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ABSTRACT This paper studies the real-time parameter estimation and adaptive tracking control problem for
a six degrees of freedom (6-DOF) of quadrotor unmanned aerial vehicle (UAV) as an under-actuated system.
A virtual proportional derivative (PD) is proposed to maintain position dynamics. Two adaptive control
schemes are designed and compared to maintain the attitude dynamics of UAV while several parameters of
UAV are unknown. In the first scheme, a classical adaptive scheme using the certainty equivalence principle is
extended and designed for tracing control of the systems with unknown time-varying parameters. To improve
the performance of the first scheme, a new control scheme is designed in the second scheme by proposing
additional continuous function to handle the unknown parameters. An additional robust term is designed
in both schemes to handle the perturbation caused by unknown time-varying parameters. The rigorous
analytical proof and numerical simulation analysis are provided to support the efficacy of the proposed
controller.

INDEX TERMS Quadrotor, unmanned aerial vehicle, unknown time-varying parameter, classical adaptive
scheme, certainty equivalence principle, adaptive control.

I. INTRODUCTION
Research on quadrotor UAV has attracted many atten-
tions amongst both researchers and industries over the
past decade. They are mostly useful for missions which
are dull or hazardous for the human. For example, UAVs
have found their way in nuclear decommissioning, vol-
cano monitoring and data collection, geographical pho-
tography, precision agriculture, and creative industries
[3], [24], [26]. Currently, autonomous operation and cog-
nition of UAVs, either as an operation of a single UAV or
as cooperation amongst several UAVs as a cyber-physical
system is one of the hottest research areas from the control
engineers’ perspective [20], [29]. Many control strategies
have been studied in different settings so far, and the main
objective is to come with a design which is more realistic and
suitable from the practical implementation point of view.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mou Chen .

Quadrotor UAV is a nonlinear under-actuated system con-
sisting of individual four rotors in a cross or plus configu-
ration. UAV has four control inputs to maintain six outputs
with highly coupled states. There are three states related to
translational motion that allow UAV to move in the lateral,
vertical, backward and forward directions. The rest of the
dynamic is related to the UAV attitude, i.e. roll, pitch and
yaw angles. Themain focus of the trajectory tracking problem
in UAVs is to control the rotational dynamics. The primary
reason is the under-actuated nature of UAV, for which the
position tracking control problem is addressed by controlling
UAV attitude dynamics.

One of the common issues in designing the controller
for the rotational motions is the presence of nonlineari-
ties in the system dynamics. Under this situation, a proper
nonlinear controller plays an important role to handle the
UAV movement in the full nonlinear operational range.
Several investigations have been conducted to address
the trajectory tracking problem, especially for rotational
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dynamics, in UAVs. Feedback linearization was proposed in
[30] and [32] is one of the common techniques proposed for
trajectory tracking problem in UAVs.

However, in many practical situations, several parameters
of the UAV are unknown for the feedback control design.
These uncertain parameters are likely to cause more technical
challenges in designing the controller. There are two major
research lines to handle this issue. The first approach is robust
control technique. The idea behind this strategy is to design
a feedback controller to dominate the unknown uncertainties
in the system dynamics. As a result, the controller can handle
the uncertainties within a certain bound. The disadvantage of
this approach is that the uncertainty bound must be known in
advance. One of the popular techniques using robust approach
is the sliding mode control. This scheme is widely imple-
mented in UAV applications as it is less sensitive to the
disturbance, such as presented in [17], [31]. To compensate
the effect of uncertain dynamics as well as unknown distur-
bances, while reducing the chattering problem in the sliding
mode control, several efforts were presented in [4], [22],
and [23].

The second major research line is adaptive control, which
is especially useful for systems with unknown parameters.
Initially, the research in this direction is started with the
classical adaptive approach using the certainty equivalence
principle to handle the uncertain parameters. The idea behind
this technique is to cancel the nonlinear terms containing the
unknown constant parameter by estimating the unknown part.
The adaptation law is derived using a Lyapunov like func-
tion such that the trajectory tracking objective is achieved.
The perfect cancellation of the nonlinear term is achieved
by driving the parameter estimation error to zero. This
technique is simple in terms of implementation; however,
it is limited for systems with unknown constant parame-
ters. For some more information on this technique, refer to
in [20].

Another adaptive scheme to handle uncertain parameters
is the model reference adaptive control (MRAC). In this
technique, an unknown constant parameter is estimated using
a state predictor, as mentioned in [21]. Application of this
technique for an unmanned vehicle can be found in [25].
However,MRAC has amajor drawback that cannot guarantee
the stability of the closed-loop system [1]. This issue was
resolved by proposing the L1 adaptive control scheme and
designing a linear filter in thewhole control structure [9]. This
technique was studied further in [8] for collaborative UAVs.
It should be noted that the estimated parameters in this tech-
nique do not converge necessarily to the actual parameters as
the system was tuned for the worst-case condition. Since the
mismatch between the estimated parameters and the actual
values is used to update the parameters of the system, this
approach is computationally expensive. Some results were
investigated using state observer method for tracking control
of UAV as presented in [27] and [28]. Recently, an adap-
tive approach using the certainty equivalence principle was

developed in [12] and [13] for UAV with some unknown
constant parameters.

Intelligent computation is another typical approach in the
adaptive scheme to deal with unknown parameters. For exam-
ple, a genetic algorithmwas proposed in [19] for robot manip-
ulator, and a neural network (NN) was proposed in [6] and [7]
to handle the uncertainties for single and double integrator
dynamics in the networked environment. There are two main
issues in using intelligent computation. The first is that track-
ing control is not asymptotically achieved but with residual
error. This is caused by the mismatch approximation of the
nonlinear function. The second is that intelligent computation
requires sophisticated hardware to estimate unknown param-
eters. As a result, from the perspective of UAV applications,
this technique is limited to be implemented in the actual UAV
systems.

