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ABSTRACT This paper aims to present a robust algorithm developed that aims to minimize the number
of sensor nodes in a WSN using three quantum-behaved swarm optimization techniques based on Lorentz
(QPSO-LR), Rosen–Morse (QPSO-RM), and Coulomb-like Square Root (QPSO-CS) potential fields. The
algorithm aims to allocate the minimum number of wireless sensors in forested areas without losing
connectivity in an environment with a high penetration of vegetation. The proposed approach incorporates a
propagationmodel that locates the sensor nodes, calculates the approximate separation distance between each
one, verifies Line of Sight (LOS) compliance, and avoids considerable intrusions in the first Fresnel zone.
The results validate the robustness of the quantum-behaved swarm optimization algorithms in comparison
to traditional particle swarm optimization (PSO).

INDEX TERMS Network design, particle swarm optimization, quantum-behaved algorithms, wireless
sensor network.

NOMENCLATURE
λ Wavelength.
C Cost Funtion.
c Cognitive Coefficient.
d Distance.
df The depth of foliage along the path.
f Transmission Frequency.
G Gain.
g Optima Global Position of the Swarm N.
L Path Loss.
P Power.
q Best Position.
r Vector of random values between 0-1.
t Time.
u Random number.
V Potencial Field.
v Particle Speed.
w Inercia Coefficient.
X Best Global Position.
x Position.
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I. INTRODUCTION
Information and Communication Technologies (ICTs) pro-
vide a variety of electronic devices and computer equipment
capable of processing information and using it to control
processes and predict/prevent disasters [1]. Due to issues
related to global warming [2] or human incidence [3], there
have been several emergencies worldwide, even with a con-
tingency plan. The rulers of affected countries and districts
seek ways to control or avoid wildfire or other disasters
[4], [5]. However, the increase in the rate of wildfires is a
global concern [6]. Wildfires are one of the problems that
affect specific areas worldwide every year, e.g., the Aus-
tralian fires in 2020 [7], when the extension of the forest
burned exceeded everything observed until to date, or on
August 25, 2019, when a large fire affected the border ter-
ritory between Bolivia, Brazil, and Paraguay [8]. In a study
by the World Wildlife Fund (WWF) and Boston Consult-
ing Group (BCG) in April 2020, fire alarms increased by
13 % compared to 2019 [9]. Variations in the frequency,
intensity, location, and severity produced mainly through
human action, can affect the spontaneous creation of fires in
unexpected areas. These cause severe impacts on the ecosys-
tem and the loss of biodiversity, increase the capacity of
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greenhouse gases, and cause production problems in national
economies [8].

Some studies focus on data fusion and processing wireless
multimedia sensor networks with a view to reduce the amount
of data to be transmitted over the network by intra-node pro-
cessing [10], [11]. Some other studies focuses on the appli-
cations and mechanisms to create Wireless Sensor Networks
(WSNs) [12], [13], [14], [15]; these allow for the protection
and monitoring of areas in danger; however, the terrain’s
topography can affect a traditional design in the network.
For this reason, the creation of WSNs, mainly in wooded or
mountainous areas, must be accompanied by a specific study
of where theWSNwill be implemented, which affects imple-
mentation times with more significant human effort [16].
The implementations use specific ICTs because they are
affected by terrain [17], antenna, propagation model [18],
and others. In addition, specific optimization algorithms are
used to improve some WSN characteristics, e.g., the location
of the antennas (nodes) using Particle Swarm Optimization
(PSO) [19]. However, these traditional algorithms may take
time to process all the information depending on the expan-
sion area of the WSN and other environment variables.

The main contribution of this work is a novel algorithm
with low computational burden that deals with the optimal
location sensor nodes in a WSN, considering a forested
area with high penetration of vegetation (realistic model).
The optimization is performed using three quantum-behaved
swarm optimization algorithms (QPSO) that employ quantum
physics resulting in a robust optimization technique. The
proposed approach incorporates terrain topology, line of sight
between sensor nodes, propagation models, link gain, Fresnel
radius, transmitter and receiver power, and path loss caused
by the environment.

