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ABSTRACT A great progress in deep learning technologies for skin cancer detection from dermoscopic
images has been made for a decade. While its performance is vulnerable to a large amount of hairs densely
covering the skin surface, the existing image processing methods frequently fail to remove hairs in hairy
skin images. In this paper, we propose, as a deep learning approach to removing hairs, a generative image
inpainting network where bidirectional autoregressive transformers (BATs) are employed to learn image
features and are systematically integrated with convolutional neural networks (CNNs) in multiple spatial
scales in order to reconstruct missing regions. Each patch split from a masked image is unfolded and
processed through BATs, and re-folded to constitute diverse shapes of feature maps through kernel-based
unfolding-folding operations. By introducing the multi-scale features extracted by collaborative learning of
transformers and CNNs to the texture generator network, our method can effectively reconstruct minute
details of local regions as well as global structure which might not be easily inferred from neighbor
pixels in hairy skin images. Quantitative and qualitative evaluations show not only that our multi-scale
dual-modality strategy is much robust to reconstruct hair-shaped missing regions compared to the existing
transformer-based image inpainting method called BAT-Fill, but also that our framework outperforms the
state-of-the-art image inpainting models in removing hairs from hairy dermoscopic images.

INDEX TERMS Hair removal, skin image, image inpainting, transformer, deep learning, generative
adversarial networks.

I. INTRODUCTION
Artificial intelligence (AI) has fast leaped forward as assistive
healthcare technologies for medical doctors and patients,
and it has been also applied for detecting a skin cancer
from dermoscopic images with remarkable performance [1].
One of artifacts in skin image analyses is hairs which cover
either widely or locally over the surface of skins [2]. Hairs
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may seriously perturb analyzing lesion textures and result
in reduced accuracy of a deep learning model predicting the
cancer type corresponding to the skin lesion. Accordingly, the
preprocessing stage of removing hairs from a dermoscopic
image is essential in the deep learning framework for skin
cancer detection [3].

The hair removal in dermoscopic images can be understood
as the problem of image inpainting that aims to reconstruct
an incomplete image by filling missing parts naturally [4].
Two major image inpainting approaches to hair removal are
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present; one is based on image processing, and the other is
based on machine learning.

In the image processing approach to hair removal, the
Dullrazor software was a pioneering software, introduced by
Lee et al., by which hair regions are detected from a grayscale
skin image using morphological filtering and are restored
through bilinear interpolation with neighbor pixels [5].
E-shaver is its extension toward color skin images where edge
filtering and color averaging are employed for hair detection
and inpainting respectively [6]. Those early algorithms for
removing hairs had been advanced using a diversity of
image inpainting techniques including partial differential
equation and coherence transport [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16]. In particular, the fast marching
method (FMM), where a skin region hidden by hairs is
filled progressively from its border, is one of the robust
methods for removing hairs [7], [17]. Since most skin image
diagnostic technologies have targeted human skin images
with few hairs, the image inpainting methods based on image
processing have exhibited quite acceptable performance on
such tractable human skin images despite the simplicity of
their algorithms. However, their performance had not been
verified for hairy skin images whose skin surface is covered
with lots of hairs in either quantitative or qualitative manner.

On the other hand, the machine learning approach to hair
removal had little advance compared to the image processing
approach. It is obviously contrasted with the fast-growing
trend of deep learning models for image inpainting includ-
ing Shift-Net, DeepFill, GMCNN, PartialConv, LBAM
[18], [19], [20], [21], [22], [23]. One practical reason for the
underdevelopment of machine learning-based hair removal
methods would be that an advanced hair removal algorithm
with large computational complexity was not necessary in
a moderate skin image with few hairs. The other reason
is the difficulty in finding such a training dataset that
consists of pairs of original skin image with hairs and
the corresponding hairless image. To tackle the problem,
Talavera-Martinez et al. first employed a convolutional neural
network model with simple encoder-decoder architecture to
remove hairs in a skin image [3]. They exploited, as a training
dataset, pairs of hairless skin images extracted from public
datasets as ground truth and their corresponding images with
simulated hairs as input data. Bardou et al. examined a
variational autoencoder model, where hairs are eliminated as
noise, that consequently can be trained without such a dataset
as consisting of pairs of hairy and hairless skin images [24].
Li et al. used DeepFill along with gated convolutions to allow
free-form image inpainting optimized to hair shapes [25].