To address the open issues in the classical adaptive control
approach, immersion and invariance (I&I) was developed
in [2] and [18] to handle the unknown constant parameters.
In this technique, the system was designed to satisfy the input
to state stability (ISS) condition first without having unknown
nonlinear terms in the system dynamics. The adaptive part
was designed by adding a continuous function to the con-
troller to guide the parameter estimation algorithm to the
right direction. In this case, the stability was guaranteed by
driving the mismatch estimation error to a specific manifold.
It is worth noting that the stability condition here was derived
by looking at the error dynamic for the parameter estimation
rather than the closed-loop system dynamic. This was reason-
ably achieved by applying the ISS condition. This approach
was designed to handle unknown constant parameters.

The I&I technique was proposed in [11], [16] to for-
mulate the parameter estimation problem in UAVs. In this
method, having the mismatch error between the estimated
and the actual value of the parameters was necessary for the
derivation of the adaptation law. Consequently, the method
has a significant bottleneck to be applied in practical situa-
tions. To rectify this problem, in this paper, two techniques
are proposed to control a quadrotor UAV with unknown
time-varying parameters in the system dynamics. The con-
trol problem is more challenging due to the presence of the
unknown time-varying gain in the control input structure.
In the first scheme, an extended classical adaptive approach
(ECAA) is developed to handle the time-varying paramet-
ric uncertainties in the system. The idea is to estimate the
unknown parameters by proposing the certainty equivalence
principle. This scheme suggests two steps to estimate the
unknown parameters of the system dynamic. First, the con-
troller is designed for the system under the ideal condition
where all the system parameters are assumed to be known
for the feedback control design. Then, in the second step,
the unknown parameters of the system are replaced by their
estimated values, generated as a result of the adaptation law.
As mentioned above, this classical approach has an inherent
drawback to estimate the unknown parameters of the system.
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Inspired by the results reported in [2], [5], [14], and [15],
in the second scheme, a new adaptive technique is developed
to handle multiple uncertain time-varying parameters of the
UAV in the attitude dynamic part. The controller has a robust
term to eliminate the effect of unknown parameters, where
the steady state parametric estimation error is not necessarily
converging to zero. Compared to [2], here the ISS condi-
tion is relaxed, and the stability analysis is carried out on
both the trajectory tracking and parameter estimation error
dynamics. In this way, the necessity of having the mismatch
error between the estimated parameter and the actual value is
relaxed for both feedback control and parameter adaptation
stages. This is a very important extension of the current
techniques for the practical implementation of the algorithm.
A virtual control using PD controller is utilized to track the
position in the outer loop of the proposed nested control
structure.

The remainder of this paper is organized as follows. The
dynamics of UAV is presented in Section II. In Section III,
the details relating to the two proposed adaptive schemes for
the attitude dynamic control, including the position tracking
control for the outer-loop are presented. The extensive numer-
ical results are presented in Section IV to prove the efficacy
of the proposed scheme. The paper is concluded in Section V
with some suggestions for future research.

II. SYSTEM DYNAMICS OF UAV
Consider the general motion of the 6-DOF dynamic model of
UAV expressed by the following states

η =

[
η1
η2

]
, ν =

[
ν1
ν2

]
,

where η1 =
[
x y z

]T is a position vector consisting of

forward (x), lateral (y) and vertical (z) states; η2 =
[
φ θ ψ

]T
is an orientation vector consisting of roll (φ), pitch (θ ) and
yaw (ψ) states; ν1 =

[
u v w

]T is a linear velocity; and

ν2 =
[
p q r

]T is an angular velocity vectors. The dynamic
of the qaudrotor UAV is derived from the highly coupling
between the inertial and body frames. This coupling can be
expressed by the transformation matrices J1(η2) and J2(η2)

J1(η2) =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ

− sin θ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ
cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ


J2(η2) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 cosφ

cos θ
cosφ
cos θ

 .
Assuming that cosφ ̸= 0 and cos θ ̸= 0, thus
J

T

1 (η2) = J−1
1 (η2). The dynamic coupling between posi-

tion and orientation vectors can be represented by the
following transformation

η̇1 = J1(η2)ν1, η̇2 = J2(η2)ν2. (1)

As derived in [16], the translational dynamic of the quadro-
tor UAV is expressed by

η̈1 = −gze + J1(η2)
u
m
ze −

kt
m
η̇1, (2)

and the attitude or rotational dynamics is

ν̇2 = I−1
M (−(ν2 × IMν2) + τ ), (3)

where g, u, m, and kt are gravity acceleration, thrust force,
mass, and translational drag coefficient, respectively. Vector
τ =

[
τp τq τr

]T is the torques acting in the body frame.

Vector ze =
[
0 0 1

]T is the unitary vector in z direction and
IM = diag

[
Ix Iy Iz

]
is an inertia matrix. From (2) and (3),

we can see that the number of degrees of freedom is higher
than the number of control inputs, and hence the UAV is an
under-actuated system.

The attitude dynamic in (3) with an additional external
disturbance can be rewritten in the linearly parameterized
form as

ν̇2 = w1f (ν2) + w21 + w3τ, (4)

where

w1 = diag
[
Iy−Iz
Ix

Iz−Ix
Iy

Ix−Iy
Iz

]
w3 = I−1

M

f (ν2) =
[
qr pr pq

]T
1 =

[
1 1 1

]T
.

Matrix w2 is a time-varying additional disturbance acting on
the body frame. The inertia parameters Ix(t), Iy(t) and Iz(t)
are unknown time-varying values satisfying the following
assumptions.
Assumption 1: The inertia parameters Ix(t), Iy(t) and Iz(t)

are piecewise constant functions with time-varying switching
time.

