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ABSTRACT Parameter identification of fractional-order chaotic power systems is a multidimensional
optimization problem that plays a decisive role in the synchronization and control of fractional-order chaotic
power systems. In this paper, a state transition algorithm based on the lens imaging learning strategy is
proposed for parameter identification of fractional-order chaotic power systems. Taking a fractional-order
six-dimensional chaotic power system mathematical model as an example, the mathematical model and
chaotic state are analyzed. First, the Tent chaotic mapping is used to initialize the population, thus increasing
population diversity. The randomness and ergodicity of the Tent chaotic sequence are used to enhance the
global searching ability of the algorithm. Second, a maturity index is employed to determine population
maturity. The lens imaging learning strategy is used to suppress the premature convergence of the state
transition algorithm effectively and help the population jump out of local optima. Finally, the improved
state transition algorithm is used to identify the parameters of the fractional-order six-dimensional chaotic
power system model. The proposed improved state transition algorithm shows high estimation accuracy
and convergence speed, and is superior to the traditional state transition and particle swarm optimization
algorithms. The simulation results show that the parameters of the fractional-order chaotic power system are
identified accurately even in the presence of white noise, demonstrating the strong robustness and versatility
of the proposed algorithm.

INDEX TERMS Fractional-order chaotic power system, parameter estimation, state transition algorithm,
lens imaging learning strategy.

I. INTRODUCTION
The accuracy of parameter estimation is a prerequisite for
the safe and stable operation of power grids [1], [2], [3].
As various electronic devices are added as loads to the
power system, its behavior starts exhibiting chaotic phe-
nomena [4], [5], which are different from conventional
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oscillations. These phenomena are likely to cause serious
fluctuations in the operation of the power grid and may result
in large-scale power system instabilities or even widespread
power outages. Controlling the power system when it is in a
chaotic state is the key to ensuring the stable operation of the
power grid. Obtaining accurate and reliable parameters of the
chaotic power system is the basis for realizing chaotic control.

Previous studies have mostly focused on parameter esti-
mation of power systems that operate stably, conventional
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chaotic systems, and integer-order chaotic power systems.
However, the parameter identification problem of fraction-
order chaotic power systems has more practical theoretical
value and broader application prospects than that of integer
order chaotic power systems. The introduction of fractional
calculus [6] in the early 17th century presented a new research
direction for furthering the understanding of integer calculus.
Fractional-order modeling can more accurately reflect some
complex dynamic characteristics in the fields of natural sci-
ence and engineering. In the field of electrical engineering,
research work using fractional calculus has demonstrated
some Interesting results, such as the fractional-order model of
permanent magnet synchronous motor [7], [8], the fractional-
order model of a power system [9], the ferromagnetic of
a fractional-order power system’s ferromagnetic resonant
chaotic model [10], a fractional RLC circuit model [11],
a fractional filter [12], a fractional DC-DC converter [13],
a fractional Chua’s circuit [14], fractional Maxwell equations
for electromagnetic field [15], etc. In recent years, the con-
trol of fractional-order chaotic power systems has drawn the
attention of experts [16], [17], [18]. But unfortunately, in the
real world, the parameters of fractal-order chaotic power sys-
tems are not exactly known. It is difficult to control fractious-
order chaotic power systems with unknown parameters.

However, with the development of swarm intelligence opti-
mization algorithms, many intelligent algorithms have been
applied to the parameter identification of typical fractional
chaotic systems. In [19], an improved quantum behavioral
particle swarm optimization (PSO) algorithm was proposed
for the parameter estimation problem of uncertain fractional-
order chaotic systems, and the system parameters and
fractional-order derivatives were estimated as independent
unknown parameters. Parameter estimation of fractional-
order chaotic systems with time delay was studied in [20],
which is of great significance to such systems’ modeling
and control. A numerical algorithm for fractional delay
differential equations was presented, which transformed
the estimation problem into a nonlinear, multivariate, and
multimodal optimization problem. To solve this complex
optimization problem effectively, a multi-choice differential
evolution algorithm was proposed. In [21], a hybrid artificial
bee colony algorithm was proposed for the estimation of
the parameters of an unknown fractional-order memristive
chaotic system, which transformed parameter estimation into
a multi-dimensional optimization problem and treated the
fractional-order as an independent variable. In [22], proposed
and studied the estimation of fractional chaotic systems of
not only unknown order and parameters, but also unknown
initial values and structure. Aiming at this problem, a com-
pound differential evolution algorithm was proposed. In [23],
different meta-heuristic optimization algorithms were used to
estimate the parameters of a fractional-order chaotic system.
In [24], problems of unequal order were studied, with differ-
ent structures and parameter uncertainties of the fractional-
order chaotic systems. In that case, a feedback controller