Despite the recent noteworthy advance in methodologies
for hair removal, the existing methods tend to be vulnerable
to such a dermoscopic image in which hairs are densely
jammed and tangled, as illustrated in Section IV. The existing
methods based on either image processing or convolutional
neural networks remove hairs from a skin image by filling a
hair region progressively from its border using the properties

of local skin texture [7], [25]. However, in such an extreme
situation as hairy skin images the surrounding neighbor pixels
of a hair region are prone to severe contamination by other
hairs covering the skin, which might consequently lead to
the reduced performance of reconstructing the skin texture
hidden behind hairs.

The transformer can be taken into account as a solution
to cope with such technical limitations that may be faced in
hairy skin images. It was first introduced by Vaswani et al.
in 2017 as a machine translation model that can learn the
meaning of a sentence through the attention mechanism
which quantifies the contextual intra-relation of words in
a sentence [26]. The transformer has been successfully
employed mainly for machine translation, and has increas-
ingly applied for a wide range of computer vision problems
including image inpainting [27].

An image inpainting model based on bidirectional and
autoregressive transformers (BATs), so called BAT-Fill, was
recently introduced especially to reinforce the capability of
generating diverse contents of missing region [28]. It has a
coarse-to-fine network architecture that is composed of the
coarse-structure generator based on transformers and the fine
texture generator based on generative adversarial network
(GAN) [29]. We assessed the applicability of BAT-Fill, the
transformer-based image inpainting model, to removing hairs
from dermoscopic images. As shown in Section IV, we found
that, although its qualitative performance in removing hairs
was superior to representative existing methods, fragments
of hairs often remain incompletely eliminated in visual
inspection and as a consequence the reconstructed skin
images used not to be so much as acceptable for clinical use.

In this study, we propose a multi-scale GAN framework,
called EBAT (named in the sense of an enhanced network
of BAT-Fill), where the image features encoded in multiple
spatial scales by both transformers and convolutional neural
network (CNN) are jointly learnt to reconstruct fine skin
textures as well as global structure. While in BAT-Fill
the transformers produce a single low resolution image
of coarse structure reconstructed from the corresponding
down-sampled input image, the transformers in EBAT gen-
erate a set of multi-scale feature maps through kernel-based
unfolding-folding operations instead of down-sampling.

The main contributions and novelties of this work can be
summarized as follows. First, the transformers are used to
extract not coarse and diverse structures butmulti-scale image
features with long-range dependency, which can enhance
the capability of reconstructing fine details and global
structure simultaneously. It is through patch-wise unfolding
and downsized folding operations that a feature map as
an output of BATs can be generated to have an arbitrary
shape. Second, the multi-scale feature extractors based on
transformers and CNNs are unified and attached to the
fine texture generator through multi-scale pathways, which
allows collaborative learning with efficient information flows
between two backbones. Third, both multi-scale feature
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extractor and fine texture generator are jointly trained in
an end-to-end fashion while in BAT-Fill the coarse-structure
generator is completely separated from the fine texture
generator in the process of training. Lastly, the inference
time was greatly reduced, compared to BAT-Fill, through
bypassing the long-winded procedure of diverse contents
generation involving millions of pixel-wise operations on
CPUs.

using image patches instead of a down-sampled image as
an input to transformers.

II. RELATED WORKS
A. CNN/GAN-BASED IMAGE INPAINTING
In this section, we review two representative deep learning
models for image inpainting; one is Shift-Net as a CNN-
based framework, and the other is DeepFill as a generative
adversarial network (GAN) based framework [18], [21].

Shift-Net is an extension of the U-net architecture where
the encoder features of the known region are shifted to the
decoder through a shift-connection layer and are employed
to estimate the missing regions accurately [18]. The network
is trained to minimize the guidance loss which is defined
as the discrepancy between the predicted feature and the
ground-truth features of the missing regions.

