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ABSTRACT Upper limb exoskeleton is gradually used in industrial production because of its flexibility,
safety, and ease of wear. To improve the load reduction effect of the upper limb exoskeleton in power
grid operation, this paper first establishes an efficiency optimization model considering the number of
gears, transmission ratio, and pressure angle of upper limb exoskeleton transmission joint gears. Further,
an exoskeleton load reduction model based on the joint optimization of multiple parameters of the upper
limb exoskeleton is constructed by combining the muscle force application fatigue evaluation. For the
above model, a hybrid simulated annealing-flash connection process algorithm based on Cubic mapping
and golden sine is designed for the solution. To address the shortcomings of the standard LAPO, Cubic map-
ping, simulated annealing algorithm, and golden sine operator are introduced for improvement, producing
high-quality initial solutions through the traversal of Cubic chaotic sequences, hybrid simulated annealing
algorithm to enhance the global search capability of the algorithm, and further incorporating golden sine
operator to strengthen the local search capability of the algorithm. In the simulation section, the designed
Improved Lightning Connection Process Algorithm (ILAPO) is compared horizontally with cutting-edge
swarm intelligence algorithms such as LAPO, PSO, and HBA to verify the feasibility of the model in this
paper in the exoskeleton domain and the efficiency of the designed algorithm.

INDEX TERMS Upper limb exoskeleton, parameter optimization, muscle fatigue, lightning attachment
procedure optimization.

I. INTRODUCTION

With the “carbon peak™ and “‘carbon neutral” goals, the
development of various industries in the world has ush-
ered in new challenges, the power grid industry as the
basis for its development also ushered in new develop-
ment goals: efficient, intelligent, environmentally friendly.

damage to the operator’s body. Therefore, how to reduce the
workload of operators has become a widespread concern of
researchers [1].

A. RELATED WORK
Exoskeletal robots were originally designed to enhance

-Efficient, intelligent, and environmentally friendly. As an
important business in the power grid industry, power grid
operation and maintenance will also face a new round of
development requirements. At this stage, power grid opera-
tion and maintenance often require long and repetitive phys-
ical labor in a small space, which undoubtedly causes great
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human strength [2], and the real development of upper
limb exoskeletons can be traced back to 1990 [3], which
also aimed to enhance human upper limb strength. With
the increasing industrialization worldwide, the functions of
upper limb exoskeletons have become increasingly enriched
and started to emerge in the fields of medicine [4], logis-
tics [5], and civil use [6]. To further improve the perfor-
mance of upper limb exoskeletons, many researchers have
focused their attention on the parameter optimization of
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upper limb exoskeletons [7], [8]. Literature [9] designed a
booster upper limb exoskeleton for the problem of upper
limb muscle group fatigue, literature [10] used exoskeleton
technology for the overall planning of the workplace of oper-
ators based on human-centered thinking, and literature [11]
innovatively applied group intelligence algorithms to upper
limb exoskeleton optimization; in terms of fatigue assess-
ment, literature [12] developed a physiology-based upper
limb construction dynamic muscle fatigue model. On the
other hand, the literature [13] pointed out a significant cor-
relation between RPE and muscle strength decay.

Meta-heuristic algorithms such as population intelligence
optimization algorithms have been used in the field of
exoskeleton control as well as optimization. The litera-
ture [14] optimized the exoskeleton motion trajectory model
by adaptive nondominated ranking genetic algorithm II
(NSGA-II), the literature [15] designed a robust PID adaptive
controller for exoskeleton based on improved particle swarm
optimization (PSO) algorithm for nonlinear systems, and the
literature [16] addressed the problem of identifying a dual-
degree-of-freedom lower limb exoskeleton model by using
domain field optimization ( NFO) to construct a dynamics
model and suppress the perturbation points of the sampled
data set by Huber fitness function, literature [17] sampled
genetic algorithm (GA) for parameter estimation of the math-
ematical model of the multi-joint HKE of the lower limb
exoskeleton, and literature [18] combined GA with PSO to
design a method to adjust the PID parameters of the 4-degree-
of-freedom LLE.