was designed and an improved quantum PSO algorithm was
proposed to optimize the controller. An improved bird swarm
algorithm was proposed in [25], and a fractional chaotic
system and a fractional Lorentz system were chosen as two
examples for parameter estimation. In [26], a fractional-
order chaotic system parameter estimator was proposed based
on differential evolution, which treated the order as an
additional parameter, and estimated the parameters and the
order together by minimizing an objective function. In [27],
a fractional cuckoo search algorithm was proposed for the
estimation of the corresponding chaotic dynamic behavior
parameters in fractional chaos, noisy chaos and hyperchaotic
financial systems. In [28] took two typical fractional-order
hyperchaotic systems and a fractional-order multi-directional
multi-scroll chaotic attractor system as research objects, and
proposed a parameter identification method with unknown
initial values and a new chaotic particle swarm optimization
algorithm.

Most of the above literatures are based on swarm
intelligence algorithm for the parameter identification of
fractional-order low-dimensional chaotic systems, but it
is more valuable to study the parameter identification of
fractional-order high-dimensional chaotic systems. There-
fore, the parameter identification problem of fractional order
six - dimensional chaotic power system is studied in this
paper. However, the fractional-order six-dimensional chaotic
power system has some problems such as complex oscilla-
tion, which makes the parameters of the power system easy
to change and easy to be disturbed by the outside world.
It is difficult to design a parameter identification method with
high accuracy and fast identification speed.

In order to solve the problem of parameter identification
of fractional-order chaotic power systems, a method of iden-
tification of fractional-order chaotic power systems based on
lens imaging learning strategy state transition algorithm is
proposed in this paper. Firstly, the chaotic operating state of
the fractional-order six-dimensional power system model is
analyzed. Then, the unknown parameters are identified by
state transition algorithm. Tent chaotic mapping was used
to initialize population and maturity index was designed
to judge population maturity. The lens imaging learning
strategy is added to the basic state transition algorithm to
avoid falling into local optimality and increase the population
diversity. Finally, the improved state transition algorithm is
applied to the parameter identification of fractional-order six-
dimensional chaotic power systems.

II. MATHEMATICAL MODEL OF PARAMETER
IDENTIFICATION PROBLEM
Consider the n-dimensional fractional-order chaotic power
system:

Dq0Y = F(Y ,Y0, θ0). (1)

Here Y = (y1, y2, . . . , yn)
T

∈ Rn is the n-dimensional state
variable of the system, Y0 is the initial value of the system,
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q0 = (q01, q02, . . . , q0n)T represents the fractional order of
the original system, and θ0 = (θ01, θ02, . . . , θ0D)T is the vec-
tor of the true values of the system parameters. The parameter
estimation of the fractional-order chaotic power system can
be transformed into a function optimization problem. It is
assumed that the reference system is as follows:

DqŶ = F(Ŷ ,Y0, θ), (2)

where Y = (y1, y2, . . . , yn)
T

∈ Rn is the n-dimensional state
variable of the estimated system, Y0 is the initial value of the
system, q = (q1 , q2 , . . . , qn)

T
represents the fractional order

of the reference system, θ = (θ1, θ2, . . . , θD)T is the param-
eter value of the reference system. The estimation principle
diagram for a fractional-order chaotic power system is shown
in Figure 1, and can be regarded as a multi-dimensional
continuous optimization problem. The decision variables are
q and θ , and the following fitness function is used:

min J =
1
L

L∑
i=1

||Ym − Ŷm||
2
, (3)

where L indicates the length of the state variable sequence,
Ym(m = 1, 2, . . . ,L) represents the state variable sequence
of the system when the fractional-order chaotic power sys-
tem evolves under the true value of its parameters, while
Ŷm(m = 1, 2, . . . ,L) represents the state variable sequence
of the system when the system evolves under the estimated
parameter values.

FIGURE 1. Schematic diagram of parameter estimation of fractional-order
chaotic power system.