On the other hand, DeepFill is a generative image inpaint-
ing framework where gated convolution and SN-PatchGAN
are applied to enable using free-form masks with arbitrary
shapes [21]. Unlike either vanila convolution or partial
convolution which uses hard-mask gating, the gated con-
volution lets free-form masks to be softly updated over
layers [20], [21]. SN-PatchGAN is a variant of vanilla GAN
where the hinge loss of the discriminator is computed not
on a single output value (real or fake) but on all points
of the output map, that enables the GAN framework to
use free-form masks. It makes a decisive difference with
vanilla GAN that is designed based on a single rectan-
gular mask. It also includes contextual attention modules
to detect long-range dependencies between distant local
regions.

B. BAT-FILL: TRANSFORMER-BASED IMAGE INPAINTING
As illustrated in Figure 1, BAT-Fill, a transformer-based
image inpainting method, is composed of a diverse structure
generator followed by a texture generator, which aims
to achieve both diversity and accuracy [28]. A sequence
of bidirectional autoregressive transformers (BATs) are
used to reconstruct coarse but diverse structures from a
down-sampled masked image.

The transformers fill the missing regions pixel by pixel
in an autoregressive manner, which in turn faciliates the
diversity of image generation. In addition to the autoregres-
sive modeling, masked language modeling was also adopted,
similar to BERT, so that it refers to bidirectional contextual
dependency to better predict missing regions especially
which have arbitrary shape and surrounding background of
rough texture [30].

FIGURE 1. The architecture of BAT-Fill as a transformer-based image
inpainting method. A masked image is down-sampled and flattened as a
word sequence including mask tokens. Missing regions corresponding to
mask tokens are filled by the bidirectional autoregressive transformers
(BATs), and reshaped into the down-sampled image size. The masked
image also passes through a convolutional network; its output feature
map is concatenated to the low resolution image reconstructed by BATs,
and fed to the fine texture generator as a refinement network.

On the other hand, the texture generator, as the refinement
network following the diverse structure generator, is based
on generative adversarial learning to regenerate fine-grained
details of image texture up-sampled from the low-resolution
image which is reconstructed by the diverse structure
generator. It also takes advantage of unstained pixels of
the input image whose features are encoded by a separate
encoder whose architecture resembles the contracting path
of U-net [31]. The encoded feature maps are concatenated
with the reconstructed low resolution image from BATs, and
they are jointly fed to the decoding path of the texture gen-
erator to be up-sampled in stages through spatially-adaptive
normalization and gated convolutions [21], [32]. The texture
generator is completely separated from the diverse structure
generator in its training process.

III. PROPOSED METHODS
In the proposed GAN framework, the generator has an
encoder-decoder network architecture that is composed of
two major parts: a multi-scale feature extractor and a fine
texture generator. As illustrated in Figure 2, it could be
seen as a similar architecture as U-net but including dual
encoding backbones [31]. The multi-scale feature extractor
as the encoding part consists of both transformer and CNN
backbones that generate the multi-scale feature maps in
which missing regions are filled throughout low and high
resolutions. The fine texture generator as the decoding part
integrates both multi-scale feature maps from the transformer
and CNN backbones to reconstruct the fine-grained textures
of missing regions through the up-sampling pathways where
the context information of lower resolution feature maps are
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FIGURE 2. The proposed image inpainting network for removing hairs from hairy dermoscopic images consisting of a multi-scale
feature extractor and a fine texture generator. In the transformer backbone of the multi-scale feature extractor, a masked image is split
into patches, and each patch is unfolded into a masked sequence including mask tokens denoted as [M], fed to BATs, and unfolded to have
the equivalent or down-sized shape by 2−1, 2−2, and 2−3 times. The masked image also passes through the CNN backbone and its features
are encoded in multiple spatial scales. The multi-scale feature maps from both backbones are concatenated to the fine texture generator
to reconstruct fine details of missing regions. The ⊕ and ⊗ symbols represent element-wise addition and multiplication respectively.

propagated to higher resolution layers. The discriminator, the
other core element of the GAN framework, has the identical
structure to the one in BAT-Fill.

