are
presented in Supplementary Tables 1–3. Similarly, the mean
duration differences between the five frequency bands for the
16 states under each condition are shown in Supplementary
Figs. S1-S3.
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FIGURE 5. Boxplots show coverage (in %) of each cluster for all three groups (GB&W, CCI, WCI) and for five frequency bands (δ, θ , α, β, γ ).
Asterisks indicate the significance level (∗p < 0.05 and ∗ ∗ ∗p < 0.0005).

The STP matrices, averaged over participants, were
determined for each condition, and the results are presented
in Supplementary Figs. S4-S6. In the δ band, high probability
values along the diagonal indicate the likelihood of remaining
in the same state (i.e., self-transitions). These results are
consistent with the temporal trends in mean duration
(significantly longer duration at a particular state in the δ

band than in the other four frequency bands (θ , α, β, and
γ ), where MD is in the range of 225–235 ms) are displayed
in Supplementary Figs. S1-S3. In the θ band, the STP also
seems to have high values along the diagonal, albeit at a lower
probability, and the MD is shorter than that of the δ band.
Only a few STP elements showed high probabilities in the α,
β and γ bands. On average, the four frequency bands (θ , α,
β and γ ) had an MD in the range of 200–210 ms.

B. RECURRING PATTERNS OF DIRECTED CONNECTIVITY
NETWORKS ACROSS FREQUENCIES
AND CONDITIONS
The previous subsection presented the results of the recur-
rences of directed connectivity networks across frequency
bands in the individual condition. This section presents the
results of directed connectivity networks shared among all
conditions, which enables us to determine the differences in
coverage, mean duration, and state transition probability of
the color effect on directed connectivity networks between
frequency bands across groups. Fig. 4 shows the repeated
patterns of directed connectivity networks, which are shared
among all conditions.

One-way MANOVA showed that there were statistically
significant differences in cluster coverage based on the
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FIGURE 6. Boxplots show mean duration (in ms) of each cluster for all three groups (GB&W, CCI, WCI) and for five frequency bands (δ, θ , α, β, γ ).
Asterisks indicate the significance level (∗p < 0.05 and ∗ ∗ p < 0.005).

participants’ learning conditions: K13 (F(10, 70) = 2.62,
p < 0.05; Wilk’s 3 = 0.529, partial η2 = 0.27) and K15
(F(10, 70) = 2.62, p < 0.05; Wilk’s 3 = 0.529, partial η2 =

0.27). Specifically, significant effects on θ (F(2, 39)= 11.09,
p < 0.0005, partial η2 = 0.36) and α bands (F(2, 39) =

3.89, p < 0.05, partial η2 = 0.17) at K13. Post-hoc tests
revealed that the mean coverage for K13 in θ band showed
a significant difference between GB&W and CCI (p < 0.05)
and GB&W and WCI (p < 0.0005), but not between CCI
and WCI (p = 0.390). The mean coverage for K13 in α band
showed a significant difference between GB&W and WCI
(p < 0.05), but not between GB&W and CCI (p = 0.138)
or CCI and WCI (p = 0.211).

A similar pattern of coverage differences between fre-
quency bands was observed for K15, with a significant
effect found at θ (F(2, 39) = 11.11, p < 0.0005, partial
η2 = 0.37) and α bands (F(2, 39) = 6.80, p < 0.05, partial
η2 = 0.20). In the θ band, the mean coverage for K15
showed a significant difference between GB&W and CCI
(p < 0.0005) and GB&W and WCI (p < 0.0005) but not
between CCI and WCI (p = 0.955). In the α band, the same
trends of significant differences were found between GB&W
and CCI (p < 0.05) and GB&W andWCI (p < 0.05), but not
between CCI and WCI (p = 0.710).
MD was also computed for each estimated directed

connectivity network. From the results of the Kruskal-Wallis

14266 VOLUME 11, 2023



M. T. Chai, T. B. Tang: Microstates of Dynamic Directed Connectivity Networks Revealing Visual Color Influences

FIGURE 7. Between-group analysis: The state transition probability (STP) matrix, averaged over subjects (left: GB&W, middle: CCI,
right: WCI) for five EEG bands, δ, θ , α, β, γ , respectively. Numbers indicate the differences between frequency bands at the significance
level (p < 0.005, Bonferroni-corrected). Number 1: GB&W vs. CCI, Number 2: GB&W vs. WCI, Number 3: CCI vs. WCI. Red colors indicate
a high probability for switching between the two states; Blue colors indicate a low probability for switching between the two states.