Both w1 and w3 are weighing matrices whose elements
are constructed by the inertia parameters. As a result, w1 and
w3 are also time-varying matrices. This is a practical assump-
tion in many real life situations, for example when the inertia
parameters are changing as a result of change in the UAV
payload or when one or more components are damaged due
to a fault. The effect of time-varying external disturbances
on the attitude dynamic of the quadrotor is considered by the
time-varying weight matrix w2.
Assumption 2: The restriction on variations of the param-

eter w2(t) satisfies the following bounds for any t ≥ 0

w2 ≤ w2(t) ≤ w̄2

δ =
1
2

∣∣w̄2 − w2

∣∣ ,
where w2 and w̄2 are the minimum and maximum values of
w2(t).
Remark 1: Here it is assumed that matrices w2 and w̄2 are

unknown. The perturbation term σ (t) is defined as σ (t) =

w2(t)− l, where l is a constant diagonal matrix. By choosing
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l =
1
2 (w̄2 + w2), then under the Assumption 2, we have

|σ (t)| ≤ δ for any t ≥ 0. Inspired by [5], it is worth noting that
only the value of δ is assumed to be known for the feedback
control design and the value of the parameter l is unknown
as it appears only for the stability analysis of the feedback
system and is not needed for the controller design.

III. PROPOSED CONTROL DESIGN
A UAV is an under-actuated system, in which four control
inputs are used to control the six system states. All states
are highly coupling between the translational and attitude
dynamic of UAV. In this section, a nested control strategy
for trajectory tracking of the quadrotor dynamic is designed.
A PD controller is developed for the position tracking error in
the outer loop. For inner loop, two adaptive control schemes
are designed to control the attitude dynamic in the pres-
ence of uncertain parameters of the nonlinear system. The
extended classical adaptive approach (ECAA) is proposed in
the first step using the certainty equivalence principle. In this
technique, the adaptive law is designed to handle parametric
uncertainties. Nevertheless, in the second scheme, a new
adaptive scheme is developed to improve the performance
of the ECAA by adding a certain continuous differentiable
function in the structure of the adaptive control design.

A. TRANSLATIONAL CONTROL DESIGN
In this section, the tracking controller for the translational
dynamics is designed using a virtual PD controller. We define
the tracking error of the system to be

η̃1 = η1 − η1d , (5)

where η̃1 and η1d are the error vector position and the desired
vector position, respectively. The second order dynamics of
(5) is expressed by

¨̃η1 = −KD ˙̃η1 − KPη̃1. (6)

The control gains KP and KD are selected to be posi-
tive definite matrices, then system dynamics (6) satisfies
Routh-Hurwitz stability criterion by having limt→∞ η̃1(t) =

0. We can rewrite the dynamics (5) as follows

η̈1 = η̈1d − KD(η̇1 − η̇1d ) − KP(η1 − η1d ). (7)

Inspired by [33],we define a virtual control input U =

η̈1 =
[
U1 U2 U3

]T and substitute it in (2). As a result,
we have

U = −gze + J1(η2) um ze −
kt
m η̇1, (8)

or
u
m
ze = J−1

1 (η2)(U + gze +
kt
m η̇1). (9)

From (9), we can verify that

(U1 +
kt
m
ẋ) cos θ cosψ + (U2 +

kt
m
ẏ) cos θ sinψ

− (U3 + g+
kt
m
ż) sin θ = 0, (10)

(U1 +
kt
m
ẋ)(sinφ sin θ cosψ − cosφ sinψ)

+ (U2 +
kt
m
ẏ)(sinφ sin θ sinψ + cosφ cosψ)

+ (U3 + g+
kt
m
ż) sinφ cos θ = 0, (11)

(U1 +
kt
m
ẋ)(cosφ sin θ cosψ + sinφ sinψ)

+ (U2 +
kt
m
ẏ)(cosφ sin θ sinψ − sinφ cosψ)

+ (U3 + g+
kt
m
ż) cosφ cos θ =

u
m
. (12)

The fact that cos θ is non zero for any t > 0, then we can
generate θ from (10) as follows

θ = arctan

(
(U1 +

kt
m ẋ) cosψ + (U2 +

kt
m ẏ) sinψ

U3 + g+
kt
m ż

)
.

(13)

By squaring both sides of (9), then we obtain

(
u
m
ze)T(

u
m
ze) =

(
J−1
1 (η2)(U + gze +

kt
m
η̇1)
)T

×

(
J−1
1 (η2)(U + gze +

kt
m
η̇1)
)

=

(
U + gze +

kt
m
η̇1

)T(
U + gze

+
kt
m
η̇1

)
. (14)

As a result

u
m

=

(
(U1 +

kt
m
ẋ)2 + (U2 +

kt
m
ẏ)2

+ (U3 + g+
kt
m
ż)2
)1/2

(15)

From (11) and (12), we have

u
m

sinφ = (U1 +
kt
m
ẋ) sinψ − (U2 +

kt
m
ẏ) cosψ (16)

By substituting (15) to (16), we can derive φ as follows

φ = arcsin
(
((U1 +

kt
m
ẋ) sinψ − (U2 +

kt
m
ẏ) cosψ)

×

(
(U1 +

kt
m
ẋ)2 + (U2 +

kt
m
ẏ)2

+ (U3 + g+
kt
m
ż)2
)−1/2

)
. (17)

The total thrust can be generated from (12) as expressed by

u = m
(
(U1 +

kt
m
ẋ)(cosφ sin θ cosψ + sinφ sinψ)

+ (U2 +
kt
m
ẏ)(cosφ sin θ sinψ − sinφ cosψ)

+ (U3 + g+
kt
m
ż) cosφ cos θ

)
. (18)
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By following a similar way, we can calculate φd and θd
from (17) and (13)

φd = arcsin
((

(U1 +
kt
m
ẋd ) sinψd − (U2 +

kt
m
ẏd )

× cosψd
)(
(U1 +

kt
m
ẋd )2 + (U2 +

kt
m
ẏd )2

+ (U3 + g+
kt
m
żd )2

)−1/2
)

(19)

θd = arctan

(
(U1 +

kt
m ẋd ) cosψd + (U2 +

kt
m ẏd ) sinψd

U3 + g+
kt
m żd

)
.