The remainder of this paper is composed of six sec-
tions. Section II describes the motivation and literature
review according to propagation models, WSNs, and opti-
mization algorithms. Section III introduces the methodol-
ogy for the design of the WSN, indicating the interaction
between the propagation algorithm and optimization algo-
rithms. Section IV presents the simulation environment for
validating the method with the proposed scenarios. Section V
presents the analysis of the results of the scenarios and the
behavior of the optimization algorithms. Finally, some con-
clusions about the different designs and optimization algo-
rithms are indicated in section six.

II. BACKGROUND AND LITERATURE REVIEW
This paper is the continuation of previous works that describe
the preliminary development of an application that allows
combating problems related to spreading forest fires and
monitoring outdoor areas using sensors. Reference [20]
describes the simulation tool for spreading forest fires, devel-
oped using transition rules in cellular automata, considering
density and type of vegetation, wind speed and direction,
and terrain elevation, among other parameters. On the other
hand, [21] describes a prototype for the dynamic creation
of evacuation routes in forest fires using a virtual sensor
network (VSN) that obtains data on temperature, humidity,

atmospheric pressure, wind speed, and other parameters
received from a web weather API. These are set up into a
forest fire propagation algorithm with an initial coordinate
(latitude, longitude) to start the simulation and predict how
the disaster will spread. The algorithm allows the creation of
a safe evacuation route that changes depending on the evolu-
tion of the propagation algorithm; the information would be
valuable in case of evacuation of people or animals in danger.
However, the sensor network only considered the distance
between the antennas, not the elevation and the line of sight
between them. In the present work, we seek to provide a
solution to the VSN problems in such a way as to ensure
communication in sensor nodes using propagation models
in forested scenarios to calculate path loss. In addition to
obtaining a line of sight between the points using data from
Google Maps, considering the Fresnel radius and optimiz-
ing the sensors’ location, using meta-heuristic algorithms to
distribute them over the area according to the elevation of
the terrain and other parameters. Finally, These designs may
vary according to the WSN monitoring area, so the aim is
to improve the server’s processing times using the QPSO
algorithms instead of PSO.

A. PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) is a heuristic optimization
method it seeks to find the minimum or maximum value
according to an objective function. It works by imitating
the behavior of animal communities such as Herds/Flocks.
The units of these sets are known as particles and have the
following characteristics:

• Position: Current location of the particle.
• Cost:Value of the position evaluated in the cost function.
• Velocity: Indicates where the particle is moving.
• New position: Best position of a particle so far found
The particles are evaluated in a cost function or objective

function. After the new position is updated, if it is a local
maximum or minimum, the termination criterion is validated;
if it is not met, the process is repeated to search for a new local
maximum or minimum.

A particle’s motion is given by eqn. (1):

vi(t + 1) = wvi(t) + c1r1[Xi(t) − xi(t)]

+c2r2[g(t) − xi(t)] (1)

where,
• vi(t + 1): Particle speed (i) at the moment (t + 1).
• vi: Particle speed (i) at time (t)
• w: Inertia
• c1: Cognitive coefficient.
• r1: Vector of random values between 0 − 1.
• Xi(t): Best global position of the particle.
• xi(t): Position of the particle (i) at time t .
• c2: Social coefficient
• r2: Vector of random values between 0 − 1.
• g(t): Swarm position at time t .
After calculating the velocity, we proceed to update the

particle’s position. Equation (2) is used for this purpose.

xi(t + 1) = xi(t) + vi(t + 1) (2)
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TABLE 1. z Function for different bounded potential fields taken
form [22].

The equation (3) is used to prevent the algorithm from
taking excessive speeds. The possible positions have been
limited in a range according to the area chosen by the user.
If any variable exceeds the limits, it is changed to the limiting
value, and its speed is automatically set to zero.

vmax = k(xmax − xmin)/2; (3)

Then, a linear decrease of the inertia coefficient is per-
formed to favor the convergence of the particles, depending
on the number of iterations. As indicated in the eqn. (4).

wt = (wmax − wmin)(
tmax − t
tmax

) + wmin (4)

where, wt is the inertia coefficient in the current iteration (t),
wmax is themaximum inertia coefficient,wmin is theminimum
inertia coefficient, and tmax is the number of total Iterations.