VOLUME 11, 2023 14267



M. T. Chai, T. B. Tang: Microstates of Dynamic Directed Connectivity Networks Revealing Visual Color Influences

H test for MD, there were significant differences observed
in four frequency bands (δ, θ , α and β) between the three
experimental conditions:1) K1 (χ2(2) = 6.826, p = 0.033)
and K7 (χ2(2) = 8.043, p = 0.018) in the δ band; 2) K15
(χ2(2) = 7.865, p = 0.020) in the θ band; 3) K15 (χ2(2)
= 7.686, p = 0.021) in the α band; and 4) K2 (χ2(2) =

8.498, p = 0.014) and K6 (χ2(2) = 6.274, p = 0.043) in the
β band. Post-hoc tests revealed that there was a statistically
significant difference in MD between the GB&W and CCI
conditions (U = 46.5, p = 0.018) in the δ band, indicating
that the GB&W condition stayed for a longer time at K1,
as compared to the CCI condition. Moreover, the CCI (U =

52.0, p = 0.035) and WCI (U = 40.0, p = 0.008) conditions
remained longer at K7 than at the GB&W condition. For
θ band, the CCI condition required a longer time at K15
(U = 38.5, p = 0.006) than the GB&W condition. In the α

band, the CCI and WCI conditions required a longer time at
K15 (U= 70, p = 0.034 and U= 56, p = 0.007, respectively)
than the GB&W condition. Lastly, in the β band, the WCI
condition spent a longer time at K2 (U = 56.0, p = 0.007)
than the CCI condition.Moreover, CCI (U= 63.0, p = 0.016)
and WCI (U = 63.0, p = 0.016) conditions stayed longer at
K6 than at the GB&W condition. Figs. 5 and 6 show boxplots
summarizing the results for the coverage and mean duration,
respectively.

Finally, the mean STP matrices results for each condition
and frequency band are presented in Fig. 7. As shown in
Fig. 7, high probability values along the diagonal indicate the
likelihood of remaining in the same state before it switches to
another state (self-transitions) in the lower frequency bands
(δ and θ bands), regardless of the experimental conditions.
These results are consistent with the temporal trends in the
mean duration (i.e., stayed longer at a particular state in
the lower frequency bands) displayed in Fig. 6. However,
there was a significant difference in the STP between the
experimental conditions. In particular, in the δ band, therewas
a preference for self-transition of K1 (K1→K1) in GB&W
compared to the CCI and WCI conditions; in contrast,
there was a preference for self-transition of K5 (K5→K5)
and K15 (K15→K15) in both CCI and WCI conditions
compared to GB&W. In the θ band, there was a preference
for self-transition of K5 in GB&W compared to the CCI
and WCI conditions, whereas there was a preference for
self-transition of K15 (K15→K15) in both the CCI and
WCI conditions compared to GB&W. In addition, there is a
significant reversal in the state transition pattern. The state
transition from K15 to K5 (K15→K5) was found in the
CCI and WCI conditions compared to the GB&W condition
(an inverse state transition, K5→K15) in the α band,
indicating that brain states are important in perceiving incom-
ing information and behavioral responses in maintaining
performance.

IV. DISCUSSION
This study assessed the temporal variability and repeatability
of directed connectivity networks over time and frequency

domains, which is because interactions among different
brain regions are inherently dynamic. The experimental
results showed that patterns of the brain dynamic directed
connectivity networks formed a set of quasi-stable states
that recurred over time and frequency, suggesting that
the directed connectivity network in the brain is indeed
dynamic and dependent on specific EEG frequency bands that
may exist at multiple frequency bands. First, we observed
that certain brain states are more dominant than others at
particular frequency bands, and the dominant states were
shared by more than one frequency band that was mostly
found between θ and α bands or between β and γ bands.
Second, microstate analysis showed that the mean duration
of brain states was longer in the lower frequency bands
(δ and θ bands) than in the higher frequency bands (α,
β and γ bands), indicating that the mean duration of the
microstate is dependent on specific frequency bands. The
lower frequency bands (i.e., δ, θ) have a higher probability of
self-transitions than the higher frequency bands. Overall, the
colored multimedia learning materials affects the information
flow in the brain during learning, as is reflected by the
features of the microstate (coverage, mean duration, and state
transition probability) of directed connectivity networks in
the five EEG frequency bands associated with emotion and
cognitive processes (attention, perception, working memory,
and memory) involved in human learning. Top-down and
bottom-up interactions influence the allocation of attention
and perception towards learningmaterials. Color also appears
to have a modulatory effect on the processing of visuospatial
information in working memory, which prioritizes sensory
input and manipulates information selection during learning,
facilitating memory processing (encoding and retention).

