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ABSTRACT With the increasing research focus on light field imaging in recent years, it has become essential
for researchers in this field to either benefit from access to equipped laboratories with light field acquisition
devices and displays or to have access to publicly available light field imaging datasets. Some datasets are
indeed available, each with a different nature. For instance, some contain real world images or sources while
others are based on purely synthetic images or sources generated by computer graphic tools; others are a
combination of both. Datasets for the quality assessment of light field content include pristine light field
content as well as sources affected by different levels of impairments. The latter are tested subjectively by
a panel of viewers and often objective metrics are also calculated. This paper presents a comprehensive
comparative review of 33 publicly available datasets that span from content-only datasets to specific task
based datasets and quality assessment datasets. While our aim is to review and investigate what each dataset
has to offer and which tests had been considered by their proposers, we also take the opportunity to leverage
the results of previous studies to identify and discuss the challenges ahead and identify the areaswith potential
for improvement.

INDEX TERMS Light field displays, quality assessment, dataset, subjective tests, objective quality metrics.

I. INTRODUCTION
L ight field [1], also known as integral or plenoptic imag-
ing, is in recent years at the forefront of research attention,
in particular for the the ability to provide the viewer with
an enhanced sense of immersion in the scene. As opposed
to conventional two-dimensional (2D) images, which record
and contain the 2D projection of the scene light rays, a light
field contains the light rays in space across all directions,
hence much richer data from the scene than a 2D image. The
concept of distribution of light field was first introduced in
1939 by Greshun [2]. In 1991, Adelson et al. [3] completed
the relevant model, describing what is known since then as
plenoptic function. The plenoptic function is a multidimen-
tional function that takes into account the location (x, y, z)
in which the light ray is obtained (camera position), the
angles (θ, φ) of the light ray (azimuth and orientation), the
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wavelength λ of the light ray (representing color) and finally
the time t when the light ray was captured. Therefore this
is a 7D function, denoted as L(x, y, z, θ, φ, λ, t). However,
computationally handling a 7D function is extremely difficult
and, as mentioned by Wu et al. [4], the 7D function can
be simplified to 5D by assuming the plenoptic function to
be monochromatic and time invariant in order to decrease
the complexity and volume of the data consumed (three
reduced plenoptic functions can be considered - one for each
RGB colour component - for colour content and temporal
information can be captured via different frames for dynamic
content). Levoy and Hanrahan [1] simplified this function
by realising that the radiance of the light ray in free space
remains constant along a straight line, hence reducing the
total needed dimensions to four. For instance, a 4D light field
can be represented via the coordinates of the intersections of
a light ray with two planes placed at arbitrary positions, e.g.
(u, v) and (r, s), leading to a plenoptic function L(u, v, r, s).
Based on this representation, the light field can be represented
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as a 2D array of images captured by cameras defined by the
two parallel planes (u, v) and (r, s).

The capability of light fields to capture a rich amount of
spatial-angular information of an object or a scene at once,
and to allow researchers to work on the data post-acquisition,
made this research area highly attractive. Such technology
has not yet widely reached the consumer market, and the role
of researchers in this field is crucial to tackle the obstacles
preventing this technology to reach the end users. In order to
support the research community in the area, it is important
to have available datasets that can be used by researchers to
test and compare their ideas and methods, including com-
pression and transmission strategies [5] and objective quality
assessment methods (discussed in Section II-C). Thanks to
the efforts of several researchers, a number of light field
datasets have in the past years been made publicly available.

In this paper we provide a detailed description and a tax-
onomy of existing publicly available light field datasets, with
particular focus on public datasets for the quality assessment
of light field imaging. We also discuss to what extent the
different datasets enable a comparison of objective and sub-
jective quality metrics for the different datasets, highlighting
which quality metrics have been designed and tested on
each dataset. We finally focus on the limitations of existing
datasets and provide some recommendations for the design
of new datasets that can support the scientific community in
the design of novel compression, transmission, and quality
assessment algorithms for light field content. Some earlier
papers, providing results for objective quality metrics or spe-
cific tasks performed on light fields, listed some datasets;
however, the purpose was not to describe and compare them
and only a limited number of datasets was considered in each
of these papers [6], [7], [8], [9], [10]. A review of some of the
existing datasets was provided a few years ago by Ellahi et al.
[11]. The paper listed and described some datasets that were
public at the time of publication. With the fast evolution
in this research area, many datasets have been published
recently. In our paper we have considered a much larger
number of datasets in the effort to provide an exhaustive
review and we have dived more in depth in the details and use
cases of such datasets, covering content features, description
and comparison of the deployment of the subjective tests,
including demographic information of subjects participants
and the results of objective and subjective assessment on
those datasets. We believe this work can support research
scientists working in the areas of light field compression,
transmission, and quality evaluation in the selection of the
most appropriate datasets for developing and testing their
algorithms, as well as facilitate comparison among the works
of different research teams worldwide. We also hope that
this paper will stimulate researchers to address the lacks of
existing datasets and provide public datasets useful to answer
the most recent research questions. The ongoing development
of technical standards in the area of light fieldwill also benefit
from this work. Part of this review work has been performed

to support the development of an international IEEE standard
(IEEE P.3333.1.4).

The remainder of this paper is structured as follows.
Section II reviews all the datasets that are selected in this
paper and provides a relevant taxonomy. In Section III we dis-
cuss the current challenges in generating and using datasets
and different aspects of objective and subjective assessment.
Section IV concludes the paper and our review.