III. LENS IMAGING LEARNING STRATEGIES STATE
TRANSITION ALGORITHM
A. STANDARD STATE TRANSITION ALGORITHM
The proposed state transition algorithm(STA) [29] is a typical
swarm intelligence optimization algorithm, which has been
widely used in many fields [30], [31]. The STA is inspired by
modern control theory concepts such as state transition and
state space. It treats the solution of the problem to be opti-
mized as a state. Its solution search process is similar to the
process of state transition, which is also its main difference
from other evolutionary algorithms. The state transition form
is defined as {

wk+1 = Akwk + Bkuk
yk = f (wk+1)

, (4)

where wk ∈ Rn represents a state corresponding to a solution
of the problem to be optimized; Ak ,Bk ∈ Rn×n are the
state transition matrices, which can be understood as the state
transition operators of the optimization algorithm; uk ∈ Rn is
a function of current and historical states; and f is a fitness
function.
To make the state transition operation of the STA control-

lable when solving the problem, four state transition operators
are designed.

1) ROTATION TRANSFORMATION (RT)

wk+1 = wk + α
1

n||wk ||2
Rrwk , (5)

where α is called the rotation factor; Rr ∈ Rn×n is a random
matrix whose elements follow a uniform distribution in the
range; ||wk ||2 is the second norm of a vector; The rotation
operator causes the generated candidate solution to fall in a
hypersphere of radius α.

2) TRANSLATION TRANSFORMATION (TT)

wk+1 = wk + βRt
wk − wk−1

||wk − wk−1||2
, (6)

where β is called the translation factor and Rt ∈ R is a
random variable uniformly distributed in the range [0, 1]. The
translation search is a line search. It starts from wk , along
the direction pointing to wk , and the maximum length of the
search is β. The translation transformation simplifies one-
dimensional searches and balances the global search and the
local search.

3) EXPANSION TRANSFORMATION (ET)

wk+1 = wk + γRewk , (7)

where γ is called the expansion factor and Re ∈ Rn×n is a ran-
dom matrix whose elements follow a Gaussian distribution.
This operator is mainly used for global search in the entire
space.

4) AXESION TRANSFORMATION (AT)

wk+1 = wk + δRawk , (8)

where δ is called the axesion factor and Ra ∈ Rn×n is a
random diagonal sparse matrix with a single non-zero ele-
ment at a random position. That element’s value is a random
variable that follows a Gaussian distribution. The axesion
transformation helps improve the single-dimensional search
ability.

B. TENT CHAOTIC SEQUENCE
Chaos is a nonlinear phenomenon that is abundantly present
in nature. It is characterized by the randomness, ergodic-
ity and regularity of chaotic variables. Many scholars have
applied chaotic approaches for search problem optimization,
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as they allow the maintaining of the diversity of the pop-
ulation and help the algorithms jump out of local optima,
resulting in improved global search abilities. The commonly-
used Logistic mapping is a typical chaotic system. It can be
seen from Figure 2 that its value probability is high in the
two ranges [0, 0.1] and [0.9, 1]. The optimization speed of
the algorithm is affected by the Logistic ergodic inhomo-
geneity, and thus the optimization efficiency will decrease.
In [32], it was shown that the Tent mapping had better
ergodic uniformity and convergence speed than the logistic
mapping. It has been proved that the hat Tent map can be
used to generate an optimal algorithm’s chaotic sequence
through strict mathematical reasoning. The Tent mapping
expression is:

wD
i+1

=

{
2wD

i
, 0 ≤ wD

i
≤

1
2 ,

2(1 − wD
i
), 1

2 < wD
i

≤ 1.
(9)

By analyzing Tent’s chaotic iterative sequence, it can be
found that there are short periods and unstable periodic
points. To prevent the Tent chaotic sequence from falling
into a small periodic point and unstable periodic point during
iteration, a random variable rand (0, 1)× 1

Ns
is introduced into

the original Tent chaotic mapping expression.
The improved Tent chaos mapping expression then

becomes as follows:

wD
i+1

=

{
2wD

i
+ rand (0, 1) ×

1
Ns

, 0 ≤ wD
i

≤
1
2 ,

2(1 − wD
i
) + rand (0, 1) ×

1
Ns

, 1
2 < wD

i
≤ 1.

(10)

Here, Ns is the number of particles in the sequence, and
rand(0, 1) is a random number within the range of [0, 1].
The introduction of the random variables rand(0, 1) ×

1
Ns

maintains the randomness, ergodicity and regularity of the
Tent chaotic mapping. It can also effectively avoid the iter-
ation falling into small and unstable periodic points. The
random variable introduced by the algorithm in this paper not
only maintains the randomness, but also controls the random
value within a certain range to ensure the regularity of the
Tent chaotic sequence. Based on the characteristics of the
Tent chaos map, in this study, the improved Tent chaos map
expression is used to generate a Tent chaos sequence in the
feasible domain.