B. QUANTUM PARTICLE SWARM OPTIMIZATION
Quantum Particle Swarm Optimization (QPSO) is a meta-
heuristic optimization technique that in contrast with tradi-
tional PSO, it employs quantum theory to describe the move-
ment of a quantum particle as evidenced in [22]. Moreover,
there is evidence about the efficacy of QPSO in the field
of system reliability [23], [24] and maintenance planning.
Focusing on the mathematical formulations that describe the
optimization technique, authors in [22] determined that the
actual position x of the particle l at iteration k can be described
as given in eqn. (5), where z represents the displacement of
a particle that depends on the actual position of the particle
and the bounded potential field V that excites the movement
of the particle; the term u represents a random number that
avoids local optima, while w is the acceleration factor such
that 0 ≤ w ≤ 2; the local best position is by q and the optima
global position of the swarm N is represented by g.

x(k+1)
l = z(x(k)l ,V ) + D(k)

l

D(k)
l = ((w1u1)/(w1u1 + w2u2))q

(k)
l

+(1 − (w1u1)/(w1u1 + w2u2))g(k) (5)

In this paper, apart from traditional PSO, three
quantum-behaved swarm optimization algorithms based
on Lorentz (QPSO-LR), Rosen–Morse (QPSO-RM) and
Coulomb-like Square Root (QPSO-CS) potential fields are
employed. For every potential field there is a different z
function, which mathematically are described in Table 1 [22],
which are the key drivers in this research.

C. WIRELESS SENSOR NETWORK
Wireless sensor networks (WSN) offer a resource-limited
environment control solution. Optimizing operating resources
is essential for the efficient use of electronic devices.
Research on the coexistence of networks or their optimization
is a varied field, and they provide possible solutions, e.g., [25]
analyzes the coexistence of the WSN with Software Defined
Networks (SDN) to increase the network’s processing capac-
ity and the efficiency of its resources. The optimization
strategies even reach the issue of power in the WSN. PSO
is a known method based on a population of particles that
move a defined area to find the best local and global positions.
There are several works where PSO has been used in WSN,
e.g., [26] applies PSO in a distance-vector jump location
algorithm to minimize the problems of locating nodes in
a WSN in parameters such as the number of errors, error
variation, and positioning precision. The localization of nodes
in aWSN can be decreased in accuracy by the nonline of sight
(NLOS) in [27] uses of the Kalman filter algorithm to reduce
the NLOS error, combined with the least-squares method and
with PSO to estimate the location of nodes in a WSN.

Energy-efficient routing problems also be solved with
metaheuristic methods, e.g., [28] describes a dynamic clus-
tering and processing protocol based on multi-objective
particle swarm optimization with the Levy distribution
algorithm (MOPSO-L). Reference [29] seeks to make an
energy-efficient algorithm for software-defined wireless sen-
sor networks (SD-WSN), with the premise that these systems
can be configured after implementation. This paper proposes
a routing algorithm where PSO was used to minimize the
transmission distance, optimize the network’s energy con-
sumption, and prolong the devices’ useful life.

Finally, it is possible to formulate mathematical expres-
sions to develop meta-heuristic search optimization algo-
rithms based on the behavior of the quantum particles.
It was designed with some quantum-inspired algorithms,
which scenario is a particle swarm that is excited by Lorentz,
Rosen–Morse, and Coulomb-like square root potential fields.
The mathematical model and the validation scenarios to solve
24 benchmark functions categorized by uni-modal, multi-
modal, and fixed-dimension multi-modal are described in
detail in [22]. This paper will use quantum-inspired algo-
rithms to design a wireless sensor network and compare it
with a classical algorithm (PSO).