II. LIGHT FIELD DATASETS
Table 1 lists the light field datasets that are discussed in
this paper. We divide the reviewed datasets in three different
groups: content only datasets, where only Light Field (LF)
content is provided, task based datasets, i.e., datasets where
content is provided together with information on specific
tasks (e.g., disparity or depth estimation, material recogni-
tion, scene reconstruction), and finally Quality of Experience
(QoE) datasets, where content and information on the relevant
quality assessment is provided, e.g., Mean Opinion Score
(MOS). Being publicly available, such datasets can be used
in research works for different purposes, but we report in the
table the initial purpose behind their creation. Table 1 also
illustrates the acquisition device and the number of sources
and images in each dataset and whether the datasets contain
real world images, synthetic images or a mix of both. The
datasets are listed in chronological order and the table also
reports the first author/creator of each dataset.

Figure 1 illustrates the taxonomy of the datasets. The same
categories mentioned above for Table 1 are applied in the
taxonomy with further categorisation on acquisition method
and, for QoE datasets, type of display used for subjective
tests. Some datasets are listed in different acquisition method
sub groups, as they contain content acquired with different
methods.

We discuss the details for each of the identified groups in
the following.

A. CONTENT-ONLY LF DATASETS
These are datasets where only the content is published, with-
out results of objective or subjective quality assessment tests
or other data on task performance. 15 datasets of this type are
listed in Table 1. Due to space limitations, in this section we
review datasets [12], [13], [14], [15], [18], [19], and [20].

The (New) Stanford Light Field Archive [12] provides a
database of four light field datasets acquired by different
acquisition devices listed in the first row of Table 1. This
database provides a rich source of light fields from different
real world LF SRC and angular views. The four different
acquisition methods provide a diverse range of the number
of views for each object with different spatial resolution. The
four datasets generated with different acquisition methods,
as illustrated in Figure 2, are as follows:

(i) Light Fields from Lego Gantry: This dataset contains
13 sources acquired with a Canon Digital Rebel XTi
mounted on a LegoMindstorms gantry. For each source
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TABLE 1. Light field datasets.

there are 289 PVS from a 17 × 17 camera grid. The
image resolution is different across different sources.

(ii) Microscope Light Fields: This dataset contains three
sources acquired with an optical microscope [56] with
a lenslet array. There are different numbers of views
for each source as the grid size varied [20 × 20 grid,
16 × 16 grid]. The light fields in this dataset are of low
resolution as they were captured with a single snapshot
from a single camera, hence not many samples were
captured to record all the spatial and angular informa-
tion. Therefore, because of the low spatial resolution,
they look pixelated.

(iii) Light Fields from the Gantry: four sources were
acquired using a digital camera and a computer-
controlled gantry. The number of views were different

in this acquisition method as the grid size varied [21 ×

5 grid, 16×16 grid]. The spatial resolution of the images
in the dataset was also different across different sources.
The sources in this dataset offer good opportunities
for research in refocussing and three-dimensional (3D)
reconstruction, whereas the Lego gantry dataset sources
offer a wider range of research opportunities owing to
the complex and highly detailed sources.

(iv) Light Fields from the Camera Array: two sources with
88 and 45 views with image resolution of 640 ×

480 were acquired using 100 VGA video cameras [57]
controlled by four computers.

Rerabek and Ebrahimi [14] proposed ‘‘The New Light
Field Dataset’’. This dataset was first proposed by the authors
in Light Field Raw (LFR) file format as provided by the
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FIGURE 1. Light field datasets taxonomy.

Lytro Illum camera in 2015 with the name ‘‘EPFL Light-
Field Image Dataset’’ [13]. The ‘‘EPFL Light-Field Image
Dataset’’1 consisted of 119 LFR images from 10 different real
world objects/sources with resolution of 5368 × 7728 pixels.
As well as the LFR file format images, ‘‘The New Light
Field Dataset’’ consists of 4D light field representation of
the images that were extracted from original LFRs using the
Light Field Matlab Toolbox2 [58]. In addition, the dataset
contains thumbnails, the corresponding depth maps, the rele-
vant depth of fields coordinates, and camera calibrating data.
The four-dimensional (4D) LF images that were generated
by the Light Field Matlab Toolbox have 15 × 15 views
434 × 625 resolution of each view. 4D corresponds to RGB
and the additional weighting image component. The wide
range of real world sources in this dataset makes it suitable
for further research in objective and subjective assessments.
As will be noted in the Quality Assessment Dataset section,
the VALID [51] and WIN5-LID [52] datasets used for their
subjective quality assessment studies six images from this
dataset.

Tamboli et al. proposed a Turntable General Dataset3 [19]
using an automated Photobench 360 turntable4 and a Nikon
D5300 DSLR camera.5 Seven distinct objects were posi-
tioned on the turntable for this dataset. The camera was

1http://mmspg.epfl.ch/EPFL-light-field-image-dataset
2https://www.mathworks.com/
3https://www.iith.ac.in/DReaM/
4https://www.ortery.com/photography-equipment/photocaptureseries/

photocapture-360/
5http://imaging.nikon.com/lineup/dslr/d5300/

manually moved over a slider between three positions, 2 cm
apart from each other, to capture images from three differ-
ent views from the target object at 0.5 degree of turntable
revolution, which was achieved by a software controlling the
turntable stop/start intervals, resulting in a total 720 images
per camera per object. Therefore the angular resolution of the
proposed dataset is 0.5 degrees [two views per one degree]
and a total of 15,120 images of 6000× 4000 pixels resolution
were generated. This dataset offers 2,160 three-view stereo
images per object which can be used for research in view
interpolation techniques. To ensure stability of the objects
during the capturing phase, the base of the object was placed
on the turntable firm enough to avoid any movement on
table rotation. As the same fixed camera was used to capture
images at different angles, the inter-camera variations were
eliminated throughout the acquisition phase. Also three view
stereo enables robust depth estimation. To ensure turntable
consistency, an image from one camera position and its cor-
responding image from the adjacent camera position were
obtained and three quality metrics were evaluated on the pair
of images. In summary, this dataset appears to be the first
proposed high angular resolution [2 views per degree] dataset
using a turntable. For every angular position - 0.5 degree -
there are three views separated by known distance from each
other. The angular resolution of two views per one degree
of this dataset satisfies the findings of Kara et al. [59]
that suggested that, in order to have a good glasses free
end user experience of Light Field visualisation, light field
content should have an angular resolution of at least 1 degree.
This angular resolution also satisfies another finding of
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FIGURE 2. The (new) stanford light field datasets [12] acquisition devices.