B. MOTIVATION AND CONTRIBUTIONS

Based on the above studies, this paper establishes a multi-
parameter joint optimization model of the upper limb
exoskeleton for grid operations based on the actual grid
operation and maintenance context by establishing the objec-
tive function with the lowest fatigue level of the opera-
tor. The lightning connection process optimization algorithm
(LAPO) [19], as a natural heuristic algorithm, has good
optimization-seeking capability and solution accuracy and
provides effective technical support for the solution opti-
mization of exoskeleton design parameters, but it still has
problems such as unstable solution performance, easy to fall
into the local optimum, and premature algorithm. In this
paper, we combine the advantages of a simulated annealing
algorithm to improve it. The algorithm proposed in this paper
has fast convergence speed and high accuracy, which can
reduce the upper limb muscle burden and effectively improve
the operation efficiency for the power grid operation and
maintenance personnel.

Il. UPPER LIMB EXOSKELETON TRANSMISSION

EFFICIENCY OPTIMIZATION MODEL
With the rapid improvement of the current economic level,

people’s electricity consumption has increased significantly,
and to ensure the stability of the power supply, it is urgent to
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FIGURE 2. Simplified diagram of gear meshing.

improve the efficiency of power distribution line operation
and maintenance, in which live operation occupies a very
important position. In dangerous operation environments
such as live maintenance, foreign object removal, and opera-
tion inspection, operators need to perform long and repeated
physical labor in a small space, which undoubtedly causes
great damage to the operator’s body. The development of
mechanical exoskeleton technology provides a feasible idea
to reduce the burden of workers at height, and the model
schematic is shown in Figure 1. This paper gives solutions to
the situation of excessive fatigue of the upper limbs of work-
ers based on actual operation scenarios. Firstly, to improve
the transmission efficiency of the upper limb exoskeleton
and minimize the burden on the upper limb of the operator,
the study optimizes the number of gears, transmission ratio,
and pressure angle of the power joint gear of the upper limb
exoskeleton with the maximum meshing efficiency as the
objective function; secondly, the muscle fatigue evaluation
model is constructed based on the max voluntary contrac-
tion (MVC) and the actual operating intensity; finally, the
study constructs the fatigue evaluation model based on the
muscle application for the operator’s climbing, pole-holding,
and descending. Finally, the exoskeleton fatigue reduction
model based on multi-parameter hierarchical optimization
of the upper limb exoskeleton is constructed for a series of
scenarios.
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TABLE 1. UAV physical limitations.

Symbols Symbol Description
R The radius of the active wheel pitch circle
1 p
Rbl The radius of the active wheelbase circle
R, Slave wheel pitch circle radius
sz The radius of the base circle of the driven wheel
AB Ideal gear meshing line
EF Actual gear meshing line
C_D The direction of the combined force of pressure and
friction
1 Gear ratio
T Active wheel drive torque
1 q
T, Slave wheel drive torque
Tf Friction torque at engagement
FN Normal pressure at engagement
H Friction factor at the engagement
0]C Active wheel force arm
02D Slave wheel force arm
n Engagement drive efficiency
Z Number of active wheel teeth
o Pressure angle
p, Power Rating

A. MODEL ASSUMPTIONS
Step 1. In the climbing scenario, the shape and size of the
person are ignored to treat them as masses for study.
Step 2. The gear meshing efficiency approximates the
energy transfer efficiency.
Step 3. Energy transfer efficiency losses are considered
only for friction losses.
Step 4. Constants such as human weight, MVC (Max
Voluntary Contraction), and task attributes are universal.
Step 5. Fatigue assessment is generally representative.
Step 6. The friction factor remains constant.

B. MODEL ESTABLISHMENT
1) SYMBOL DESCRIPTION
2) EQUATION DERIVATION
The upper limb exoskeleton involves the coordinated opera-
tion of a variety of internal components in the power-assisted
process, and to reduce the complexity of the model, only the
most representative transmission gears in the transmission
process are considered in this paper [20], and the simplified
schematic is shown in Figure 2.