A. MULTI-SCALE FEATURE EXTRACTOR
The multi-scale feature extractor is composed of a trans-
former backbone and a CNN backbone. The transformer
backbone consists of a sequence of BATs in the common
manner as the diverse structure generator in BAT-Fill.
However, it aims to produce the multi-scale feature maps of
the input image whose missing regions are filled taking the
long-range dependency between distant regions into account
and are readjusted to multiple spatial scales through the
operations of pair-wise unfolding and down-sized folding,
while the diverse structure generator in BAT-Fill aims
to reconstruct the coarse and diverse structure of the
down-sampled input image.

1) TRANSFORMER BACKBONE
To permit the generation of multi-scale feature maps, an input
masked image of 256 × 256 is not down-sampled but split
into 1024 non-overlapping patches of 8×8 size. Each patch is
flattened into a sequence of length 192 = 8×8×3 with mask
tokens corresponding to a missing region. The patch-wise
reshaped input image of 192×1024 size is processed through
BATs without position embedding [28]. The output feature

vector corresponding to each patch is reshaped into the same
size of 8 × 8 as the input patch. However, as illustrated in
Figure 3, the reconstructed output patches are not located in
their original spatial positions but folded through a sliding
kernel, and are consequently merged by summing all spatially
overlapping values among blocks. The output shape resulted
from kernel-based folding is determined by three parameters
including kernel size in a spatial dimension (k), striding (s),
padding (p), and dilation (d) as follows

Y = s(L − 1) + d(k − 1) − 2p+ 1 (1)

where Y and L denote the output size and the total number of
patches respectively. Supposing that the 8 × 8 patches split
from an input image of 256 × 256 size are folded using an
8×8 kernel parameterized with stride of 4, padding of 2, and
dilation of 1, the folded feature map has the down-sized shape
of 128× 128 based on the equation Y = 4× (32− 1)+ 1×

(8 − 1) − 2 × 2 + 1.
While the conventional folding operation for vision

transformers has been designed to reconstruct the output
feature map with the same shape as the input image has, the
folding operation in the proposed method is more flexible so
as to produce the different size of output feature map. The
shape of the merged feature map is determined depending
on the settings of the sliding kernel; in other words, denser
striding between blocks leads to larger overlapping areas and
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FIGURE 3. Pair-wise unfolding and down-sized folding operations for
the transformer backbone. A masked image of 256 × 256 size is split into
1,024 patches of 8 × 8 size. Each patch is unfolded into a sequence of
length 192 = 8 × 8 × 3 including mask tokens. After being processed
through BATs, the output feature vectors are folded to build an equivalent
or down-sized shape by controlling the parameters of stride (s), padding
(p), and dilation (d ).

in turn a reduced size of the resulting output feature map.
The feature map with reduced size is expected to represent
the encoded features of coarse structure. On the other hand,
the resulting feature map will have exactly the same size
as the input image if the maximum striding (as the original
distance between subsequent blocks) is applied not to allow
overlapping areas between blocks.

2) CNN BACKBONE
The CNN backbone, as the other encoding channel, is almost
similar to the the contracting path of the U-net where
the input image is gradually down-sampled by the pooling
operation with stride 2, however all vanilla convolutions are
replaced to the gated convolutions [21], [31]. As shown in
Figure 2, an input feature map goes through two pathways
of gated convolution; one is down-sampling convolution with
stride 2 followed by batch normalization and leaky rectified
linear unit (Leaky ReLU) with negative slope of 0.2 as an
activation function, and the other consists of convolution
with stride 2, batch normalization, and sigmoid function,
and two pathways are multiplied together [33]. The gated
convolution is designed to train an image inpainting model
through soft gating where the mask is allowed to have gating
values ranging from zero to one. The mechanism of the gated
convolution makes it feasible to use a mask with arbitrary
shape rather than a rectangular mask when training the image
inpainting network.