Kara et al. [60], [61] from separate experiments that, in order
to give the non stationary viewers the opportunity of experi-
encing continuous horizontal parallax, an angular resolution
of less than 1 degree was required.

Guillo et al. [18] proposed a light field video dataset using
an R8 Raytrix video camera. This dataset is the only dataset
in our comparative investigation that was generated using
such a camera. For each light field video sequences of the
three sources in this dataset, the camera’s specific software
(Raytrix API6) was used to extract 25 views per frame from
the light field. The 2D spatial resolution of each frame is
1920× 1080. The first two sources were created with objects
on a turntable and the camera is fixed. The third source is
static and the camera revolves around the object. All three

6https://www.raytrix.de/Rx.ApiLF.3.1/index.html

video sequences are captured at 30fps. A disparity map is also
computed for each view of each frame.

Sheng Liu [20] proposed the ‘‘Comprehensive light field
image dataset’’. This publicly available large light field image
dataset consists of 4,251 light field images in 31 different
categories that were captured using a Lytro Illum light field
camera. The LFR images were with resolution of 5250 ×

7574 pixels. As a result of Lytro Illum camera’s 14× 14 lens
array, the 2D spatial resolution of the processed images
becomes 375 × 541. Within each category, many sources
were considered, with different lighting and environmental
conditions in the capturing process This dataset contains
static as well as dynamic objects/sources images. The depth
map of the images was also investigated to determine the
depth of the objects in a source and determine if an object was
farther away or closer to camera than the camera’s focal point.
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FIGURE 3. Dragon and bunnies scene from synthetic light field archive
[15]. Features: motion parallax, translucency, reflections, specularity,
high-frequency out-of-focus objects, and occlusions.

This is a rich dataset in terms of the wide range of objects the
quantity of the images available for further research.

Wetzstein [16] provided an archive of 18 synthetically
generated static images and animation datasets [15]. The
light fields in these datasets are rendered as Portable Net-
work Graphics (PNG) images with different views of 3D
sources. Each dataset in this archive has images or animations
with specific features such as motion parallax, translucency,
reflections, specularity, high frequency out-of-focus objects,
occlusions and reflections. Figure 3 is extracted from the
Dragon and Bunnies dataset [15] from this archive.

B. TASK BASED DATASETS
In the TaskBasedDatasets groupwe have selected 10 datasets
which were proposed with an initial objective experiment
from the proposers. Datasets [34], [35], [36], [37], and [62]
are being reviewed in this paper.

Wanner et al. [34] proposed the ‘‘Densely Sampled
4D Light Fields Dataset’’7 in 2013 with the aim of evaluating
disparity estimation algorithms. The 13 high quality densely
sampled light field images in this dataset are divided into two
categories: the Blender and the Gantry. The Blender category
consists of 7 sources rendered using the open source software
Blender [63] resulting in 7 synthetic/artificial images with
complete ground truth disparity for all views. Four light field
images of these datasets also have ground truth segmentation.
The Gantry category provides 6 real-world 4D light fields
captured with a Nikon D800 camera mounted on a gantry
device. The angular resolution of this dataset is 9 × 9 and
the 2D spatial resolution of the images is not the same across
all images. For example, in the Gantry Category, 4 Images
have resolution 898×898 pixels and 2 Images have resolution
926×926 pixels. Similarly, in the Blender category, 5 images
have resolution of 768 × 768 pixels and the remaining two
have resolution 576 × 1024 and 720 × 1024 pixels. For the
Gantry category, objects were pre-scanned with a structured

7www.light field-analysis.net

light scanner and were then sampled to provide ground truth
ranges for the center view. The dataset contains a transparent
surface with ground truth disparity for both the surface and
the object behind it. Asmentioned, upon creating the datasets,
the aim of the authors was to evaluate the disparity algorithms
performance, but this is a content dataset that can be used for
other purposes.