C. MATURITY INDEX DESIGN
Maturity represents the degree of similarity between popu-
lation individuals. A higher the degree of similarity between
individuals corresponds to a higher population maturity. The
maturity index is used to judge whether early maturity con-
vergence has occurred and a local optimum has been encoun-
tered. If a population has not met the convergence criterion
but its maturity is high, this indicates that it may be a case of
early maturity due to a local optimum. Since the individuals’
degree similarity is defined in a fuzzy manner, a maturity
index based on fuzzy theory can fully and accurately reflect

FIGURE 2. Logistic chaotic sequence distribution.

the situation of population maturity. In this paper, the fuzzy
index is adopted as a maturity evaluation index. The average
closeness of the population is used as the maturity index,
where a greater average closeness degree of the population
corresponds to a greater similarity between individuals and
therefore higher maturity. When the average closeness of the
population is greater than a threshold, this indicates that the
population is aggregating. The individual density in this area
is then high, indicating that the average closeness of the pop-
ulation is high. In this case, the population may encountered
earlymaturity due to a local optimum. Let a population of size
Ns be located in a search spaceD. The ith individual’s position
is Xi(t) = (x1i (t), x

2
i (t), . . . , x

D
i (t)) in the tth generation. The

iterative process of the ith individual’s optimal position expe-
rienced is pbesti(t) = (pbest1i (t), pbest

2
i (t), . . . , pbest

D
i (t)).

The present positions of all individuals and the optimal posi-
tions in the iterative process form an Ns × 2D order matrix
Q(t) as in (11), shown at the bottom of the next page.

The normalization operation of Eq (11) allows the calcula-
tion of the Ns × 2D order matrix Q′(t):

Q′(t)uv =

Q(t)uv(t) − min
1≤n≤Ns,1≤d≤2D

Qnd (t)

max
1≤n≤Ns,1≤d≤2D

Q(t)nd (t) − min
1≤n≤Ns,1≤d≤2D

Qnd (t)

(12)
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FIGURE 3. Lens imaging learning strategy.

FIGURE 4. Flow chart of improved STA.

Each row vector Q′
i(t) in the matrix Q′(t) represents a fuzzy

set. The similarity between any two fuzzy setsQ′
i(t) andQ

′
j(t)

is represented by the closeness degree in Q′
i(t):

σ (i, j) = 1 −
1
2D

2D∑
v=1

|q′
iv(t) − q′

jv(t)|, (13)

where q′
iv(t) is the vth element of Q′

i(t). Population maturity
is represented by the average population closeness degree,
which is denoted as:

S =

2
Ns−1∑
i=1

Ns∑
j=i+1

σ (i, j)

Ns(Ns − 1)
(14)

FIGURE 5. Six-dimensional power system model.

FIGURE 6. Shows Phase trajectory.

The average closeness degree of the population is 0 ≤ S ≤ 1,
where S stands for population maturity and larger values
correspond tomorematurity. The average closeness degree of
the population can be used to effectively determine whether
the population is premature or trapped in a local optimum.
If the current iteration number is far smaller than the maxi-
mum iteration number, but the average closeness degree of the
population is high at this time, this means that the population
may be premature or has fallen into a local optimum

D. LENS IMAGING LEARNING STRATEGY
When solving high-dimensional optimization problems, the
STA algorithm can easily fall into local optima. To improve
the global optimization ability of the basic STA, in this paper
the lens imaging learning strategy is applied to STA. The lens
imaging learning strategy has been proved to be effective. The
introduction of the lens imaging learning strategy expands
the effective range of the algorithm group search, thereby
reducing the probability of the algorithm falling into local
optima. The specific process is as follows:

Basic definition 1. Reverse point: Suppose W =

(w1,w2, . . . ,wD) is a point in D-dimensional space, and

Q(t) =



x11 (t) x
2
1 (t) · · · xD1 (t) pbest11 (t) pbest21 (t) · · · pbestD1 (t)

x12 (t) x
2
2 (t) · · · xD2 (t) pbest11 (t) pbest22 (t) · · · pbestD2 (t)

...
...

. . .
...

...
...

. . .
...

x1Ns (t) x
2
Ns (t) · · · xDNs (t) pbest1Ns (t) pbest2Ns (t) · · · pbestDNs (t)


(11)
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FIGURE 7. State variable timing diagram.