(20)

B. ATTITUDE CONTROL DESIGN
Themain contribution of the paper is presented in this section.
The presence of uncertain parameters in the attitude dynamics
may cause a challenging problem in designing the attitude
controller. If all system parameters are known for the feed-
back control design, we can cancel the nonlinear terms by
proposing a simple feedback linearization method. However,
in many practical situations, several parameters of the UAV
are often unknown. The problem becomes more complicated
for unknown time-varying parameter cases. Consequently,
a proper controller such as adaptive techniques is required
to handle the uncertainties. In this paper, all parameters of
the attitude dynamics are unknown and time-varying. ECAA
and a new approach are designed and compared to handle this
issue.

Before presenting the main results, we define the desired
trajectory as ν2d =

[
pd qd rd

]T. The trajectory error can be
calculated by e = ν2 − ν2d . Therefore, the tracking dynamics
error can be written as

ė = w1f (ν2) + w21 + w3τ − ν̇2d . (21)

The tracking control is deemed to be successful if

lim
t→∞

e(t) = 0. (22)

Now, we define an ideal reference model without uncertain-
ties that leads to desired trajectory ν2d as represented by

˙̂ν2 = −K1(ν̂2 − ν2d ), (23)

with a stable tracking error dynamics

ėd = −K1(ν̂2 − ν2d ) − ν̇2d , (24)

where K1 is a positive-definite constant matrix, ν̂2 =[
p̂ q̂ r̂

]T is the state of reference model, and ed = ν̂2 − ν2d .
From (21) and (24), we can write the new tracking error
dynamics as

˙̃ν2 = K1(ν̂2 − ν2d ) + w1f (ν2) + w21 + w3τ, (25)

where ν̃2 = ν2 − ν̂2. Before presenting the main results,
we define

ν2 = diag(ν2), ν̃2 = diag(ν̃2)

E = diag(e), F(ν2) = diag(f (ν2))

χ (ν̃2) =
[
χ1 χ2 χ3

]T
, χ (ν̃2) = diag(χ (ν̃2)),

where

χ1 = = sgn(p− p̂)

χ2 = sgn(q− q̂)

χ3 = sgn(r − r̂),

1) EXTENDED CLASSICAL ADAPTIVE APPROACH
In the first scheme, we present a classical adaptive approach
to handle the uncertain parameters in the attitude dynamics.
The unknown matrices of w1, w2 and w3 are estimated by ŵ1,
ŵ2 and ŵ3, respectively, where w̃1 = ŵ1 − w1, w̃2 = ŵ2 − l,
and w̃3 = ŵ3 − w−1

3 ; and constant l is defined in Remark 1.
The extended classical adaptive scheme is presented in
Theorem 1.
Theorem 1 (ECAA): Consider the attitude dynamics (4),

under the Assumptions 1 and 2, the proposed control law is
designed as

τ = −ŵ3
(
K1e+ K2χ (ν̃2) + ŵ1f (ν2) + ŵ21

)
, (26)

where ŵ1, ŵ2 and ŵ3 are updated by the following adaptation
laws

˙̂w1 = 01F(ν2)ν̃2,
˙̂w2 = 02ν̃2,

˙̂w3 = 03ν̃2(K1E + K2χ (ν̃2) + ŵ1F(ν2) + ŵ2), (27)

for some selection of α, 01, 02, 03 > 0, K1 > α
2 I3 and

K2 ≥
1
2α δ

2. Then the time-derivative of

Vν̃2w̃1w̃2w̃3 =
1
2
ν̃T
2 ν̃2 + tr

(1
2
0−1
1 w̃2

1

+
1
2
0−1
2 w̃2

2 +
1
2
0−1
3 w3w̃2

3

)
, (28)

along the closed-loop system (4)+(26)+(27) is

V̇ν̃2w̃1w̃2w̃3 ≤ −ν̃T
2 (K1 −

α

2
I3)ν̃2

− ν̃T
2 (K2 −

1
2α
δ2)χ (ν̃2) ≤ 0, (29)

Proof: The dynamics error of closed-loop system
(4)+(26)+(27) can be written as

˙̃ν2 = K1(ν̂2 − ν2d ) + w1f (ν2) + w21 − w3ŵ3

× (K1e+ K2χ (ν̃2) + ŵ1f (ν2) + ŵ21)

= K1(ν̂2 − ν2d ) + w1f (ν2) + w21 − w3

× (w̃3 + w−1
3 )
(
K1e+ K2χ (ν̃2) + ŵ1f (ν2)

+ ŵ21
)

= K1(ν̂2 − ν2d ) + w1f (ν2) + w21 − w3w̃3

× (K1e+ K2χ (ν̃2) + ŵ1f (ν2) + ŵ21)

−K1e− K2χ (ν̃2) − ŵ1f (ν2) − ŵ21

= −K1ν̃2 − K2χ (ν̃2) − w̃1f (ν2) − (w̃2 + σ )1

−w3w̃3(K1e+ K2χ (ν̃2) + ŵ1f (ν2) + ŵ21). (30)
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FIGURE 1. The control system scheme of 6-DOF UAV based on Theorem 1.