D. WSN PROPAGATION MODELS
Electronic devices and their exponential growth have already
led to the use and analysis of vegetation propagation models
in different environments, e.g., [30] describes signal loss
models in urban environments, closed spaces as rooms, and
open spaces; for example, the building’s roof. These doc-
uments are helpful for studies based on urban or suburban
locations but not for forest environments. A comparison of
their results and formulations is made in [31]; this article ana-
lyzes the current development in this field, reviewing propa-
gationmodels and evaluating their empirical data, mentioning
that the Weissberger model is optimistic compared to the
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ITU model. The environment limits the application of these
models, which is why [32] methods are proposed to evaluate
the attenuation and range of electromagnetic waves on roads
that pass through wooded areas. In this case, the Weissberger
model had a poor approximation of the loss values, given that
it was not made in this environment. Finally, [33] describes
the uses of the Weissberger propagation model to approxi-
mate the energy a node will consume in a WSN to propose a
transmission power control algorithm. They show the graph
of energy consumed vs. distance, indicating power savings.
A better life for the nodes is obtained with the Weissberger
model, which makes sense; knowing that the model is opti-
mistic, it will have fewer losses, therefore, less consumption.
Specific criteria taken into account in the propagation model
are described below.

1) INSERTION LOSS
The insertion loss in a path is the ratio of the transmitted
power to the received power. Loss is an additional value.
In addition, other elements that cause interactions on the
propagation wave are considered; in this case, cable losses
will be neglected. The insertion loss is given by eqn. (6):

L(dB) = PT (dB) + GT (dB) + GR(dB) − PR(dB) (6)

where, PT is transmission power, GT is the gain of the trans-
mitting antenna, GR is the gain of the receiving antenna, and
PR is the power received by the antenna.

2) PROPAGATION MODELS
Propagation models are divided into empirical, semi-
empirical, and analytical models. Empirical models perform
accurate field measurements and interpolation methods; the
semi-empirical models use a double slope attenuation func-
tion, describing the coherent and the incoherent component.
Analytical models are based on statistical theory and are used
to model the confusing element in the spectrum [34].

a: FREE SPACE PATH LOSS (FSPL)
FSPL is the power attenuation between two antennas in area
obstacle free and with line of sight.

For this scenario, the calculations with empirical models
will be used. The Friis Free Space model is defined by the
eqn. (7):

Lo(dB) = −20 log (
λ

4πd
) (7)

where, λ is the wavelength and d is the distance between the
antennas (measured in meters).

Finally, solving for d:

d =
λ

4π10
Lo
−20

(8)

b: WEISSBERGER’S MODEL (WEISS)
WEISS approximates losses in dense, dry, and leafy for-
est environments. The equation (9) describes the model for

predictions between the bands from 230 MHz to 95 GHz.

L(dB) =

{
Lo + 0.45 f 0,284df df < 14m
Lo + 1.33 f 0,284d0.588f df > 14m

(9)

where, df is the Foliage Depth in meters and f is the link
frequency in GHz.

Finally, solving for d:

d =


λ

4π10
L−0.45 f 0,284df

−20

df < 14m

λ

4π10
L−1.33 f 0,284d0.588f

−20

df > 14m
(10)

c: ITU EARLY VEGETATION MODEL
This model was developed for the VHF and UHF band
(< 400m); however, it is usually used for bands between
200 MHz and 95 GHz. Only the components diffracted from
the top, from the ground, and around the vegetation are
estimated in the model. The model is defined by eqn. (11).

L(dB) = Lo + 0.2 f 0,3d0.6f (11)

where, df is the Foliage Depth in meters and f is the link
frequency in MHz.