Table 1 shows that some of the brain states were shared
between low-frequency bands (θ and α bands) and high-
frequency bands (β and γ bands), demonstrating that the
coverage of the directed connectivity network is dependent
on the specific frequency bands and may exist in more than
one frequency band. These results confirmed that neurons
oscillating at different frequency bands might contribute to
the same functional network, which is consistent with the
findings of an EEG-fMRI study [55]. In addition, increased
coverage of long-range connectivity (frontal and posterior
regions) occurs in the θ and α bands, which are associated
with attentional and memory processes, whereas short-range
connectivity in the higher frequency bands (β and γ ) is
related to sensory processing [56], suggesting a relationship
between directed connectivity networks and EEG frequency
bands. This finding is consistent with earlier studies; long-
range and short-range connectivity is mediated by lower and
higher frequency bands, respectively [57], [58], [59].

Moreover, correlation analysis revealed that some brain
states were highly correlated between conditions, whereas
others were specific (unique) to a particular condition. These
findings highlight the need for (1) individual analysis of each
condition to identify dynamic changes in directed connec-
tivity patterns that recur in time and frequency domains,
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and (2) a joint analysis of all conditions to identify the
potential psychophysiological indicator/biomarker to assess
the changes in emotional/cognitive responses to colored vs.
achromatic learning materials, using temporal parameters
(coverage, mean duration, STP, etc.) [33], [35].

The results obtained from the cluster analysis and dynamic
state computation showed that each brain microstate might
remain stable for a particular period of time (∼hundreds of
milliseconds) and then shift to another microstate and remain
stable again. This is consistent with previous microstate
studies [34], [60]. It is observed that the mean duration of
all microstates in the δ band compared to the other four EEG
bands (θ , α, β, γ ) in all three groups potentially reflects δ

band as the slow wave of the EEG signal. They are more
likely to remain in the same state for consecutive time points
(self-transitions). Our data also demonstrate that the mean
duration of certain microstates differs in certain frequency
bands under respective conditions: (i) two microstates (K3
and K9) had significantly lengthened mean duration in the
θ band compared to α and β bands, and two microstates
(K6 and K15) significantly lengthened the mean duration in
the θ band compared to the α band in the GB&W group;
(ii) two microstates (k9 and K13) significantly increased in
duration in the θ band compared to the α band and β band,
respectively, in the CCI group; (iii) a significant increase in
the duration of the three microstates (K5, K12, and K14)
in the θ band compared to the α band, and one microstate
(K12) had a longer duration in the α band than γ band in
the WCI group. The overall mean duration of the microstates
was longer in the lower frequency bands (δ and θ bands) than
in the higher frequency bands (α, β and γ bands), indicating
that the microstate’s mean duration is dependent on specific
frequency bands.

The lower frequency bands (i.e., δ, θ ) have a higher
probability of self-transitions, indicating that these bands are
more likely to stay in the same state before they switch to
another state. However, only a few state transitions show
high probabilities in the α, β, and γ bands, which differ
between the conditions. These results indicate that dynamic
switching between different brain states is a manifestation
of certain directed brain states that play a dominant role
during the processing of visuospatial information in working
memory and attention, prioritizing sensory input during
learning in the presence of color. In addition, the mean
duration of the microstates was longer in the lower frequency
bands (δ and θ bands) than in the higher frequency bands
(α, β and γ bands). These findings indicate that the
dynamic directed connectivity networks derived from EEG
signals are frequency dependent. The change in the temporal
properties of dynamic directed connectivity networks can
be a constitutive EEG parameter for assessing visual color
influences on brain information processing during a learning
task. This is in agreement with the results reported by other
researchers that mental activity or information processing
occurs through a sequence of quasi-stable states [61], and

that an increase in the mean duration of certain microstates
is related to cognitive tasks [62] and information processing
that gives rise to our conscious experience [34]. Thus,
future studies may consider narrow-band (i.e., frequency-
specific) EEG microstates of dynamic directed connectivity
network analysis to identify meaningful network dynamics
related to cognition, perception, or behavioral variability
that include participants of different ages. In addition, the
temporal dynamics of directed connectivity networks can
be combined with other EEG features to improve the
classification accuracy of cognitive states. A recent study [63]
showed that the fusion of EEG local activation parameters
and brain connectivity patterns provides a better classification
performance in detecting cognitive states compared to a
single EEG feature.