Direct calculation shows that the time-derivative of Vν̃2w̃1w̃2w̃3

is

V̇ν̃2w̃1w̃2w̃3 = ν̃T
2

˙̃ν2 + tr
(
0−1
1 w̃1 ˙̂w1

+0−1
2 w̃2 ˙̂w2 + 0−1

3 w3w̃3 ˙̂w3

)
= ν̃T

2

(
− K1ν̃2 − K2χ (ν̃2) − w̃1f (ν2)

− w̃21 + σ1 − w3w̃3
(
K1e+ K2χ (ν̃2)

+ ŵ1f (ν2) + ŵ21
))

+ tr
(
0−1
1 w̃1 ˙̂w1

+0−1
2 w̃2 ˙̂w2 + 0−1

3 w3w̃3 ˙̂w3

)
= −ν̃T

2K1ν̃2 − ν̃T
2K2χ (ν̃2) + ν̃T

2

×

(
− w̃1f (ν2) − w̃21 + σ1

−w3w̃3
(
K1e+ K2χ (ν̃2) + ŵ1f (ν2)

+ ŵ21
))

+ tr
(
0−1
1 w̃1 ˙̂w1 + 0−1

2 w̃2 ˙̂w2

+0−1
3 w3w̃3 ˙̂w3

)
= −ν̃T

2K1ν̃2 − ν̃T
2K2χ (ν̃2) + ν̃T

2 σ1

+ tr
(
0−1
1 w̃1 ˙̂w1 + 0−1

2 w̃2 ˙̂w2 + 0−1
3 w3

× w̃3 ˙̂w3 − w̃1F(ν2)ν̃2 − w̃2ν̃2 − w3w̃3ν̃2

×

(
K1E + K2χ (ν̃2) + ŵ1F(ν2) + ŵ2

)
≤ −ν̃T

2K1ν̃2 − ν̃T
2K2χ (ν̃2) +

α

2
ν̃T
2 ν̃2

+
1
2α

tr
(
sgn(|ν̃2|)σ

2
)

≤ −ν̃T
2 (K1 −

α

2
I3)ν̃2

− ν̃T
2 (K2 −

1
2α
δ2)χ (ν̃2)

≤ −ν̃T
2 (K1 −

α

2
I3)ν̃2 ≤ 0,

where α > 0, K1 > α
2 I3 and K2 ≥

1
2α δ

2. From (27)
and (30), we can see that ν̃2, w̃1, w̃2, and w̃3 are bounded.
To show the tracking error ν̃2 is driven asymptotically to zero,
we calculate the second time-derivative of Lyapunov function
V (ν̃2, w̃1, w̃2, w̃3) as

V̈ν̃2w̃1w̃2w̃3 ≤ −ν̃T
2 (2K1 − αI3) ˙̃ν2. (31)

It shows from (30) that ν̃2 is uniformly bounded, and
hence V̈ν̃2w̃1w̃2w̃3 is bounded. This implies that V̇ν̃2w̃1w̃2w̃3

is uniformly continuous. By Barbalat’s Lemma, one has
limt→∞ ν̃2(t) = 0, it implies limt→∞ e(t) = 0. This com-
pletes the proof.

It can be observed from the above formulation that the
convergences of estimation errors w̃1, w̃2 and w̃3 fully rely
on ν̃2(t). The values of tr(w̃1 ˙̂w1), tr(w̃2 ˙̂w2) and tr(w̃3 ˙̂w3) are
not always negative. Consequently, the adaptation law (27)
will always update itself even the actual value of the unknown
parameter is reached. In another side, it will stop updating
itself if ν̃2(t) converges to zero. It means that the tracking con-
trol is asymptotically achieved, even if the estimated param-
eters does not converge to the actual values. The controller
(26) has a robust term −K2χ (ν̃2) to handle the perturbation
term σ . The full control scheme of UAV using Theorem 1 is
presented in Figure 1.

2) A NEW ADAPTIVE SCHEME
To compare and improve the ECAA scheme developed in
the previous section, here we design a new adaptive control
scheme to handle the uncertain parameters in the attitude
dynamics of the UAV. Before presenting our new adaptive
approach, we define

z1 = ρ1(ν2) − ŵ1 + w1

z2 = ρ2(ν2) − ŵ2 + l

z3 = ρ3(ν2, ŵ1, ŵ2) − ŵ3 + w−1
3 , (32)

where

ν2 = diag(ν2), ν̃2 = diag(ν̃2),

and l is defined in Remark 1. The new approach is summa-
rized in Theorem 2.
Theorem 2 (New Adaptive Approach): Consider the atti-

tude dynamics (4), under Assumptions 1 and 2, the control
law is designed as

τ = (ρ3(ν2, ŵ1, ŵ2) − ŵ3)
(
K1e+ K2χ (ν̃2)

− (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2) − ŵ2)1
)
, (33)

where ŵ1, ŵ2 and ŵ3 are adapted by the following update
rules

˙̂w1 =
∂ρ1(ν2)
∂ν2

(−K1E − K2χ (ν̃2)),
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˙̂w2 =
∂ρ2(ν2)
∂ν2

(−K1E − K2χ (ν̃2)),

˙̂w3 =
∂ρ3(ν2, ŵ1, ŵ2)

∂ν2
(−K1E − K2χ (ν̃2))

+
∂ρ3(ν2, ŵ1, ŵ2)

∂ŵ1

˙̂w1 +
∂ρ3(ν2, ŵ1, ŵ2)

∂ŵ2

˙̂w2, (34)

for some selection of 31,32,33 > 0, α ≥
1
2 , K1 > αI3,

K2 ≥
1
2α δ

2; and ρ1(ν2), ρ2(ν2) and ρ3(ν2) are

ρ1(ν2) = −31F(ν2)ν2,

ρ2(ν2) = −32ν2,

ρ3(ν2, ŵ1, ŵ2) = −33ν2
(
K1E + K2χ (ν̃2) − (ρ1(ν2)

− ŵ1)F(ν2) − ρ2(ν2) + ŵ2
)
, (35)

then the time-derivative of

Vν̃2z1z2z3 =
1
2
ν̃T
2 ν̃2 + tr

(1
2
3−1

1 z21 +
1
2
3−1

2 z22

+
1
2
3−1

3 w3z23
)
, (36)

along the closed-loop system (4)+(33)+(34) is

V̇ν̃2z1z2z3 ≤ −ν̃T
2 (K1 − αI3)ν̃2 ≤ 0. (37)

Proof: The error dynamic of the closed-loop system
(4)+(33)+(34) can be written as

˙̃ν2 = K1(ν̂2 − ν2d ) + w1f (ν2) + w21 + w3

× (ρ3(ν2, ŵ1, ŵ2) − ŵ3)
(
K1e+ K2χ (ν̃2)