Finally, solving for d:

d =
λ

4π10
L−0.2 f 0,3d0.6f

−20

(12)

E. RELATED WORKS
The monitoring platforms are commonly used to view the
location and network data. The platforms used in sensor
networks are not innovative; they are widely used commer-
cially in different applications, for example, ‘‘GPS Trackers.’’
There are works on web pages or platforms that can be used to
create or monitor WSN, e.g., in [35], a platform for monitor-
ing vibration screen ligaments was developed and designed
to operate in industrial and harsh environments. It introduced
a new approach to WSNs as it was based on an ARM Cortex
M3 architecture, rendering other architectures obsolete. Ref-
erence [36] details a functional design and implementation of
a WSN platform for long-term, low-cost IoT environmental
monitoring applications. It covers the practical development,
from scratch, of a complete WSN platform. Consider aspects
such as flexibility, reuse components, sensor and gateway
node optimization, communication protocols, and error cor-
rection. The platform demonstrates quite a bit of flexibility
because the components are used in a wide range of indoor
and outdoor deployments. In these two articles, we talk about
monitoring platforms. However, some platforms seek to facil-
itate design, as in [37], a work where a WSN platform for
design is developed, only a diagram of the architecture is
made, to then automatically generate the firmware for the
micro-controllers and the wired network. The Web platform
supports many sensors and micro-controllers, plus users can
add their components.
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FIGURE 1. Flow diagram of the interaction of the propagation algorithm with the optimization algorithm.

Finally, in the current literature, no application automat-
ically delivers the physical positions of the sensor nodes
in a WSN according to the user’s input parameters (anten-
nas, propagation, network area) and considers factors such
as terrain elevation and losses between the nodes. Also,
consider metrics to reduce the number of nodes covering a
forested area, using quantum-inspired swarm optimization
algorithms to find the best geographic coordinates for node
communication.

III. METHODOLOGY
This section describes the methodology used for the wireless
sensor network design with different wave propagation mod-
els in forest environments and the optimization algorithms
with a specific cost function.

Figure 1 indicates the interaction flowchart of the prop-
agation and optimization algorithms. The user selects the
expansion area to create the WSN and the frequency and
propagation model to keep the antennas’ transmit and receive
power values constant. The optimization algorithm comple-
ments the wave propagation algorithm to improve the loca-
tion and number of nodes in the WSN.

A. PROPAGATION ALGORITHM
The objective of this algorithm is to calculate the maxi-
mum distance between one point and another in the mesh,
according to the Free Space, Weissberger, ITU propaga-
tion model, and the initial parameters indicated by the user
(antenna power). The calculations are made to obtain the path

losses taking into account the characteristics of the antennas
using eqn. (6). Then, the maximum transmission distance is
obtained using equations (8), (10), and (12), depending on
the values obtained by the loss functions of the transmission
model propagation chosen by the user. Finally, four locations
are received in latitude and longitude geographic coordinate
format, and a quadrilateral is formed with these points. Each
point symbolizes a corner in the quadrilateral [A, B, C, D]
as shown in figure 2, and the coordinates are converted to
meters using the Google Mercator function for propagation
calculations.

The limits for each sensor are created depending on the
antennas’ maximum distance and the terrain’s topography.
At the end of the iterations, the grids are obtained; each one
will contain a network sensor, as shown in figure 3. Finally,
the nodewill be located in the center of themesh. If the terrain
does not comply with the fresnel radius or there is no line of
sight, a higher elevation area will seek to locate the antenna
within limits as described in algorithm 1. The optimization
algorithm will calculate the number of nodes for the case and
the parameters entered by the user.

B. COST FUNCTION: GOAL TO OPTIMIZE
The cost function to be optimized is the square of the ratio
between the area of the geometric figure formed by the points
[A, B, C, D] and the maximum distance between the anten-
nas. The cost function gives the number of nodes about the
user’s initial values, as indicated in eqn. (14). The maximum
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FIGURE 2. Area selection for the design of a wireless sensor network.

FIGURE 3. Wireless sensor network mesh.

distance (Dmax) between the antennas is calculated using the
10 dB link margin; subtracting the loss value without the
margin gives the lower limit, and adding the upper margin
gives the upper limit.