B. FINE TEXTURE GENERATOR
The fine texture generator reconstructs fine-grained textures
of the missing regions through phased operations that

consist of a concatenation of the up-sampled low-level
feature map with the feature maps conveyed from both
the transformer and CNN backbones of the multi-scale
feature extractor, followed by two gated convolutions and
spatially adaptive denormalization (SPADE), a residual
connection of the up-sampled low-level feature map, and
up-sampling by nearest neighbor unpooling, as illustrated in
Figure 2 [32]. In the gated convolutions in the texture gener-
ator, Leaky ReLU were replaced with ReLU as an activation
function [33].

C. LOSS FUNCTION
The loss function for the GAN generator is given, similar to
BAT-Fill, to be the combination of a L1 loss, a perceptual
loss Lper , and an adversarial loss Ladv, which can be
mathematically formulated as follows

L = λ1L1 + λperLper + λadvLadv. (2)

where λ1, λper , and λadv are the weighting coefficients
corresponding to each loss which were set to be 1.0, 1.0, and
0.2 as done in BAT-Fill [28].

The L1 loss is defined as the absolute difference between
the predicted output image and the corresponding ground
truth, while the perceptual loss Lper is defined to be the sum
of absolute differences in feature maps of special layers in
a pretrained VGG-19 network between the predicted output
image and the ground truth [34]. On the other hand, the
adversarial loss Ladv for the generator is defined based on
Wasserstein GAN to be the negative expectation of the
discriminator output for the predicted output image as the
generator aims to delude the discriminator into recognizing
the predicted image as the real sample [35].

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) TRAINING CONFIGURATIONS
The proposed method was implemented in the Pytorch
framework (version 1.10.1) based on the source codes of
BAT-Fill, and was trained on 4 NVIDIA RTX A6000 GPUs
with CUDA (version 11.4) [28]. It was optimized using Adam
solver with a mini-batch size of 8 and a learning rate of
2 × 10−4 [36].

In particular, hair-shapedmasks were alternately employed
along with rectangular masks to train the proposed model as
well as BAT-Fill, in order to entice the model into increasing
the adaptability to hair-like shapes of missing regions in skin
images. To increase the complexity and heterogeneity of hair
patterns, the hair-shapedmasks were generated by stacking in
randomly chosen angles (among 0◦, 90◦, 180◦, 270◦) a few
hair template masks where hair regions are segmented from
dermoscopic images using LadderNet [37].

2) TRAIN DATASETS
Two publicly available datasets of CelebA-HQ and
ISIC-2020 were separately used to train the proposed model
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TABLE 1. Quantitative evaluations of the proposed framework with the state-of-the art image inpainting methods over ISIC 2020 hairless
dermoscopic images. Shift-Net, DeepFill v2, and BAT-Fill were trained using the official source codes released in public. All the metrics were assessed in
different conditions of hair density: low (the mask ratio of 10%), high (30%), and random densities (whose mask ratios are randomly sampled ranging
from 10% to 30%). A standard deviation was parenthesized under the corresponding mean, and the best performance was denoted in bold.

and evaluate its performance compared to the other methods
as described in Section IV-A4 [38], [39]. With the identical
experimental settings to BAT-Fill, CelebA-HQ which is a
large human face dataset with 30,000 high quality images was
used in this study to compare the performance of the proposed
method with BAT-Fill. CelebA-HQ was split into 28,000 and
2,000 for training and validation where 1,000 images chosen
randomly from the validation set were used for evaluation as
well.

On the other hand, the international skin imaging collabo-
ration (ISIC-2020) dataset consists of more than 33,000 der-
moscopic images acquired from over 2,000 patients including
various types of skin lesion including melanoma (mel),
seborrheic keratosis (sk) and nevus (nev) [39]. Adopting the
general process of training an image inpainting model using
a ground truth image and the synthetically generated mask
jointly, we built a training set of hairless dermoscopic images
which were manually chosen from ISIC-2020 to train the
proposed model along with pre-extracted hair-shaped masks
explained in Section IV-A1. The set of hairless images were
divided up into three subsets: 3,000 for training, 100 for
validation, and 150 for evaluation. Dermoscopic images of
diverse resolutions and sizes in ISIC-2020 were reshaped and
cropped into 256 × 256.