− (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2) − ŵ2)1
)

= K1(ν̂2 − ν2d ) + w1f (ν2) + w21 + w3

× (z3 − w−1
3 )
(
K1e+ K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

× f (ν2) − (ρ2(ν2) − ŵ2)1
)

= K1(ν̂2 − ν2d ) + w1f (ν2) + w21 + w3z3
× (K1e+ K2χ (ν̃2) − (ρ1(ν2) − ŵ1)f (ν2)

− (ρ2(ν2) − ŵ2)1
)
− K1e− K2χ (ν̃2)

+ (ρ1(ν2) − ŵ1)f (ν2) + (ρ2(ν2) − ŵ2)1

= −K1ν̃2 − K2χ (ν̃2) + z1f (ν2) + (z2 + σ )1

+w3z3(K1e+ K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

× f (ν2) − (ρ2(ν2) − ŵ2)1
)
. (38)

For convenience of presentation, we rewrite the Lyapunov
function (36) as follows

Vν̃2z1z2z3 = Vν̃2 + Vz1 + Vz2 + Vz3 , (39)

where

Vν̃2 =
1
2
ν̃T
2 ν̃2, Vz1 = tr

(1
2
3−1

1 z21
)
,

Vz2 = tr
(1
2
3−1

2 z22
)
, Vz3 = tr

(1
2
3−1

3 w3z23
)
.

Direct calculation shows that the time-derivative of Vν̃2 along
the dynamics (38) is

V̇ν̃2 = ν̃T
2

˙̃ν2

= ν̃T
2

(
− K1ν̃2 − K2χ (ν̃2) + z1f (ν2) + (z2 + σ )1

+w3z3
(
K1e+ K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

× f (ν2) − (ρ2(ν2) − ŵ2)1
))

= −ν̃T
2K1ν̃2 − ν̃T

2K2χ (ν̃2) + ν̃T
2

(
z1f (ν2)

+ (z2 + σ )1 + w3z3
(
K1e+ K2χ (ν̃2)

− (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2) − ŵ2)1
))

≤ −ν̃T
2 (K1 − αI3)ν̃2 − ν̃T

2K2χ (ν̃2) +
1
2α

(
z1

× f (ν2) + z21 + w3z3
(
K1e+ K2χ (ν̃2)

− (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2) − ŵ2)1
))T

× sgn(|ν̃2|)
(
z1f (ν2) + z21 + w3z3

(
K1e

+K2χ (ν̃2) − (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2)

− ŵ2)1
))

+
1
2α

(
z1f (ν2) + z21 + w3z3

(
K1e

+K2χ (ν̃2) − (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2)

− ŵ2)1
))T

σ sgn(|ν̃2|)
(
z1f (ν2) + z21 + w3z3

×
(
K1e+ K2χ (ν̃2) − (ρ1(ν2) − ŵ1)f (ν2)

− (ρ2(ν2) − ŵ2)1
))

+
1
2α

1Tσ 21

≤ −ν̃T
2 (K1 − αI3)ν̃2 − ν̃T

2K2χ (ν̃2) +
1
2α

× tr
(
sgn(|ν̃2|)

(
z1F(ν2) + z2 + w3z3

(
K1E

+K2χ (ν̃2) − (ρ1(ν2) − ŵ1)F(ν2) − ρ2(ν2)

+ ŵ2
))2(

σ + I3
))

+
1
2α

(
sgn(|ν̃2|)σ

2). (40)

We can rewrite the dynamics (4) under controller (33) as
follows

ν̇2 = w1f (ν2) + w21 + w3τ

= w1f (ν2) + w21 + w3(ρ3(ν2, ŵ1, ŵ2) − ŵ3)

×
(
K1e+ K2χ (ν̃2) − (ρ1(ν2) − ŵ1)f (ν2)

− (ρ2(ν2) − ŵ2)1
)

= w1f (ν2) + w21 + w3(z3 − w−1
3 )
(
K1e+ K2

×χ (ν̃2) − (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2) − ŵ2)1
)

= w1f (ν2) + w21 + w3z3
(
K1e+ K2χ (ν̃2)

− (ρ1(ν2) − ŵ1)f (ν2) − (ρ2(ν2) − ŵ2)1
)

−K1e− K2χ (ν̃2) + (ρ1(ν2) − ŵ1)f (ν2)

+ (ρ2(ν2) − ŵ2)1

−K1e− K2χ (ν̃2) + z1f (ν2) + (z2 + σ )1

+w3z3
(
K1e+ K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

× f (ν2) − (ρ2(ν2) − ŵ2)1
)
,

thus

ν̇2 = −K1E − K2χ (ν̃2) + z1F(ν2) + z2 + σ

+w3z3
(
K1E + K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

×F(ν2) − ρ2(ν2) + ŵ2
)
.
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FIGURE 2. The control system scheme of 6-DOF UAV based on Theorem 2.

FIGURE 3. Profile of p, q and r .

The time-derivative of Vz1 , Vz2 and Vz3 is calculated as
follows

V̇z1 = tr
(
3−1

1 z1ż1
)

= tr
(
3−1

1 z1
(∂ρ1(ν2)

∂ν2
ν̇2 − ˙̂w1

))
= tr

(
3−1

1 z1
(∂ρ1(ν2)

∂ν2

(
− K1E − K2χ (ν̃2)

+ z1F(ν2) + z2 + σ + w3z3
(
K1E + K2

×χ (ν̃2) − (ρ1(ν2) − ŵ1)F(ν2) − ρ2(ν2) + ŵ2
))

− ˙̂w1

))

− tr
(
z1F(ν2)sgn(|ν̃2|)

(
z1F(ν2) + z2 + σ

+w3z3
(
K1E + K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

×F(ν2) − ρ2(ν2) + ŵ2
)))
, (41)

V̇z2 = tr
(
3−1

2 z2ż2
)

= tr
(
3−1

2 z2
(∂ρ2(ν2)

∂ν2
ν̇2 − ˙̂w2

))
= tr

(
3−1

2 z2
(∂ρ2(ν2)

∂ν2

(
− K1E − K2χ (ν̃2)

+ z1F(ν2) + z2 + σ + w3z3
(
K1E + K2χ (ν̃2)

− (ρ1(ν2) − ŵ1)F(ν2) − ρ2(ν2) + ŵ2
))

− ˙̂w2

))
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FIGURE 4. Profile of φ, θ and ψ .