The second dataset in this section is the ‘‘4D Light Field
Dataset’’ proposed by Honauer et al. [37]. This dataset [64]
contains 24 purely synthetic, densely sampled 4D light fields
created with Blender [63] with highly accurate disparity
ground truth (4 stratified created by internal renderer of
Blender and 20 photorealistic light field sources created by
Cycles renderer). The dataset, which was proposed to eval-
uate depth estimation algorithms, is divided in two groups.
The first group contains 12 light fields, presented as light
field benchmark. This group contains 4 stratified sources,
4 test sources and 4 training sources. The second group of
12 light fields with ground truth was presented for algorithm
development and evaluation. The intention of creating a set
of stratified sources was to avoid designing an algorithm
that did not take into account all real world challenges, i.e.,
complex sources and multiple objects in a scene. The 2D
spatial resolution of the 8 bit light fields created via Blender
is 512 × 512 with 9 × 9 angular resolution. The dataset
also contains camera parameters and disparity ranges. For the
stratified and training sources, evaluation masks and 16 bit
ground truth disparity maps in two resolutions (512×512 and
5120×5120) were also provided. Each scene in the bench-
mark group was used, depending upon its design, to assess
certain factors, such as algorithm performance on the objects,
assessing the effect of camera noise on the reconstruction of
objects and investigating the effect of fine structures, occlu-
sion boundaries and disparity differences and the influence
of texture and contrast at occlusion boundaries. Photorealistic
sources were designed to contain a combination of different
challenges to evaluate performance on fine textures, com-
plex occlusion areas of the scene, slanted planar surfaces,
and continuous non-planar surfaces. One Multi-View (MV)
algorithm and four light field algorithms (LF, Light Field
Occlusion (LF-OCC), Epipolar Plane Image (EPI)2, EPI1)
were used to evaluate the Mean Square Error (MSE), BadPix,
and Bumpiness metrics and characteristics on each light field.

The ‘‘The 4D Light-Field dataset for material recogni-
tion’’ was proposed by Wang et al. [36] investigating how
to differentiate and recognise materials on 4D light field.
Differentiating materials in 2D images depends on their
appearance in the image. The appearance of the objects
depends on the shape and lighting. The authors introduced
several novel Convolutional Neural Network (CNN) archi-
tectures specifically designed for material recognition on
4D light-field inputs. The best CNN architecture achieved
about 6–7% boost compared with single 2D image material
classification. The authors stated that this dataset was the first
mid-size dataset for light-field images and it does appear that
it is the first availablematerial Light Field dataset. The dataset
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FIGURE 4. Full scene material classification examples [36].

contains 1200 images in 12 categories as follows: fabric,
foliage, fur, glass, leather, metal, plastic, paper, sky, stone,
water, and wood. The Lytro Illum camera was used to capture
the images. The number of views of the images is 14×14with
resolution of 376 × 541. The main goal of this work was to
investigate whether additional information in 4D light-field
could improve the performance of material recognition over
2D images. In 2D images, the lighting reflectance of different
objects is used to recognise the object typewhich is called sur-
face reflectance or the (Bidirectional ReflectanceDistribution
Function (BRDF). In the light field image case, the alternative
is to look at different views of a point. Convolutional Neural
Network Visual Geometry Group 16 (CNN VGG 16) model
was used in this test. Since this model was required to apply
on 4D light field data, 5 different architectures (Viewpool,
Stack, EPI, Angular Filter and 4D filter) were tested and their
performance were compared. 2D average model was also
performed for comparison purposes.

The fourth and final dataset reviewed in this section is the
‘‘Disney High Spatio-Angular Resolution Light Fields’’ [62]
proposed by Kim et al. [33]. They proposed a method
for scene reconstruction of indoor/outdoor complex static
sources from 3D light fields. Their approach on scene recon-
struction involved using a high but limited number of high
resolution light field images captured with a DSLR camera
mounted on a computer controlled 1.5 meter long Zaber
T-LST1500D8 linear stage. 100 images were acquired from

8https://www.zaber.com/products/linear-stages/T-LST/details/
T-LST1500D/features

FIGURE 5. Shaded 3D mesh of an outdoor scene generated from
triangulating individual depth maps [33].

each source. The spacing between each computer controlled
camera position on the linear stage was in the range of 2mm
to 15mm. The authors stated that by selecting this method of
image acquisition, high spatio-angular resolution light fields
were achieved whilst not taking the cost of full camera array
or compromising either resolutions by single light field cam-
eras based on lenslet array. The EPI derived from the light
field images were used to generate precise depth maps of
the static source and background as shown on Figure 5. The
depth information was extracted for every visible scene point
in the captured images. Although the authors concluded that
their method could not compete with laser scanner in terms of
absolute depth measurements, it resulted in higher resolution
reconstruction.

Mousnier et al. [35] proposed an approach in reconstruct-
ing light field image using a dataset containing images from
various indoor and outdoor sources. There are 30 images in
total that were taken from 30 different sources of which 3 are
with motion blur, one with long exposure time and one flat
photograph. The authors calculated the depth map and the
all-in-focus image from the focal stack, and then partially
reconstructed the light field by the epipolar image using the
depth map and the all-in-focus image.

C. QUALITY ASSESSMENT DATASETS
In this section, eight QoE datasets are reviewed.
Tables 2, 3 and 4 illustrate respectively: the objective met-
rics that were considered in these datasets; the participants
demography in the subjective tests; subjective assessment
details relevant to each dataset.

Shi et al. [52] proposed theWIN-5LID dataset. The authors
presented the first 5 DOF light field image dataset with
the associated quality scores following visualisation on a
stereoscopic display. This dataset primarily consists of 6 real
source images from [14] and 4 synthetic sources from [37].
The authors introduced different levels of distortions on the
primary LF images to experiment different levels of visual
experiences. The authors used in particular 22 Hypothetic
Reference Circuits (HRC) from two compression methods
(High Efficiency Video Coding (HEVC) with 5 different
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Quantisation Parameter (QP)s and JPEG2000 with 5 different
Compression Ratio (CR)s) and 4 reconstruction algorithms
in the angular domain (Linear Interpolation (LI) and Nearest
Neighbour interpolation (NNI) with 5 different sub-sampling
rates and two state-of-the-art CNN models). As a result,
a dataset of 220 processed images was created.

In subjective assessment a light field image quality was
compared against its sub-views. Since the quality of a light
field image is influenced by some inherent properties like
motion parallax and refocusing, the expectation was to
observe a difference between a sub-view (picture) quality and
the quality of light field (overall). The subjective assessment
results show that the picture quality proves to be better than
overall quality across all HRCs. Subjective assessment details
are listed in Table 2.