The meshing transmission gear is abstracted and simplified
from the upper limb exoskeleton into two first-class cylin-
drical spur gears, combined with the geometric relationship
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to finally optimize the efficiency of the exoskeleton by
optimizing its structural parameters.
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Eq. (1) represents the driving torque of the main wheel
and A is the speed of the main wheel; Eq. (2) represents the
instantaneous meshing efficiency by differentiation; Eq. (3)
represents the combined force at the mesh consisting of
normal pressure and sliding friction; Eqs. (4-5) represent
the driving torque of the main and driven wheels and their
relationship; Egs. (6-7) represent the force arms B and C from
the equation listed by the geometric relationship; Egs. (8-9)
represents the instantaneous efficiency when the meshing
point is at the node The instantaneous efficiency is at the
left and right side of the node; Equation (10) shows the
average efficiency of the actual meshing section by integra-
tion. where, equations (11-12), as shown at the bottom of
the next page, are the objective functions of the meshing
efficiency concerning the number of gears, transmission ratio,
and pressure angle, and the value of the friction factor u
depends on the actual product; equation (13), as shown at
the bottom of the next page, is the constraint condition of the
relevant parameters.

IlIl. WORKER FATIGUE ASSESSMENT MODEL

In the process of working at height in the power grid, repet-
itive, long-time work, improper position or overuse of a part
of the body can cause muscle fatigue, whose objective perfor-
mance is mainly a decrease in muscle strength, and the degree
of muscle fatigue can be described by Force Decrease.

MVC — F
FDnor = M—VC (14)
F = MVC - ¢~ Fout/MVC) (15)
FDypr = e(KFout /MVC) _ (16)
eva = el TKFout/MVCl _ (17)
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where, MVC is the maximum random contraction, which is
taken as the value of a normal adult male, F,,; is the extrinsic
muscle load, ¢ is the operation time, k is the fatigue rate,
the value offices his task properties and is taken according
to the actual task, RPE (Ratings of Perceived Exertion) is
the subjective muscle fatigue score (eva) that is positively
correlated with the muscle force reduction; equation (14) is
the normalization of the muscle force reduction by eliminat-
ing individual differences; equation (15) represents the force
magnitude at a certain moment; equation (17) represents
the muscle fatigue evaluation model of the force application
operation after the differences are corrected.

IV. FATIGUE REDUCTION MODEL BASED ON ARM
LENGTH OPTIMIZATION OF UPPER LIMB EXOSKELETON
A. OPERATING ENVIRONMENT
The number of power grid operation scenarios is numerous,
covering transmission operation and inspection operations
of climbing poles, climbing towers, tree trimming under
aerial work, line foreign object removal, column vacuum cir-
cuit breaker setting adjustment, etc. Most of these scenarios
require operators to hold special appliances to complete the
task. In this paper, from a practical point of view, part of
the grid operations are abstracted as a series of processes
of climbing, operation, and descent, abstract scenes such as
Figure 3.

Based on the law of conservation of energy, the energy
consumption of the climbing and the falling process is studied
by simplifying the person to amass as follows:

Ep—We+ W, =0 (18)
W6 — Edown + We2 =0 (19)
We = (mo + me + my,)gh (20)
Wer = nipstup 2D
Weaz = nprtaown (22)

where, E,p, Egown, WG, We1, Wea, respectively, for the opera-
tor climbing and falling energy consumption, gravity work,
exoskeleton in climbing and falling to help do work, my,
me, m,,, respectively, for the operator, exoskeleton, work
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FIGURE 3. Schematic diagram of power grid operation scenario.

apparatus mass, g = 9.8m/s>, h for the operating table
from the ground height, 7, pr, tup, tiown, respectively, for
the transmission efficiency, rated power, climbing and falling
time.

B. MODEL ESTABLISHMENT

The single arm of the upper limb exoskeleton and the oper-
ational apparatus are abstracted as a two-linked rod to study
its motion mechanism, as in Figure 4, and the mathematical
model is established by randomly selecting the points to be
inspected in the area to be inspected.

E,, = mugh, + myghy, — nprty (23)
hg = 15(1 —cos é1)/2 24)
hy, = [, cos 81 + I, cos(m — 81 — 82)] /2 (25)
24+12-12
81 = m — arccos £ 9 " _ arcsin g (26)
2lgl, lg
12 _ 12 _ 12
§» = arccos W 27

lg = \/x2+22 (28)

where, equation (23) represents the energy consumption dur-
ing the operation, h,, h,,, and t,, represent the arm height

max 7 = f(z1, i, @) (11)
J @2 — iz sina + 41 + )
f@i,i,a) =In(1 + .
z1(cosa — psina)
W z1i(1 4+ i)(cos @ + psina)] (12)
[\/z% sinf o +4(z1 + 1) + /22 sine + dizg + 1 — z1(1 + i) sina]
15 <z <30
1<i<10 (13)
15° < a < 25°
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FIGURE 4. Schematic diagram of power grid operation scenario.

variation, the operation rod height variation, and the opera-
tion duration, respectively, and [,, /,,, and I, are the single
arm length of the upper limb exoskeleton, the operation rod
length, and the distance of the point to be inspected from
the coordinate origin, respectively, where [, is the decision
variable.