− tr
(
z2sgn(|ν̃2|)

(
z1F(ν2) + z2 + σ + w3z3

×
(
K1E + K2χ (ν̃2) − (ρ1(ν2) − ŵ1)F(ν2)

− ρ2(ν2) + ŵ2
)))
, (42)

V̇z3 = tr
(
3−1

3 w3z3ż3
)

= tr
(
3−1

3 w3z3
(∂ρ3(ν2, ŵ1, ŵ2)

∂ν2
ν̇2

+
∂ρ3(ν2, ŵ1, ŵ2)

∂ŵ1

˙̂w1 +
∂ρ3(ν2, ŵ1, ŵ2)

∂ŵ2

˙̂w2

− ˙̂w3

))
= tr

(
3−1

3 w3z3
(∂ρ3(ν2, ŵ1, ŵ2)

∂ν2

(
− K1E

−K2χ (ν̃2) + z1F(ν2) + z2 + σ

+w3z3
(
K1E + K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

×F(ν2) − ρ2(ν2) + ŵ2
))

− ˙̂w3

+
∂ρ3(ν2, ŵ1, ŵ2)

∂ŵ1

˙̂w1 +
∂ρ3(ν2, ŵ1, ŵ2)

∂ŵ2

˙̂w2

))
= −tr

(
sgn(|ν̃2|)w3z3

(
K1E + K2χ (ν̃2)

− (ρ1(ν2) − ŵ1)F(ν2) − ρ2(ν2) + ŵ2
)(
z1F(ν2)

+ z2 + σ + w3z3
(
K1E + K2χ (ν̃2) − (ρ1(ν2)

− ŵ1)F(ν2) − ρ2(ν2) + ŵ2
)))
. (43)

From (40)+(41)+(42)+(43), we can calculate the time-
derivative of Vν̃2z1z2z3 as follows

V̇ν̃2z1z2z3 ≤ −ν̃T
2 (K1 − αI3)ν̃2 − ν̃T

2K2χ (ν̃2) +
1
2α

× tr
(
sgn(|ν̃2|)

(
z1F(ν2) + z2 + w3z3

(
K1E

+K2χ (ν̃2) − (ρ1(ν2) − ŵ1)F(ν2) − ρ2(ν2)

+ ŵ2
))2(

σ + I3
))

+
1
2α

(
sgn(|ν̃2|)σ

2)
− tr

(
sgn(|ν̃2|)

(
z1F(ν2) + z2 + w3z3

(
K1E

+K2χ (ν̃2) − (ρ1(ν2) − ŵ1)F(ν2) − ρ2(ν2)

+ ŵ2
))2(

σ + I3
))

≤ −ν̃T
2 (K1 − αI3)ν̃2 − ν̃T

2 (K2 −
1
2α
δ2)χ (ν̃2)

−
2α − 1
2α

tr
(
sgn(|ν̃2|)

(
z1F(ν2) + z2

+w3z3
(
K1E + K2χ (ν̃2) − (ρ1(ν2) − ŵ1)

×F(ν2) − ρ2(ν2) + ŵ2
))2(

σ + I3
))

(44)

By selecting α ≥
1
2 , K1 > αI3, and K2 ≥

1
2α δ

2, then
V̇ν̃2z1z2z3 ≤ −ν̃T

2 (K1 − αI3)ν̃2 ≤ 0. The proof is thus
completed.
Similar to the ECAA developed in Theorem 1, the track-

ing control can be asymptotically achieved without the need
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FIGURE 5. Profile of x , y and z .

for convergence of ŵ1, ŵ2 and ŵ3 to the actual values
of w1, w2 and w3. The controller (33) also has a robust
term −K2χ (ν̃2) to handle perturbation σ . The adaptive
approach in Theorem 2 has an additional continuous func-
tion ρ1(ν2), ρ2(ν2) and ρ3(ν2, ŵ1, ŵ2) to assist in estimating
the parameters ŵ1, ŵ2 and ŵ3 and handling the paramet-
ric uncertainties. The schematic block diagram of the adap-
tive control scheme proposed in Theorem 2 is illustrated in
Figure 2.
Remark 2: In Theorems 1 and 2, the unknown vectors

w1 and w3 are in the class of piecewise constant functions.
However, treating them as constant parameters will not put
any harms to the proof. In fact, the value of the parameters
during the switching times can be modeled as a sign function
with a bounded amplitude and this reflects itself as a bounded
additive disturbance, similar to w2, in the dynamic model of
the system in (4). This is true since the propeller motors work
as a low-pass filter and this prevents a sudden jump in the
response of the system. Also, since the motor torques are
bounded in practice, the effect of jumps can be modeled as
a bounded disturbance added to the weight w2. Therefore,
the effect of this disturbance can be cancelled by proper
tuning of K2 gain in (29) for the ECAA and (44) for the
new adaptive scheme to ensure the stability of the closed-loop
system during the switching times.