The 19 objective metrics that were tested in objective
assessment are listed in Table 4. Four correlation measures
were used to evaluate the correlation between MOS and pre-
dicted results. Spearman Rank Order Correlation Coefficient
(SROCC) and Kendall’s rank-order correlation coefficient
(KROCC) were used to measure the monotonicity of MOS
prediction. Pearson Linear Correlation Coefficient (PLCC)
and Root mean-squared error (RMSE) methods were used
to measure the linear relationship between the two sets and
the prediction accuracy, respectively. The results show that
S3D integrated quality (SINQ) performs better in picture
quality with high positive correlations of 0.8890, 0.9314 and
0.7364 in SROCC, PLCC and KROCC and lowest value of
0.3922 in RMSE. In overall quality, however, Information
content weighted structural similarity measure (IW-SSIM)
provides the best results with high positive correlations of
0.8352, 0.8435 and 0.6542 in SROCC, PLCC and KROCC
and lowest value of 0.5492 in RMSE. The results for objective
and subjective metrics are not well correlated as objective
metrics do not consider the intrinsic characteristics of light
field images.

Viola and Ebrahimi [51] proposed the VALID dataset.
Five LF plenoptic images from [14] were selected for this
dataset. Using theMatlab Toolbox v0.4, the authors generated
15 × 15 perspective views of 625 × 434 pixels and depth
of 10 bits per color channel for each image. The authors
considered two output bit depths - 10 bits and 8 bits - for their
objective and subjective tests. The reason they chose 8 bits per
colour channel was to allow their test to be compatible with
the current consumer market displays. Among the distortion
methods listed in Table 2, only HEVC and VP9 were applied
on 8 bit colour channel outputs.

For objective quality assessment, the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) objective
metrics were considered to assess the visual quality of the
content. The objective metrics were calculated on both 8 bit
and 10 bit depth outputs. However, as mentioned in Table 4,
the authors did not specify which metric resulted better in
their objective assessment.

Two different subjective visualisation assessment method-
ologies were considered for 8 bit and 10 bit outputs. For 10 bit

output contents, passive methodology without refocussing
was performed. The stimulus was presented to participants
alongside the reference image in a side-by-side arrange-
ment. Participants would compare and give their mark from
-3 (much worse) to +3 (much better) with 0 indicating no
preference. In case of 8 bit output, three methodologies were
considered: passive, interactive and the combination of both.
For the‘‘passive and interactive’’ method, the participants
were presented an animation and were only allowed to give
their score at the end of the 13.6 s animation. A five-point
scale was used for participants to feedback their visual expe-
rience. In this method, refocusing was also adopted to enable
participants to refocus foreground and background at a rate of
4 frames per second. The authors did not provide information
about the demography of participants who partook in their
subjective test.

Tamboli et al. [49] proposed a high angular resolution
turntable quality dataset using three real life objects as shown
in Figure 6, a turntable and a single camera (see Table 1
for details). The angular resolution was set to one view
per degree. This meant the authors captured one image per
degree, hence 360 images were captured from each object.
The camera was placed in such a way that its principal axis
was perpendicular to the rotation axis of the turntable. The
authors stated that the reasons they decided to create their own
dataset using a single camera and a turntable to perform the
quality test were as follows: (1) the existing turntable datasets
at the time had angular resolution of more than 1 degree;
(2) where a dataset did meet the above resolution, there
were more than one object on the turntable; (3) the available
datasets used artistic objects that exhibited non-Lambertian
surface; (4) where the dataset had a single object on the
turntable, the centre of the object was not aligned with the
vertical axis of the rotation. Therefore, in capturing images
using turntable, the centre of the object was aligned with the
axis rotation of turntable.

The Holovizio HV721RC display generated 3D views
from subsets containing turntable images. In subjective tests,
subjects were allowed to change position along an arc marked
in front of the 3D display; however, the evaluation of the
3D content were performed at 5 specifically selected posi-
tions along the arc. For subjective tests, 5 different levels
of distortions were applied to 8 different views from each
object, resulting in a per object total of 40 distorted 3D views.
In addition to distorted images, 8 reference views were also
shown for each object which were presented randomly to
subject twice. Therefore in total 168 images were selected
and shown to participants in the subjective test. The con-
version of 3D view images to light field image was done
using proprietary light field convertor provided with the dis-
play. Subjective evaluation was carried out from 5 different
positions as shown in Figure 7 within the display’s Field of
View (FoV) in an 8ft radius distance from the display. Each
location was 12.5 degrees apart from the adjacent position.
As described in Table 3, 20 participants assessed the content
on a five-point scale, with 1 corresponding to poor quality
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TABLE 2. QoE datasets - subjective assessment details.

TABLE 3. QoE datasets - participants demography.

TABLE 4. Distribution of objective assessment metrics used in each QoE datasets.

and 5 corresponding to excellent quality. The age range and
gender distribution of participants were not mentioned by
authors.

The authors used six objective assessment metrics, as illus-
trated in Table 4, of which Multiscale Structural Similarity
(MS-SSIM) achieved the highest values for Linear Correla-
tion Coefficient (LCC) and SROCC.