ZE = Eup + Edown + Ew (29)
Zt = lyp + tdown + tw (30)
min EVA = el 2 X2 —kE1/2hMVC] _ (31)

where equations (29-30) represent the total energy and time
consumption of a series of operations, and equation (31) is
the fatigue reduction model.

V. ALGORITHM DESCRIPTION

A. LIGHTNING ATTACHMENT PROCEDURE OPTIMIZATION
Lightning Attachment Procedure Optimization (LAPO) is
a novel heuristic algorithm based on the lightning upward
pilot and downward pilot attachment procedure proposed by
A. Foroughi Nematollahi et al. in 2017. The algorithm is
divided into five parts: initialization, Next jump determina-
tion, Branch fading, Upward leader movement, and Final
jump. It has the advantages of fast convergence speed, strong
merit-seeking ability, and few parameters of the algorithm.

1) INITIALIZATION

Similar to other standard population intelligence optimization
algorithms, Lightning Attachment Procedure Optimization
generates the initial population in a randomized manner.
In LAPO, each individual in the population is considered a
lightning candidate point between the cloud and the ground,
and its electric field value represents the individual’s fitness
value.
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2) NEXT JUMP DETERMINATION

Lightning travels through multiple candidate points to move.
At this stage, for each individual (candidate point) i, Xgyer
point j (i # j) was randomly selected in the population. If the
electric field value (fitness value) of j was higher than that
of the average point A, then the individual i moved to point j.
The calculation formula of X, was shown in Equation (32).
Otherwise, individual i will move in the other direction. The
process is expressed as Equation (33).

N
KXaver(1) = mean (Z X,-(r)) (32)

i=1
X(t) + rand x (Xayer(t) + rand x Xpatenlial),
ﬁt(Xpotential) > fit(Xaver (1))
X(t) — rand x (Xqver(t) + rand x Xpotential)
else

Xnew(t) =

(33)

where, Xj,e0(2) is the position where the individual moves to
the new candidate point, Xpoensiar is the position of random
point j, rand is the random number between [0,1], and fif(x)
is the fitness function.

3) BRANCH FADING

When the fitness value of the new candidate point is higher
than the fitness of the position before the individual moves,
the lightning branch of the new candidate point is retained,
otherwise, the branch disappears. The process is expressed as
Equation (34).

Knew (), fitXnew(1)) > fit(X (1))

X(1), else (34)

X(t+l)=[

where X(t 4+ 1) represents the updated position of the
individual.

4) UPWARD LEADER MOVEMENT

In both stages, each individual is considered a Downward
leader and moves downward. In this stage, each individual
is considered an Upward leader movement. Among them, the
exponential factor of the up-facing leader is defined as:

t

~ T 35
T_iter) xe (35)

S=1—(

where ¢ is the number of current iterations and 7T _iter is
the maximum number of iterations of the algorithm. Thus,
the update formula based on the upcoming pilot shift can be
expressed as in equation (36).

X+ 1D=X@+ rand x § x (Xworst — Xbest) (36)

where X,or; and Xp,,; denote the worst and best individuals
in the current population.
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5) FINAL JUMP

When the upward and downward precursors meet each other,
the connection point is determined and the lightning connec-
tion process stops. In standard LAPO, the average individ-
ual X, of the current population is calculated after each
iteration and compared with the worst individual X5 Of
the current population, and if the adaptation value of the
average individual is better than the worst individual, it will
be replaced.

B. HYBRID SIMULATED ANNEALING -LIGHTNING
ATTACHMENT PROCEDURE OPTIMIZATION

1) INITIALIZATION OF POPULATIONS BASED ON

CUBIC MAPPING

Since the standard LAPO uses a random approach to obtain
the initial population, it has a large uncertainty, which easily
leads to the uneven distribution of the initial population in
the solution space, and then affects the optimization speed
and the quality of the algorithm. To address this problem,
this paper introduces the Cubic mapping mechanism to obtain
high-quality initial populations, and the Cubic mapping for-
mula can be expressed as shown in equation (37).