Wj ∈ [cj, dj], j = 1, 2, . . . ,D. Then, the reverse point is
defined asW ′

= (w′

1,w
′

2, . . . ,w
′
D), where w

′
j = cj + dj −wj.

Basic definition 2. Base point: If there are some points
o1, o2, . . . , om in the N -dimensional space, the Euclidean
distances between any point W = (w1,w2, . . . ,wD) and its
reverse point W ′

= (w′

1,w
′

2, . . . ,w
′
D) to oi(i = 1, 2, . . . ,m)

are di and d ′
i respectively. Let r =

di
d ′
i
, and r = 1, 2, . . . , n;

then, oi is called the base point ofW and W ′ at r = i.
Taking a one-dimensional space as an example, suppose

there is an individual Q with height h, and its projection on
the coordinate axis is the individual w′∗. If a lens of focal
length f is placed at the midpoint o of [c, d], an imageQ′ with
a height of h′ is obtained through the lens imaging process,
and its projection on the coordinate axis is w′∗. The lens
imaging learning strategy produces the reverse individualw′∗,
as shown in Figure 3.

In Fig. 3, o is used as the base point to obtain the reverse
pointw′∗ of thew∗. This can be derived from the lens imaging

principle as follows:

c+d
2 − w∗

w′∗ −
c+d
2

=
h
h′

(15)

Let h
h′ = r , where r is called the scaling factor. The

calculation equation of the reverse point w
′
∗ can be obtained

by transforming Eq. (15):

w
′
∗

=
c+ d
2

+
c+ d
2r

−
w∗

r
(16)

When r = 1, Eq. (16) can be simplified to:

w
′
∗

= c+ d − w∗. (17)

Eq. (17) is the general reverse learning strategy that acts on
w∗ and the center position is at [− c+d

2 , c+d2 ]. It can be seen
in Eq. (16) and Eq. (17) that the reverse learning strategy is
only a special case of the lens imaging learning strategy.
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FIGURE 8. Power spectrum of the fractional-order six-dimensional chaotic power system.

FIGURE 9. Bifurcation diagram for system state δm varying with
parameter Pm.

The new candidate individuals obtained using the lens
imaging learning strategy are fixed. By adjusting r ,
we can change these individuals dynamically, thereby

FIGURE 10. Multi-parameter estimation evolution curve of
fractional-order six-dimensional chaotic power system model.

further enhancing the diversity of the group. Gener-
ally, the lens imaging learning strategy’s principle shown
in Eq. (16) can be extended to D-dimensional space
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FIGURE 11. Evolution curve of parameter estimation of fractional-order six-dimensional chaotic power system model.

FIGURE 12. Evolution curve of the objective function of the
fractional-order six-dimensional chaotic power system model in the
presence of noise.

to obtain:

w′∗
j =

cj + dj
2

+
cj + dj
2r

−
w

∗

j

r
(18)

Here, w∗
j and w′∗

j are the j − th dimensional components of
w∗ and w′∗, respectively, cj and dj are the j− th dimensional
components of the upper and lower bounds of the decision
variables.

3.5. Parameter identification of chaotic power system
based on improved state transition algorithm

In this paper, the Tent chaotic map is used to initialize
the population, and the lens imaging learning strategy is
used to improve the accuracy and optimization ability of
the algorithm. The main steps of the improved STA are as
follows:

Step 1: The parameters related to the algorithm are set and
the Tent chaotic sequence is improved to generate the initial
population. The generated initial population has ergodicity
and randomness, which allow it to avoid premature conver-
gence and falling into local optima effectively.
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FIGURE 13. Evolution curve of estimated parameter values of fractional-order six-dimensional chaotic power system
model in the presence of noise.

Step 2: The fitness function value of each state is counted
separately and the solutions and fitness function values cor-
responding to all current states are recorded;

Step 3: Four transformation operations are performed, the
state is updated, the fitness value is recorded and the state is
evaluated;

Step 4: The optimal state of the neighborhood is deter-
mined, the maturity index is introduced to evaluate the pop-
ulation maturity, and the lens imaging learning strategy is
applied. The fitness values of the current and the stored states
are compared. If the current fitness value is better, the stored
state is updated;

Step 5: Determinewhether the requirements aremet. If yes,
the algorithm ends; otherwise, it returns to step 3.

The flow chart of the improved STA is shown
in Figure 4.