They also proposed Q3D, a new 3D full reference objec-
tive quality metric that considers the spatio-angular nature
of 3D content and aligns very closely with subjective test

scores. This metric was also tested on unseen data (a single
synthetic image affected by the same distortion types and
levels). Subjective tests with 20 participants were also carried
out on this new set of images and Difference Mean Opin-
ion Scores (DMOS) were calculated from subjects’ opinion
scores. The authors’ proposed 3D objective quality metric
proved to evaluate 3D views, rather than each contributing
2D component of 3D view; tested on the single new synthetic
content, it achieved a value of 0.877 for LCC whereas the
highest value achieved by 2D quality metrics was 0.759.
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FIGURE 6. Three different views of the three real objects used in
generating the turntable dataset [49].

FIGURE 7. Turntable dataset [49] - Five distinct positions within display
FoV for participants in Subjective Test.

Zizen and Fliegel [54] proposed the purely synthetic
Annotated Light Field Image Dataset (LFDD). They used
10 LF images of which 8 synthetic images were obtained
from [37], investigated in the previous section. The other two
images were used in training sessions of subjective evalua-
tion. As listed in Table 2, five degradation levels were chosen
for each distortion method. The authors mainly concentrated
on applying different types of compression methods as means
of testing distortions on Light Field images. They stated that,
due to the fact that compression will have to play a major part
in huge size light field images, it is necessary to pay special
attention on compression algorithms and the artifacts that are
exhibited by the algorithms. However, the authors acknowl-
edged the fact that compression artefacts are not the only type
of distortion that could have an impact on the perceived qual-
ity in subjective tests. Geometrical distortions and distortions
during the acquisition process would not show up during the
encoding process but could also have an impact on subjective
quality test. The PVSs (via different compression methods,
noise, etc.) were obtained via Matlab9 or FFMpeg.10

Subjective tests were conducted through crowdsourcing.
A modified version of the DSIS methodology was deployed

9https://www.mathworks.com/
10https://ffmpeg.org

for this subjective test, with a different score scale. Instead of
a 5-point integer scale, the observers were able to give a score
in the precision of one decimal place. The serpentine scan
order was chosen by the authors to accommodate the sources
into a pseudo-sequence and played the sequence as animation
to observers. The reference source was also presented to
observers simultaneously to the stimulus in a side by side
set up. The degradation in video based codecs were more
noticeable than image based codecs due to the selected lower
bit rates for different levels of video based codecs.

Significant changes were observed by comparing MOS of
subjective tests with the results of objective metrics as listed
in Table 4, i.e., impulse noise distortion gave better scores in
objective scores than subjective tests, while geometrical dis-
tortions evaluated better in subjective tests. For image-based
compression algorithms, the Feature Similarity Index for
Image (FSIM) and FSIM colour (FSIMc) metrics performed
better than the VIF metric. However the VIF metric showed a
strong correlation with subjective results for video encoders
and all the compression algorithms combined.

Shan et al. [53] proposed a dataset which consists pri-
marily of six light field images from the EPFL Light-Field
Image Dataset [13] that was investigated earlier in this paper.
For each LF image they created an animation of all view-
points - all focus view- of each LF image where each view
was a frame. The frame rate of the animation was set to
15 frames per second. They proposed a new subjective evalu-
ation method for LF images and compared their experimental
result with PSNR results. Two LF images were presented
side by side in the subjective test on the 2D display listed in
Table 2. Each original light field image underwent 4 different
distortion methods, listed in Table 2, and for each distortion
method, 4 different levels were considered. Therefore for
each SRC two sets of 16 frames animations were generated
for subjects to observe and rate. The spatial resolution of
each frame of the animation is 625 × 434. The Double Stim-
ulus Continuous Quality Scale (DSCQS) subjective rating
methodologywas adopted and subjects were given the chance
to rate the quality of the images they were observing on
a scale of 1 to 5 with 1 being ‘‘Bad’’ quality and 5 being
‘‘Excellent’’ quality. The authors noted that, from subjective
test results and studying the MOS against distortion level for
test contents, the distortion level of compression distortion
(JPEG and JPEG2000) was difficult to distinguish, but the
contents of white noise and Gaussian blur were easier for
evaluation. The authors considered adding more distortion
in their future work to complete the LF quality assessment
database. Furthermore the subjective test results showed that
the results depended on the texture and colorfulness of the test
images. Objective test results were close to the subjective test
results. The authors concluded that their method of using all
of the all-in-focus views of LF image to produce animation
sequences as test data helped to fully reflect the quality of LF
images.

Adhikarla et al. [50] proposed a dense light field dataset,
called theMPI-Light Field dataset, that consists of 9 synthetic
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sources and 5 real world sources. The real world sources were
captured considering horizontal parallax only, using a digital
2D camera, as listed in Table 1, mounted on a one-meter long
motorized linear stage. The spatial and angular resolution of
all light fields in this dataset are 960×720×101, i.e., 101 2D
views per source, hence a total of 1,414 2D reference images
across 14 sources. Four reconstruction methods (with six
angular subsampling factors), six compression levels (with
3D extension of HEVC encoder) and six display distortion
(modeled using Gaussian blur in the angular domain) lev-
els, as illustrated in Table 2, were applied to the reference
light fields. NNI, LI, Optical Flow Estimation (OPT), and
Quantized DepthMaps (DQ) algorithmswere applied on syn-
thetic sources while NNI, OPT, Gaussian blur (GAUSS), and
HEVCwere applied on real world sources. As a consequence
of the application of the distortion methods listed in Table 2
at different severity levels, the dataset contains 350 different
light fields. Figure 8 reports an example for each type of
distortion considered.

For subjective assessment the authors used a 2D desktop
monitor with a 3D vision kit (with active shutter glasses) for
displaying stereoscopic images. Motion parallax was repro-
duced using a custom head tracking. The authors adopted a
new approach in scaling pair-wise comparison results, using
Just Objectionable Differences (JOD), since the interest was
in identifying different qualities rather than visible differ-
ences that may result in similar qualities.