Xnp1 = pxn(l = x7) 37)

where p is the control parameter, and its different values
will affect the quality of the chaotic sequence. When taking
xg = 0.3 and p = 2.595, the Cubic mapping sequence has
good chaos traversal. By mapping the obtained Cubic chaotic
sequence into the solution space of the population, a high-
quality initial population can be obtained.

2) HYBRID SIMULATED ANNEALING ALGORITHM

To improve the global search capability of the algorithm and
prevent falling into local optimal solutions, the simulated
annealing algorithm (SA) is combined with LAPO in this
paper to perform the search, and with the help of its idea
of receiving worse solutions with a certain probability, the
algorithm can quickly jump out of the local optimum. The
update process of the hybrid simulated annealing algorithm
is as follows:

Step 1. set the initial temperature T, so that the current
temperature T = Tp;

Step 2. perturb the current population x to obtain a new
population x’;

Step 3. calculate the cost function df = fit(x) — fir(x),
if df>0, then keep the new solution x’; otherwise, deter-
mine whether to accept the inferior solution x” according to
equation (38);

_a
min{l,e %} > rand[0, 1] (38)

Step 4. perform the annealing operation according to Eq. (39)
and calculate the generation difference dF by Eq. (40);

T, 1 = kT, (39)
dF = fit Xpess(n + 1)) — fit Xpest (1)) (40)
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where k denotes the annealing coefficient and Xp,g(n)
denotes the optimal individual in the population at the nth
annealing iteration;

Step 5. determine whether the stop annealing condition
T < T_end is met, if so, go to Step 7 to end the simulated
annealing algorithm, and vice versa, go to Step 6. where
T _end indicates the termination temperature;

Step 6. determine whether the iteration stopping condition
dF < D_end is met, if so, go to Step 7 to end the simulated
annealing algorithm, and vice versa, go to Step 2. where
D_end indicates the termination of generation difference;

Step 7. output the current feasible solution, and the algo-
rithm ends;

In summary, the above process can be represented as shown
in Figure 5.

3) A POPULATION PERTURBATION MECHANISM
INCORPORATING THE GOLDEN SINE OPERATOR

In the above hybrid simulated annealing algorithm,
we improve the population perturbation mechanism by incor-
porating the golden sine operator [21] to further improve
the perturbation’s effectiveness and enhance the algorithm’s
local search ability. The golden sine algorithm, which was
proposed by Tanyildizi et al. in 2017, has good robustness
and convergence ability, and its introduction into LAPO
can effectively improve the local exploitation ability of the
algorithm. The perturbation mechanism based on golden sine
can be expressed as in equation (41).

X(t+1)=X() x |sinR| + Ry X sinR;

X [x1 X Xpest — X2 X X(1)] (41)
x1=—-n74+((1—-1) %21 42)
Xp=—T +71TX21w
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where R; denotes the random number between [0, 27],
R, denotes the random number between [0, 7], denotes
the golden sine coefficient, and denotes the golden mean
coefficient.

4) ALGORITHM FLOW CHART OF THE HYBRID SIMULATED
ANNEALING-LIGHTNING CONNECTION PROCESS

Based on the above, a hybrid simulated annealing-flash con-
nection process algorithm based on Cubic mapping and a
golden sine flow chart is shown in Figure 6.

V1. SIMULATION EXAMPLE

In this paper, MATLAB R2022a is used as the simulation
programming tool, the operating system is Win 11, the RAM
is 16 GB, and the processor is AMD Ryzen 7 5800U.
The model parameters are set based on the actual human
kinematic parameters and the exoskeleton size, as shown in
Table 2.

A. TRANSMISSION EFFICIENCY OPTIMIZATION MODEL
SOLVING

To verify the superiority of the Improved Lightning Linkage
Process algorithm (ILAPO) designed in this paper, simula-
tion cross-sectional comparisons are made with the standard
LAPO, Particle Swarm Algorithm (PSO), Honey Badger
Optimization Algorithm (HBA), and Whale Optimization
Algorithm (GWO). To ensure the fairness of the simulation

VOLUME 11, 2023

TABLE 2. Basic parameters.

parameter value
w(m/s®) 0.01
MVC(N) 260
h(m) 20
m, (kg) 60
m, (kg) 6.5
m, (kg) 3
P, (w) 70
1, (m) 5

Convergence curve
084F ! { :

0.83

=
)
S}

Best score obtained so far
o
oS ™
o e

0.79

078 |-

20 40 €0 80 100 120 140 180 180 200
lteration
FIGURE 7. Comparison of the average iteration curves of each algorithm
over 30 runs.