Mathematically, Dmax depends on the evaluation case, and
it is expressed as follows:

Dmax =


FSPL, Dmax− > eqn.(8)
WEISS, Dmax− > eqn.(10)
ITU , Dmax− > eqn.(12)

(13)

Finally, the cost function to maximize the Dmax in order to
minimize the number of sensor node to implement in an area,
we have:

C(Dmax) = (Area/Dmax)2 (14)

where, C(Dmax) is the cost function. Area represents the
study surface. Dmax is the maximum separation distance
between the nodes, which can vary depending on the link

Algorithm 1 Process of Propagations Wave’s
Result: Point List
Input: Boundary Area (Lat,Lon), Antenna
Transmission Power, Antenna Reception Power,
Antenna Transmission Gain, Antenna Reception Gain,
Propagation Model (FreeSpace, Weissberger, ITU).
Output: Node Position
It is calculated from the estimated path loss (Lpath)
The minimum distance is calculated
(DistanceAntennas) (eqn. (3))
The points are arranged in a specific order to obtain
the area. (sorted_points)
GoogleMercatorLatLonToMeters(sorted_points)
Initialization of variables of a Small Area.
Optimization Algorithm is run for this location
(No_Particle, No_Variable, Limits)
for columns do

The maximum and minimum location value for
each sensor is defined.
for rows do

Line of Sight and Fresnel Radius Verification
if distanceArea < SumDistanceRow then

Next Column
else

end
end

end

margin. dF1(LdB) is the distance obtainedwith only path loss.
dF2(LdB+10dB) is the distance obtained with path loss and
a link margin of 10dB.

C. OPTIMIZATION ALGORITHM
The determination of the minimum number of nodes n to
place the wireless sensor networks in the mesh can be formu-
lated as an optimization problem, which objective function is
as follows:

min(C(Dmax)) = min((Area/Dmax)2) (15)

Subject to restrictions declared in eqn. (13).
In algorithm 2, the process of the optimization algorithm

is presented. The swarm of particles is created, indicating
parameters such as the number of particles, number of vari-
ables, and limits (maximum and minimum); each particle
begins to be evaluated according to the cost function. When
the particle changes position, its calculated parameters get
closer to the optimal value sought. Finally, it obtains a list
with the coordinates of each sensor in a network that ensures
(by topographical and propagation criteria) the wireless con-
nection between the nodes.

IV. SIMULATION ENVIRONMENT
The methodology’s validation is carried out by studying a
specific area of the Prosperina Protected Forest, Gustavo
Galindo Campus, Guayaquil, Ecuador. Table 2 shows the
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Algorithm 2 Optimization’s Process
Result: Post position
Input: No_particle, No_variable, Limits.
Output: PositionSensor.
The Cost function is defined.
Swarm creation with N particles
for Number of Iterations do

Cost function is evaluated
The local attractor, cost and position of the
particle are updated in the function
Returns the values that minimize the function
The number of Nodes is cleared.

end

TABLE 2. Values of the Xbee-Pro S2 model for sensor node
communication.

values set by default to the algorithm because each sensor
node for communication depends on technology; in this case,
the XBee-PRO S2 sensor with ZigBee technology is used in
the range of 2.4GHz frequencies (node signal propagation).

The algorithms were programmed in Python and executed
using an Intel(R) Core(TM) i3-10110U processor with a fre-
quency of 2.10 GHz, 8GB of RAM and a 237 GB SSD disk.

A. CASE STUDY
Three scenarios were chosen randomly and evaluated
with each optimization algorithm using an omni-directional
antenna as transmitter and receiver. Table 3 shows the coor-
dinates of each point of the quadrilateral for each case and
shows the areas where the sensor network will be created.

V. ANALYSIS OF RESULTS
This section presents the analysis of results and the
behavior/evaluation of optimization algorithms using
Big O notation.

A. RESULTS OF THE PROPOSED SCENARIOS
The scenarios in Table 3 are evaluated using the three prop-
agation models (Free Space, Weissberger, and ITU). The
location of the sensor nodes is optimized using three quantum
behavior algorithms (QPSO-RM, QPSO-CS, and QPSO-LR)
and are compared with traditional PSO. In order to validate
the results, the optimizationwas performed using 10, 100, and
1000 particles.

The total number of simulations include (3x areas) * (4x
algorithms) * (3 x particle models) = 36 scenarios, as shown
in Table 4.