IV. SIMULATION RESULTS
The performance of the proposed approaches is evaluated
through numerical analysis in this section. The nested con-
troller is implemented numerically by proposing a PD con-
troller as the translational controller. The parameters tuned
for the PD controller in Section III-A are KP = KD =

10I3. The attitude controller is designed according to the
Theorem 1 and 2. The gains tuned for the control law (26)
and adaptive law (27) are

K1 = diag
[
900 1200 1500

]
,

K2 = 10−3diag
[
0.1333 0.4 0.02

]
,

31 = 100I3, 32 = 10I3, 33 = 100I3. (45)

While the gains tuned for the control law (33) and adaptive
law (34) are

K1 = diag
[
900 1200 1500

]
,

K2 = 10−3diag
[
0.1333 0.4 0.02

]
,

01 = 5 I3, 02 = 0.1 I3, 03 = 10−3I3. (46)

The parameters of the quadrotor UAV used for the simula-
tion and numerical analysis are listed in Table 1.
Moreover, the following time-varying external disturbance

w2 = diag
[
0.1 sin(t) 0.4 cos(t) 0.2 sin(t)

]T is added to the
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FIGURE 6. Profile of τ .

FIGURE 7. Profile of the tracking trajectory errors.

attitude dynamics. The inertia parameters are assumed to be
time-varying piecewise constant functions, where the value
of the parameters is increased by 50% at t ≥ 4 s.

The simulation results using ECAA and the new approach
are depicted in Figures 3-11. We also presented the perfor-
mance of the adaptive sliding mode control (ASMC) [10] for
the comparative study. As can be seen from these figures,
both translational and rotational states of the quadrotor can

follow the desired trajectories, verifying the results proven in
Theorems 1 and 2. Figure 3 illustrates the performance of (27)
and (34) to handle uncertainties in the rotational dynamics.
We can see that our new scheme has better performance to
maintain the rotational motions while the gains of ECAA
are higher than our new scheme. The mismatch between
the actual states and the desired trajectories can be seen in
Figure 7.
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FIGURE 8. Profile of x , y and z in 3D.

FIGURE 9. Profile of the state of adaptation law to handle w1.

FIGURE 10. Profile of the state of adaptation law to handle w2.

For the convenience of presentation, we calculate the fit-
ness of the states using the following formula

fitness(%) = 100
(
1 −

∥desired trajectory−state∥
∥desired trajectory−E(state)∥

)
, (47)

where E(state) refers to the mean of state.

The fitness of the steady state error trajectories using
ECAA and the new approach from t = 0.1 s to t = 7s are
presented in Table 2. It is evident from the simulation results
that our new approach shows better performance compared
to ECAA.
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FIGURE 11. Profile of the state of adaptation law to handle w3.

FIGURE 12. Profile of p, q and r with different initial conditions.

TABLE 1. The parameters of the UAV.

TABLE 2. The fitness values of the UAV rotational states.

The profile of τ using ECAA and the new approaches can
be seen in Figures 6. The total effort of torque τ is presented
in Table 3. We can see that the total control effort of τ in our
new scheme is almost half of the ECAA approach.

The numerical results based on both adaptive schemes
proposed in Theorem 1 and 2 are plotted in Figure 9-11. Each

TABLE 3. The torque efforts of the proposed controllers.

scheme has a robust term that can be adjusted by tunning
K2 to handle the perturbation σ . As a result, each estimated
parameter is not necessarily converging to its actual value.
More scenarios are simulated by increasing the external dis-
turbance w2 by 50% and reduce the control gains of the
adaptive schemes. The new gains for ECAA are

KP = 7 I3, KD = 7 I3,

K1 = diag
[
675 900 1125

]
,

K2 = 10−3diag
[
0.4 1.2 0.1

]
,

31 = 70I3, 32 = 6 I3, 33 = 80I3, (48)

while the new gains of new scheme are tuned as follows

KP = 7 I3, KD = 7 I3,
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TABLE 4. The fitness values of the UAV rotational states when w2 is
increased by 50%.

TABLE 5. The torque efforts of the proposed controllers when w2 is
increased by 50%.

K1 = diag
[
675 900 1125

]
,

K2 = 10−3diag
[
0.4 1.2 0.1

]
,

01 = 3 I3, 02 = 0.08 I3, 03 = 8 × 10−4I3. (49)

The results show that our controllers are able to maintain
UAV to follow the desired trajectory. Similar to the previous
scenario, the new scheme has a better performance to tackle
the tracking control problem. The fitness of the steady state
trajectories for both scenarios, calculated from t = 0.1 s to
t = 7s can be seen in Table 4. Also, the total effort of torque
τ is presented in Table 5. The effect of the initial conditions
on the performance of the system is investigated using three
different initial conditions presented in (50). Similar to the
previous scenario, both ECAA and the new adaptive approach
are able to maintain the attitude motions as illustrated in
Figure 12.

Initial Condition 1 ⇒ ν2(0) =
[
0.12 −1 0.003

]
,T

Initial Condition 2 ⇒ ν2(0) =
[
0.06 −0.5 0.0015

]
,T

Initial Condition 3 ⇒ ν2(0) =
[
−0.05 1 −0.004

]
.T

(50)

From the above simulations, it can be inferred that our
proposed controllers have less computational complexity
compared to the adaptive intelligent controllers using tech-
niques such as fuzzy, genetic algorithms, and neural net-
works. Therefore, this provides more opportunity for prac-
tical implementation of the algorithms in real-time resource
constraint applications such as UAVs.

V. CONCLUSION AND DIRECTIONS FOR FUTURE WORK
This paper presents a fully tracking control for 6-DOF of
UAV with uncertain parameters. The tracking position con-
trol is designed using a virtual PD controller. Two adap-
tive approaches are proposed for tracking control of atti-
tude dynamics with uncertain time-varying parameters. All
parameters in the attitude dynamics are unknown for feed-
back control design. An external time-varying disturbance
is also added to the dynamical system. In the beginning,

ECAA scheme is proposed to handle the uncertainties in
the dynamics. To improve the performance of the classical
scheme, we develop a new adaptive approach by adding a
continuous function to the control structure. Both schemes
contain a robust term to handle the perturbation caused by
the unknown time-varying parameters. To verify and compare
our approaches, we conduct several simulations under various
settings for a UAV. It will be interesting to extend this scheme
for more complicated dynamics such as for multiple hetero-
geneous UAV with uncertainties. Also, it will be interesting
to apply the current scheme to a quadrotor UAV.
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