The authors also conducted objective assessment, testing
existing metrics on the dataset. The metrics used in their
assessments, listed in Table 4, were applied on individual
light field images and then the scores over all images were
averaged. The results of objective quality metrics showed
good performance of 2D and video quality metrics. Some
metrics did not perform well on some specific distortions;
for example HDR-VDP-2, although performing very well in
general, did not perform well in predicting the quality for
HEVC distorted images. The authors concluded that training
such metrics for a particular distortion type could boost their
performance. Another result was that proposed extensions of
the SSIM metric, aiming at accounting for angular changes,
did not perform well. This area requires more investigation
and development.

Paudyal et al. [65] and [48] proposed the SMART dataset.
16 sources were selected for this dataset considering some
key features in image quality such as Spatial Information
(SI), Colorfulness (CF), contrast, correlation, homogeneity,
brightness, hue, and saturation. The dataset also includes
the depth map images for each scene. Figure 9 presents
three sources from this dataset. The raw light fields captured
by the Lytro Illum camera were then processed via Matlab
Toolbox v0.4 to generate 2D light field images with 2D spa-
tial resolution of 434×625, and 15×15 views and RGB and
an additional weighting channel. The authors evaluated the
perceptual quality of compressed light fields through subjec-
tive quality assessment. Four different encoding methods as

listed in Table 2 at different levels were investigated in this
subjective assessment.

Subjective tests were conducted with 19 Undergraduate
(UG)/Postgraduate (PG) students who were naïve about
image rendering/processing. The age range and gender distri-
bution of the participants were not mentioned by the authors.
The pair-wise evaluation method was adopted for subjective
assessment in which participants were presented a pair of
images on a designed graphical user interface, on a 2D display
as listed in Table 2, to choose the best quality one as per their
perception Just Noticeable Differences (JND). The subjective
assessment results highlighted the difference in perceptual
quality of different encoding methods, with the plenoptic
image compression method Sparse Set and Disparity Cod-
ing (SSDC) achieving the highest score amongst the four
methods.

Objective quality assessment was performed considering
the objective metrics listed in Table 4. The correlation
between the subjective opinion scores and objective quality
scores was evaluated using PLCC, SROCC, and Kendall Tau
rank Correlation Coefficient (KTCC). Amongst all objec-
tive metrics, PSNR-HVS Visual Masking (PSNR-HVS-M)
achieved higher scores in terms of PLCC and SROCC which
could be associated with the fact that PSNR-HVS-M takes
into account the Human Visual System (HVS) and the con-
trast sensitivity of the image.

The authors observed that the level of compression (for a
fixed QP) depended on the image content and in particular on
color levels and brightness. However, no significant correla-
tion was identified between the considered descriptor and the
subjective quality of the light field images.

The last QoE dataset we cover in this section is V-SENSE,
proposed by Gill et al. [55]. The dataset was developed in the
framework of a QoE study to investigate the visual perception
of light field from the users’ perspective. The investigation
focused on whether the user attention on light field content
was different from 2D content and the impact of varied focus
on viewer attention. The authors used the refocusing method
on light field content to examine how it impacted the visual
attention of participants.

This dataset consists of twenty light fields selected from
four publicly available datasets [12], [13], [33], and [37], all
of which have been reviewed in this paper. The light field
selection criteria from the four datasets were light fields with
multiple regions or objects with high colour contrast and
high edge density and local contrast at varied depths and
spatial locations. The Fourier disparity layers method [66]
was used to generate focal stacks for light fields in various
focus scenarios such as: (1) all-in-focus, where all points
in the rendered image were in focus equally; (2) region-in-
focus, where only one image of the focal stack was rendered,
hence objects in the light field with the depth of focus of
that particular slice would appear sharp; (3) focal-sweep,
where all images of the focal stack were rendered in a
sequence.
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FIGURE 8. The impact of different distortion methods on image quality - MPI-Light Field [50].

To study the participants’ area of attention, partici-
pants’ eye tracking data were collected using the Eyelink
1000 plus [67] desktop mounted eye-tracker. The eye tracker
only recorded the movement of the participants’ left eye. The
subjective test was conducted to study how the participants
viewed the frames they were presented and which region of
either all-in-focus, region-in-focus (left region or right region
of the image) or the focal sweep (front-to-back or back-to-
front) drew more attention. Saliency maps from the fixation
points recorded by the eye-tracker were used. The results
showed that, whilst in some cases the salient points were
the same in different rendering patterns, objects could draw
participants’ attention in focal sweep rendering but not in
all-in-focus scenario. Furthermore the authors found that if
an object is salient in all-in-focus and becomes in focus in
any of the other two rendering scenarios, it becomes salient
too. When an object had a high level of saliency in all-
in-focus rendering and was observed in another rendering
method where it was not in the focus region, even though the
object was not in focus it still pulled viewers’ attention from
the focus area. The saliency patterns in different rendering
methods were very much dependent on the nature of the
objects in the image. Images with a high number of distinct
objects like a treasure chest full of jewels demonstrated a clear

dispersed saliency pattern where participants tended to follow
the region in focus.

III. CHALLENGES AND FUTURE DIRECTIONS
A. DATASETS SOURCE CONTENT
The datasets covered in this paper can be grouped into syn-
thetic light fields, real world light fields captured with a
lenslet light field camera (Lytro Illum or Raytrix) and real
world sources captured with a camera array or gantry (or
a mix of both) or a fixed single camera with content on a
turntable.