3) TEST DATASETS
For quantitative evaluation, we built a test dataset including
150 hairless skin images and the corresponding simulated
images with fake but realistic hairs, as an alternative
solution to the absence of such a dataset as the paired
skin images with and without hairs. The simulated images
were generated by blending a hairless skin image with one
or more stacked hair textures using the Poisson editing
algorithm [40]. Note that the hair textures were extracted
from hairy skin images by the same method as described in
Section IV-A1.

For qualitative evaluation, we built the other test dataset of
30 hairy skin images chosen from ISIC-2020. For a test skin
image, the corresponding hair region mask was generated
using LadderNet to be used as an input to the common image
inpainting pipeline [37].

4) COMPARED METHODS
The proposed method was compared with a few state-of-the-
art image inpainting models which were introduced in Sec-
tions I and II, including FMM as an image processing based
approach, Shift-Net as a CNN-based approach, DeepFillv2 as
a GAN-based approach, and BAT-Fill as a transformer-based
approach [7], [18], [21], [28].

The default configuration for training the compared
methods were set to use the Adam optimizer and the
mini-batch size of 8 [36]. As a few exceptions, Shift-Net
was trained with the mini-batch size of 1, and the diverse
structure generator of BAT-Fill was trained using Adam with
decoupled weight decay (AdamW) [41].

5) EVALUATION METRICS
Although there is no unanimous metric for quantitative
evaluation in image inpainting as discussed in [42], four
well-known metrics were used to evaluate the proposed
method on the test dataset of hairless skin images and
simulated hairy images described in Section IV-A3. Peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) with the window size of 11 were adopted which are
widely used in image inpainting [43]. The Fréchet inception
score (FID) and the learned perceptual image patch similarity
(LPIPS) are less widely used compared to PSNR and SSIM
but more pertinent to the perceptual quality and diversity of
inpainting results respectively [44], [45].

B. QUANTITATIVE EVALUATION
We first trained the proposed method and evaluated its
performance using the publicly available human face dataset
CelebA-HQ that was previously used to train and test
BAT-Fill [28]. Table 2 summarizes our quantitative evaluation
results on 1,000 human face images from CelebA-HQ in
respect of PSNR and SSIM. It should be noticed that the
values for DeepFill v2 and BAT-Fill were quoted from
the experimental results reported by Yu et al. in 2021.
Interestingly, the proposed method exhibited an increase
of 7.98 dB in PSNR but a decrease of 0.105 in SSIM
compared to BAT-Fill when the mask ratios were randomly

14230 VOLUME 11, 2023



Y. Lee, W. You: EBAT: Enhanced BATs for Removing Hairs in Hairy Dermoscopic Images

FIGURE 4. Qualitative comparison of the proposed framework with the state-of-the-art image inpainting methods for removing hairs
over the simulated hairy skin images from ISIC 2020. The images generated by FMM are seriously blurred impairing fine texture details,
and Shift-Net and DeepFill v2 are not successful to get rid of hair marks. The images generated by BAT-Fill are much better but still includes
hair fragments which are visually distinguishable. Our framework removes all hairs and accurately reconstructs skin and lesion textures.

TABLE 2. Quantitative evaluations of the proposed framework with the
state-of-the art image inpainting methods over CelebA-HQ human face
images. The values for DeepFill v2 and BAT-Fill were copied from [28].
Both PSNR and SSIM were assessed for small mask ratios (ranging
from 20 to 40%) and large make ratios (40-60%). The best performance
was denoted in bold.

given ranging from 20% to 60%. It implies that the image
generated by our framework is more congruous to its ground
truth even in large missing regions, compared to DeepFill
and BAT-Fill despite accompanying a nonnegligible loss in
structural information.