In addition, the results of the between-group analysis
(Section III-B) further showed that the predominant state
(increased mean coverage of K15) was formed between the
anterior areas (prefrontal and frontal cortices) and posterior
regions (temporal, parietal, and occipital cortices), where the
direction of information flows from anterior to posterior brain
regions during learning (for both CCI and WCI conditions).
Similarly, the mean duration of K15 increased significantly
in the CCI and WCI conditions compared with GB&W in the
θ and α bands. The trend of increasing coverage and mean
duration of K15 during the learning task when participants
viewed colored materials compared to achromatic materials
indicated stronger interactions between the central executive
network areas and higher-order association areas stimulated
by color. The prefrontal cortex region seems to exert top-
down attentional control while manipulating information
selection in the working memory for encoding, which might
contribute to efficient information processing. This could
be due to the dominant role of the prefrontal and frontal
cortices during the processing of visuospatial information
in working memory and selecting the sensory input during
learning, which facilitates successful learning in the presence
of color [64]. These data-driven results agree with previous
studies performed by other researchers. Earlier EEG studies
have reported that θ and α bands play an important role in
attention, memory processes, alertness state, and emotional
and motivational processes [46], [65], [66], [67], which
eventually facilitate faster and more accurate memory per-
formance. Therefore, the temporal dynamics of frequency-
specific directed connectivity networks may open the way to
various investigations of cognitive and emotional processes.

The findings of this study are consistent with those of
previous reports [32], [64]. They are indirectly associated
with top-down attentional processes in θ and α bands due
to emotional responses to color in the dorsolateral prefrontal
cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC),
which are associated with working memory and emotional
regulation processes [16]. Recent electrophysiological and
fMRI results provide evidence of top-down attentional
modulation in the frontal cortex, which reveals preferential
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engagement with external attention [68], and the brain
processes color information in a directional manner. The
neural representation instantiated by color drives seman-
tic/cognitive representation [69], and the pattern of neural
activity elicited by color is reactivated later, revealing the
temporal dynamics of color processing [70]. Moreover, color
has been found to evoke emotional experiences and modulate
global connectivity [71]. This is consistent with our previous
study [12] on the direction of information flow from the
anterior to posterior brain regions during learning (CCI and
WCI conditions) in the θ and α bands.

In addition, the present study indicates that both CCI
and WCI conditions stayed for a longer time and increased
coverage at state K15 in the θ and α bands compared to
the GB&W condition. The mean STP also shows a different
state transition pattern between K5 and K15. The state
transition from K15 to K5 was found in the CCI and WCI
conditions compared to the GB&W condition (an inverse
state transition from K5 to K15) in the α band, indicating
that the brain states were important for perceiving incoming
information, emotional, behavioral, and adaptive responses
in maintaining performance. This suggests that color might
have stimulated top-down modulation of working memory,
that is, enhancing anticipatory control over encoding and
retention [14] and selective attention, which in turn improves
learning [72]. We also believe that the prefrontal and frontal
cortices are important in driving positive emotional expe-
riences, maintaining motivation, and influencing learning
and memory performance. Enhanced selective attention and
positive emotional states facilitate the integration of sensory
and perceptual information stored in different brain areas
via a bottom-up approach to higher brain functions. This
could be possibly due to increased behavioral intention
and anticipation in the colored conditions compared to the
GB&W condition. A recent EEG study [73] showed that
a lecture video with a color-coded design elicited positive
emotions that were associated with lower cognitive load.
Hence, instructors can use warm/cold colors rather than
achromatic colors to provide positive emotional experiences
throughout the learning process and to enhance cognitive
functions.