The challenge in using plenoptic cameras such as Lytro
Illum is that, when using software tools such as theMATLAB
Light Field Toolbox for decoding the recorded light field
information, part of the color and depth information could
be distorted. Even though the Toolbox’s color correction
function could be used to correct the impact, the generated
distortion could still have a negative impact on the perceived
quality.

Furthermore, based on the aim of the research, the type
and variety of the light fields in the dataset would need to
be considered. Datasets containing real-world sources or with
a large proportion of real world sources are often required.
For instance, for evaluating compression algorithms, such
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FIGURE 9. Three scenes from the SMART Dataset [48] with corresponding Depth Maps.

as in [48], real world source datasets would be required.
Indeed this would also hold true when working on the design
and performance evaluation of objective quality metrics. This
would necessitate real world source datasets with a variety
of light field contents, contrast and other features. Synthetic
datasets are required for instance when the need of highly
accurate and predefined ground truth depth or disparity maps
comes into force. In addition, very few datasets provide video
data, with most of them focusing on static sources. Acquiring
LF video data requires plenoptic cameras or arrays of cam-
eras, expensive and requiring appropriate lab environments
in the second case, while static sources can be recorded via
moving a single camera in multiple positions or moving the

object in front of a single camera, e.g. via a turntable. More
datasets with video data should be produced and made public
to advance video-related research and testing. In general, the
scientific communitywould needmore datasets with different
contents and also with associated subjective scores associated
to visualisation in light field displays.

B. OBJECTIVE METRICS
As reviewed above in the part on objective quality assess-
ment of the light field data in the datasets, existing objective
quality metrics do not result in high correlation with sub-
jective quality assessment results, in particular when tested
on new datasets. This is on one hand due to the fact that
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the traditional 2D objective quality metrics do not consider
specific features of light field images such as motion parallax
and refocusing. This requires more research in this area of
designing specific objective quality metrics for light field
images.

Another point that can be made observing Table 4 is
that there is no single best objective quality metric that
always correlates best with subjective assessment results.
Based on the nature of the light field and its journey from
camera to display, the correlation of the objective quality
metric with the subjective results changes. Again, the reason
behind this variety could be the lack of light field specific
objective quality metrics in the datasets and the fact that
most of them have been designed based on a limited set of
data.

It is worth mentioning that quality metrics developed
specifically for light fields exist (see e.g. [68], [69], [70],
[71], [72]). Some of them, however, were developed and
tested based on quality scores of subjects visualising content
in commercial displays not designed for the visualisation
of light fields. A comparison on existing and new objective
metrics based on datasets with light field display visualisation
quality scores would indeed be important.

C. SUBJECTIVE ASSESSMENT
One of the current problems in subjective assessment is the
lack of available light field displays in the research commu-
nity. From the eight QoE dataset works that we have covered
in this paper, only one used a 3D light field display. To achieve
the best end user perceptual quality and to measure the actual
light field experience, an appropriate display needs to be
used. Subjective tests using light field displays have indeed
been performed in the past and their results are reported in
the literature (see e.g. [59], [60], [61], [73], [74]), although the
relevant datasets are not public. A summary of the subjective
tests performed with light field displays is provided in Table 1
in [75].

In additions, agreed guidelines for subjective assessment
for light field visualisation are missing. Initial considera-
tions on specific aspects, i.e. viewing distance, are reported
in [76]. The IEEE Standard for the Quality Assessment of
Light Field Imaging (P3333.1.4) [77] is addressing these
aspects.

Finally, most of the existing quality datasets report the
aggregated scores from subjects, via MOS. However, the
value of including scores from all subjects and not only MOS
has recently been established [78], [79], [80], [81], [82],
as the potential bias of each subject in assessing the content
and the interaction with content can be considered. Indeed,
the aim of subjective tests is to estimate the ‘‘population
mean opinion score’’ having availability of a limited pool of
subjects in the population for performing the tests. Reporting
all the subjects’ scores on the different contents will enable
a more accurate estimation of the ‘‘population mean opinion
score’’, for instance via the model in [78].

For further discussion on subjective assessment for light
field displays, as well as a summary of light field subjective
tests using light field displays, readers can refer to [75].

IV. CONCLUSION
This paper presented the review of 33 publicly available
datasets, eight of which for the purpose of quality assessment.
For the latter, the paper compares the objective and subjective
assessment methods used. The challenges in creating datasets
and the fact that different types of datasets are required for
different researches are discussed. The need for a robust light
field objective quality metric is also discussed.

We expect this work will support research scientists work-
ing in the areas of light field compression, transmission, post-
processing, rendering and quality evaluation in the selection
of the most appropriate datasets for developing and testing
their algorithms. The taxonomy and collection of the avail-
able data provided here will also support the development of
machine learning strategies for the quality assessment of light
field imaging, requiring large amount of data representing
different contents and use cases.

A major issue highlighted is the lack of datasets where
subjective scores are provided following visualisation on light
field displays: most datasets use 2D or stereoscopic 3D dis-
plays, with only one dataset with subjective tests on a light
field display (horizontal parallax). We expect that the lower-
ing costs of light field displays will support the development
of new datasets. We plan to provide relevant datasets and we
also solicit the research community to make datasets pub-
licly available. This will underpin the development of novel
quality assessment metrics and compression methods. For
video quality assessment, there is a lack of relevant light field
datasets (video content) that is preventing the development
and testing of video quality metrics for light field content.
Also, with the development of full parallax displays, datasets
with suitable content and with subjective tests on full paral-
lax displays would be extremely beneficial for the research
community in the area. More types of distortions specific
for light field content should also be considered, as most
of the QoE datasets only consider compression distortion in
addition, in some cases, to Gaussian noise and blur.
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