Figure 4 shows theWSNs with the QPSO-LR optimization
algorithm. The geographical coordinates are similar in each
scenario because the resulting graphs do not vary with the
other algorithms, as shown in Table 4. In all cases, an increase

TABLE 3. Different areas to evaluate optimization algorithms.

in the optimization algorithms’ execution time is observed
without noticeable improvements in the distance or the num-
ber of nodes; This improvement is minimal since an amount
n of iterations is being applied for each test. PSO presents
the highest execution time compared to the other algorithms,
e.g., the case for ten particles presents times 1.5 to 2 times
higher compared to quantum algorithms; For 100 particles,
the relationship increases with time between 4 to 5 timesmore
significant. However, the times decrease for 1000 particles,
and the time is 3 to 4 times greater concerning quantum
algorithms. This particularity is due to the convergence speed
of PSO that is lower for all scenarios compared to quantum
algorithms. Among the quantum algorithms, the one with
the best time is QPSO-LR for 10 and 100 particles; for
1000 particles, it is surpassed by QPSO-RM; however, this
algorithm tends to converge in a more significant number of
iterations compared to the QPSO-LR algorithm.

On the other hand, the number of nodes does not vary
by changing the optimization algorithm, indicating that all
algorithms converge to a unique result. Each propagation
model estimates the loss; this causes the propagation distance
between each model and the number of nodes to change.
Free Space is an ideal model, which makes the distance
between the nodes more significant. Weissberger and the ITU
vegetationmodel consider the additional losses due to vegeta-
tion; this means having smaller distances between antennas,
consequently, more nodes.

B. PERFORMANCE OF OPTIMIZATION ALGORITHMS
The execution time of the optimization algorithms depends
on the study area and the number of particles used to perform
the calculations. Table 4 shows that all the algorithms arrive
at the same response for the location of the nodes (separation)
and in Fig. 4 that the positions (longitude, latitude, and
elevation) for all the algorithms are the same. However, the
execution time is different for the scenarios.

Fig. 5 shows the performance of the optimization algo-
rithms based on the execution time to reach the (complete)
solution. Big O notation is used for a better understanding
of performance, showing that the proposed algorithms follow
complexity of the form O(logn). For all the scenarios, PSO
presents the higher computational burden as it requires the
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FIGURE 4. Wireless sensor network with QPSO-LR. a: Case 01, b: Case 02,
c: Case 03.

FIGURE 5. Evaluation of algorithms using Big O notation. a) Free space
model; b) ITU and Weissberger models.

highest simulation time. QPSO-RM and QPSO-CS present
similar performance, while QPSO-LR presents the fastest
convergence for all scenarios, resulting in the best optimizer.

VI. CONCLUSION AND FUTURE WORKS
This paper presents a mechanism capable of designing wire-
less sensor networks in forested areas, considering path
losses in the environment and the terrain’s topography. Three
cases were analyzed by changing the study area, propaga-
tion model, optimization algorithm, and a different number
of particles. Quantum particle swarm models (QPSO-LR,
QPSO-RM, and QPSO-CS) have a shorter execution time
than the traditional PSO algorithm, and their results converge
to optimal values with fewer particles or iterations. QPSO-LR
performs better than the other methods, with better results and
a shorter convergence time. All optimization methods reach
the same number of nodes, which validates the operation of
each of the algorithms.

The propagation models for vegetation loss give an addi-
tional loss to the Free Space model. The Weissberger model
has less loss than the ITU model, which is considered pes-
simistic. The Weissberger propagation model would better
approximate the La Prosperina Protected Forest scenario,
being a dry forest with a low vegetation density compared
to other types of forests. The Weissberger model can be used
for fire prevention applications with less foliage, making it
more accurate in calculations and approximating a realistic
environment. Additionally, if we focus on the location of
the sensor nodes, the points they mark as references in each
scenario must be studied with an implementation in-situ,
being able to contrast what is simulated with what is real.
Finally, it is expected to be able to couple these algorithms to
thewireless sensor network design tool so that the community
can use them in their research and test other optimization
algorithms that allow us to validate the quantum algorithms
in different scenarios.
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