The overall results showed that directed connectivity in
the brain during learning is indeed dynamic; that is, not
only is one brain area active at a given moment, but many
regions are active and form distinct patterns of synchronized
activity (brain states) that vary over time and are dependent
on frequency bands, which is in agreement with the results
reported by other researchers [36], [74]. It further investigates
the integration of emotional and cognitive information
processing and how brain data can support behavioral
responses and adaptive processes [64], [67], [75]. The present
work extends previous studies by illustrating how a dynamic
directed connectivity network with microstate analysis can
reveal more insightful information about the recurring
patterns of directed interactions among different brain regions
in a data-driven manner. We provide further evidence that the

temporal parameters of directed connectivity networks differ
in specific frequency bands with respect to color conditions,
demonstrating that visual color affects brain information
processing, which is not quantifiable through static brain
connectivity analysis. Perhaps it could be implemented for
classroom/virtual learning to monitor learners’ mental states
during learning (attention, concentration, alertness, emotion,
motivation, boredom, etc.) to keep learners focused while
studying and completing the ongoing tasks by providing
optimum sensory stimulation through visuals or sounds
(interactive quizzes, attractive and informative illustrations,
music, etc.). As color has an exceptional ability to capture
visual attention and enhance positive emotions [2], [3], [4],
it is especially useful in educational settings to draw students’
attention and stimulate them to read, learn, acquire, and retain
knowledge. In addition, studies have found that listening
to sounds of nature [76], [77] can reduce stress and elicit
pleasure and relaxation, which improve various aspects of
cognition and emotion. In combination, these can promote
effective learning and long-term memory retention.

V. LIMITATIONS AND FUTURE WORK
K -means clustering is a clustering algorithm capable of
grouping similar brain networks to identify recurring patterns
of directed networks. It is also a data-driven approach
that allows the examination of data, even with limited or
no a priori information. However, a disadvantage of this
clustering algorithm is the number of clusters necessary for
capturing useful features from the data. A similar issue was
encountered when employing the independent component
analysis [60]. In this study, we searched for a range between
2 and 20 clusters and used the explained variance method
to determine the optimal number of clusters. Future work
will explore other clustering techniques, such as hierarchical,
density-based, and model-based clustering, which do not
require pre-specifying the number of clusters.

CSD transformation can be used for brain connectivity
estimation in sensor space [11], [78], [79] to reduce
spurious connections. However, it is recommended that
brain connectivity estimation should be performed on the
source signals from high-density EEG recordings along
with simultaneous fMRI scanning and then estimated using
appropriate connectivity measures (insensitive to volume
conduction effect) [80], [81] to obtain a better estimation of
the functional, directed, or effective connectivity and provide
a more accurate interpretation of the underlying connectivity
dynamics (active interactions between brain sources) [82],
[83]. It is also important to compare the results of the whole
pipeline of source reconstruction and connectivity estimation
by using different combinations of forward and inverse
models and connectivity measures owing to the limitations
of 1) source reconstruction caused by residual signal leakage
at the source level and 2) estimation of connectivity caused
by source mixing. Therefore, our next step is to compare the
results of different forward and inverse models to overcome
the limitations of the present study.
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Finally, in terms of computational complexity, the pro-
posed method is based on a traditional model-free, nonpara-
metric approach; thus, it has a lower model complexity and
computational cost. Compared with static brain connectivity
analysis, additional computational time is required to assess
the statistical testing of dynamic data points. To imple-
ment real-time processing, dimensionality reduction may be
required to reduce redundancy and computational demands if
larger data are involved.

VI. CONCLUSION
This study investigated the effects of color visuals on
information processing by brain during learning using a
new analytical method, wavelet-based PSI, based on a
combination of wavelet transform and phase slope index
for dynamic directed connectivity network analysis. The
temporal parameters of the directed connectivity networks
in the time and frequency domains were determined using
a microstate analysis. The experimental results revealed that
the reoccurrence of a brain state, its coverage, and the
amount of time the brain remained in a particular state
varied. Our analysis revealed common brain states that
are repeatedly present in different frequency bands, and
identified that certain states are unique to specific conditions
(participants viewed multimedia learning materials with
visual illustrations displayed in achromatic, cool, or warm
colors). The processing of information differs owing to the
influence of visual colors. The allocation of attention and
perception towards learning materials was influenced by
top-down and bottom-up interactions; thus, the our study
results provide quantitative evidence of the estimation of
the dynamic directed connectivity networks, which can
provide an objective assessment of the learning process with
emotional design materials to create a better understanding
of the process of learning and how this information can be
used to create more effective multimedia learning materials
and environments. Such microstates of dynamic directed
connectivity networks could serve as psychophysiological
indicators (characteristic of learning) to help understand
how neuronal synchronization during the learning process is
owing to the changes in cognitive, emotional, and attentional
states that govern our behavior. Thus, further investigations
should consider the dynamic analysis not only of the
connectivity network changes in frequency bands, but also
the network patterns that repeat over time to provide a deeper
understanding of the learning and memory processes.
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