To assess the proposed method in regard to remov-
ing hairs from dermoscopic images, our framework was
trained and tested using the ISIC-2020 dataset described in
Section IV-A2 [39]. To analyze the effects of hair density on
the performance, the hairy images were simulated to have
either low or high hair pixel densities (of 10% and 30% on
average) by stacking just one or three hair template masks
as delineated in Section IV-A1. We carried out a paired
t-test to verify the statistical significance of the difference in
evaluation results between the proposed method and the other
method.

Table 1 shows the statistical evaluation results on the
paired set of 150 hairless skin images and simulated hairy
images. Compared to the compared methods, PSNR and
SSIM of our framework highly increased (with 2.6 dB and
0.042 over the second best method respectively) while FID
and LPIPS heavily decreased (with 60.6 and 0.09), which

FIGURE 5. Qualitative comparison of the proposed framework with the
state-of-the-art image inpainting methods over CelebA-HQ with large
masks. The images generated by both our framework and BAT-Fill are
more photo-realistic compared to FMM and DeepFill v2, but no significant
differences are found between two transformer-based methods.

were statistically significant (p-value < 0.05 for Ours vs. all
the compared models). It indicates that our EBAT framework
outperforms BAT-Fill as well as the other compared models,
on all the metrics relevant to either pixel-level accuracy or
perceptual quality.

We measured both the number of trainable parameters
and the inference time for the proposed method on a
single NVIDIA RTX A6000 GPU and compared them with
FMM and BAT-Fill. The average inference time on our
proposed framework was 205 ms for one image sample,
which is 1.5 times slightly slower than FMM (of 136 ms),
while the inference time on BAT-Fill was 187.1 times
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FIGURE 6. Qualitative comparison of the proposed framework with the state-of-the-art image inpainting methods for removing hairs
over ISIC 2020 hairy skin images. FMM, Shift-Net, and DeepFill v2 suffer from the blurring artifact and a number of noticeable hair marks,
similar with Figure 4 tested over simulated images. On the other hand, our proposed method removed most hairs in hairy skin images and
accurately reconstructed minute texture details and global structure of skin lesions.

extremely slower with 38,364 ms on average. Given the
fact that the number of trainable parameters is 3.55 times
larger in the proposed framework (361.1M) compared to
BAT-Fill (101.7M as the sum of 77.2M for the diverse
structure generator and 24.5M for the texture generator), it is
extraordinary that our method is much faster than BAT-Fill.
The sluggish processing time might originate mainly from
the pixel-unit repetitive loops, in the top-K sampling process
for diverse creation of missing regions, which sample the
most likely pixel values from the outputs predicted from
BAT.

C. QUALITATIVE EVALUATION
Figure 5 shows the visual comparison between our proposed
framework and the compared image inpainting methods
over the test dataset of CelebA-HQ. At first glance it is
formidable to discriminate the visual differences in generated
images between our method and BAT-Fill while both

transformer-based methods are superior to DeepFill v2.
On the other hand, it can be observed, through such delicate
details as hair color and eyebrow, that the image generated
by our method is a bit more consistent with the ground truth
compared to the other methods.

Figure 4 shows the qualitative comparison of removing
hairs over the simulated hairy skin images with high hair
density (30%) which were generated on skin cancer lesions
including nevus as described in Section IV-A3. In Figure 6,
we also showed the qualitative results of removing hairs over
authentic dermoscopic images with either sparse hairs or
dense hairs. Our method exhibited not only more enhanced
accuracy in reconstructing fine texture details and global
structure of skin and lesions but also better perceptual quality
in synthesizing photo-realistic images, compared to the other
methods whose image quality was noticeably deteriorated by
blurry and deformed textures as well as incompletely erased
hair stains.
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TABLE 3. Results of user study. Each entry is a mean opinion score
(MOS) for 26 image samples generated using the given methods. The
score is ranging from 1 (for the worst) to 5 (for the best), and the best
score was denoted in bold. A standard deviation was parenthesized
under the corresponding mean.