TABLE 3. Comparison of operating indexes of each algorithm of
transmission efficiency optimization model.

The average objective function

Algorithm value
ILAPO 0.01
LAPO 260
PSO 20
HBA 60
GWO 6.5

comparison, the population size N of each algorithm is
100 and the maximum number of iterations 7'_iter is 200.
The parameters of each algorithm are set as follows: learning
factor c1=c2=1.5, maximum particle velocity v, = 1, and
minimum velocity v,,;;, = —1 in PSO; constant c=2 and
foraging factor 8 = 6 in HBA.

The established upper limb exoskeleton transmission effi-
ciency optimization model and the fatigue reduction model
based on the upper limb exoskeleton arm length optimization
were optimized hierarchically. The transmission efficiency of
the exoskeleton was first optimized, and each algorithm was
run independently 30 times, and the average iteration curve
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FIGURE 8. Comparison of the average iteration curve of each algorithm. (a) [xg, zg] = [0.2, 4.5]; (b) [xg, Zg] =

[0.7, 4.75].
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FIGURE 9. Comparison of the average iteration curve of each algorithm. (a) [xg, zg] = [1.2, 5.0]; (b) [xg, zg] =

[1.7, 5.25].

TABLE 4. The optimal operation index.

[Xe.2,] [0.2,4.5] [0.7,4.75] [1.2,5.0] [1.7,5.25] [2,5]
Optimal solution 1 1 0.6 0.6 0.6
Objective function 3.9363 3.8605 3.7225 34774 3.5975
value (x10°)
comparison is shown in Figure 7. The operation indexes of «10%%, — eVEIgeres UV ;
each algorithm are shown in Table 3. o
The optimal solution of the model is obtained from ILAPO: 35996 | PSO |1
. . HBA
z1 = 30;i = 10; o« = 25°. The optimal value of the _ ewo
. . . e - ol
transmission efficiency: 7 = 0.85313. ‘o
& 3599 1
@
B. FATIGUE SHOULDER MODEL SOLVING g
The optimization results were imported into the fatigue reduc- g . |
tion optimization model for the second layer of optimization. 8
Multiple sampling points were randomly selected within the E
operation range for simulation, and each algorithm was run 3508 |
five times independently in each sampling point, and the \
average iteration curve of each algorithm was compared as ="
shown in Figures 8-10. The optimal operation index of the s = 63 ©¢ 100 0@ 10 160 @ 200

model obtained by ILAPO at each sampling point is shown
in Table 4.

VIl. DISCUSSION
Compared with the other four algorithms, the ILAPO algo-

rithm has strong advantages in the searchability and running
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Iteration

FIGURE 10. Comparison of the average iteration curve of each
algorithm([xq, zg] = [2], [5])-

time, especially since the running objective function solution
is better than other algorithms, and it is not easy to fall into
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the local optimal solution. Based on the real environment of
power grid pole holding operation, the optimization effect
of the ILAPO algorithm on upper limb load reduction is
improved compared with the other four algorithms. There-
fore, the ILAPO algorithm can better solve the problem
of excessive muscle fatigue of operators, greatly reducing
energy consumption and improving operational efficiency.

VIil. CONCLUSION

This paper establishes a hierarchical optimization model
of upper limb exoskeleton components for grid operations.
Based on the Lightning Attachment Procedure Optimization
algorithm (LAPO), Cubic mapping and the golden sine oper-
ator are introduced to improve the global search capability
of the particle swarm algorithm to solve the model. Through
simulation experiments, the established model and algorithm
are compared with the LAPO algorithm, PSO algorithm,
HBA algorithm, and GWO algorithm for several calculations
respectively. The analysis of experimental results shows that
the established algorithm has a faster convergence speed com-
pared with other algorithms, and has a stronger global search
ability, which is not easy to fall into local optimum and can
effectively improve the efficiency of upper limb reduction.
It provides a reference for the efficiency optimization of grid
inspection, but there are still problems of high computational
complexity and low generality, and future research should
focus on considering the efficiency optimization under var-
ious complex situations and improving the generality of the
algorithm.
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