To evaluate the human-level perceived image quality
without references, we obtained the mean opinion score
(MOS) by asking 30 participant observers (24 males and
6 females in their 20s) to assess the quality of 26 given
images with a score ranging from 1 (worst) to 5 (excellent).
The sample images used for the MOS acquisition were
randomly chosen from the output images generated over
authentic dermoscopic images with a large number of
hairs. As summarized in Table 3, our method had the
highest average MOS ratings (4.18) which are proven
statistically significant compared to all the other methods
(p-value < 0.05 for Ours vs. all the other methods).

D. ABLATION STUDY
To figure out the effects of CNN and transformer backbones
in the multi-scale feature extractor on the performance of
removing hairs, we conducted ablation studies by removing
one of two backbones. We compared our method with
two ablations: (i) with CNN backbone only and (ii) with
transformer backbone only. The first ablationmodel (i) would
be seen as a network architecture similar to the U-net
where the CNN backbone and the fine texture generator
behave as the encoding and decoding parts respectively [31].
By contrast, the convolutional image features from the CNN
backbone are no longer exploited in the fine texture generator
in the second ablation model (ii), instead they are replaced
with the multi-scale feature maps produced through the
transformers.

As shown in Figure 7, the output images were distinctly
degraded when using both ablation models. Hairs remain
incompletely eliminated which resulted in deteriorating the
skin and lesion textures due to hair steins, although the
CNN backbone and the transformer backbone seemed to be
relatively better in capturing the global structure information
and the fine texture details with long-range dependency
respectively. On the other hand, the proposed method where
both CNN and transformer backbones are integrated was
superior to both ablation models in reconstructing both global
structure as well as fine-grained textures.

The qualitative analysis for the ablation models is consis-
tent with the quantitative evaluation results over simulated
skin images as summarized in Table 4. The proposed
method obviously improved all the metrics even in the
case of high hair density, which demonstrates the advantage
of integrating both CNN and transformer backbones to
extract a comprehensive set of image features relevant to
global structure and fine-grained textures with long range

FIGURE 7. Visual comparison of the proposed method with its
ablations for verifying the effect of integrated transformer and CNN
backbones. The use of integrated transformer and CNN backbones in the
multi-scale feature extractor results in the enhanced performance in
removing hairs and reconstructing the fine textures of skin and lesions.

TABLE 4. Quantitative comparison of our proposed framework with its
ablations over a hair-simulated image dataset from ISIC 2020 hairless
dermoscopic images. The ablation study was conducted for coarse hairs
(of mask ratio 10%) or dense hairs (30%). A standard deviation was
parenthesized under the corresponding mean, and the best performance
was denoted in bold.

dependency that cannot be readily captured by convolutional
layers.

V. CONCLUSION
In this study, we present a novel transformer-based generative
image inpainting framework, called EBAT, that achieves
accurate and realistic reconstruction of skin texture by remov-
ing hairs from dermoscopic images. Our model is able to
learn both coarse structure and fine skin textures by extracting
image features with long-range dependency in multiple
spatial scales using dual modalities of bidirectional autore-
gressive transformers and convolutional neural networks. The
multi-scale feature extraction from transformers is facilitated
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by patch-wise unfolding and down-sized folding operations.
Our framework is efficiently trained in an end-to-end manner
through manifold pathways laid between multi-scale feature
extractor and fine texture generator. The experimental results
on removing hairs in both simulated and authentic hairy
dermoscopic images show that, in qualitative and quantitative
performance of removing hairs from dermoscopic images,
our extensive transformer-based image inpainting framework
outperforms not only the state-of-the-art image inpainting
models but also the latest transformer-based method like
BAT-Fill.

Despite the novelties and improved applicability of our
model to hairy skin images, it deserves to mention its
technical limitations. It is still challenging to remove hairs
laid on skin lesions. We find that our method sometimes fails
in removing hairs whose color is similar to either skin lesions
or skin. The method should be improved to learn diverse
features of skin lesions.

As a future work, it is imperative to figure out the potential
effects of hair removal on skin cancer classification. The hair
removal algorithm needs to be advanced toward reducing the
vulnerability of skin cancer classification to hair removal,
taking into account the risk such that the texture of skin lesion
might be tainted by the process of removing hairs.
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