IV. POWER SYSTEM MODEL AND CHAOTIC
CHARACTERISTICS ANALYSIS BASED
ON FRACTIONAL CALCULUS
A. FRACTIONAL CALCULUS
As the field of fractional calculus is continuously explored in
scientific and technology applications, the resulting descrip-
tions are becoming more accurate in reflecting the dynamic
process of systems encountered in many natural phenomena.
The basic operator: bD

β
t is described as:

bD
β
t =


dβ

dtβ , β > 0,

1, β = 0,∫ t
b (dτ )−β , β < 0,

(19)

where β(β ∈ R) is the order, b and t are the bounds
of operation. In this paper, Caputo’s definition is adopted.
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TABLE 1. Identification results of multi-parameter algorithms for fractional-order six-dimensional chaotic power system model.

The fractional derivative of f (t) is described as:

bD
β
t f (t) =

1
0(n− β)

∫ t

b

f (n)(τ )
(t − τ )β−n+1 dτ, (20)

where 0 is the Gamma function, and n ∈ N is the first integer
which is not less than β, n − 1 < β < n,The Laplace
transform of the Caputo fractional derivative satisfies:

L{bD
β
t f (t)} = sβF(s) −

n−1∑
k=0

sβ−k−1f (k)(0), n− 1 < β < n.

(21)

For zero initial conditions, the Laplace transform of the
fractional derivative has the form:

L{bD
β
t f (t)} = sβF(s). (22)

The power system studied in this paper is shown in
Figure 5. This is a three-bus power system composed of
generator bus 1, load bus 2 and slack bus 3. The generator
supplies power to the P-Q load. The model was formulated
by Rajesh and Padiyar.

The integer order six-dimensional power systemwas estab-
lished by Rajesh and Padiyar(1999).The fractional-order
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TABLE 2. Parameter estimation results of fractional-order six-dimensional chaotic power system model with noise.

six-dimensional power system model obtained from the
integer-order six-dimensional power system in [33] is:

dβ1 δm
dtβ1

= ωBsm,

dβ2 sm
dtβ2

= −
d
2H sm +

Pm
2H −

1
2H Pg,

dβ3E ′
q

dtβ3
= −

1
T ′

d0

E ′
q +

(xd−x ′
d )Id

T ′

d0

+
Efd
T ′

d0
,

dβ4Efd
dtβ4

= −
Efd
TA

+
KA
TA
Vref −

KA
TA
Vt ,

dβ5 δL
dtβ5

=
Q
q1

−
Q1d
q1

−
Q0
q1

−
q2
q1
VL −

(q3−Bc)
q1

V 2
L ,

dβ6VL
dtβ6

=
P
p2

−
P1d
p2

−
P0
p2

−
p1[Q−Q1d−Q0−q2VL−(q3−Bc)V 2

L ]
p2q1

−
p3
p2
VL .

(23)

In Eq. (23), Pg, Id , V , Q, and P are functions of the state
variables δm,E ′

q, δL and VL . The meaning of each variable,
the assignment of the other parameters of the system, and the
initial value of the system state variable can be found in [33].
The expression of each variable is (24)–(28), as shown at the
bottom of the next page.

B. ANALYSIS OF CHAOS CHARACTERISTICS
We define β1, β2, β3, β4, β5, β6 as the fractional orders.
When Pm = 1.1, β = β1 = β2 = β3 = β4 = 0.999, the
system enters a chaotic state, and its phase trajectory and time
sequence are shown in Figure 6 and Figure 7. As can be seen
from Figure 6 and Figure 7, the state variables of chaotic
motion are all in irregular periodic chaotic states. A cor-
responding spectrum diagram can be drawn for each state
variable. A spectrum diagram with typical characteristics is
also selected here, as shown in Figure 8. As Figure 8 shows,
the power spectrum is continuous. The signal contains high

DC and low-frequency components, and the power spectrum
has broadband noise, which is a typical chaotic behavior
characteristic.

Among the parameters of the system, Pm represents the
mechanical input power of the generator, which is used
as a bifurcation parameter to conduct numerical simulation
analysis on the complex dynamic behavior of the system. The
parameter interval Pm ∈ [0.651.129] was selected and the
maximum method was used to draw the bifurcation diagram
of the system state’s δm change with parameter Pm, as shown
in Figure 9. For fractional six-dimensional power system,
with the change of control parameter Pm, the system will
experience the system goes through period 1, period 2, period
doubling and state of chaos.

V. PARAMETER ESTIMATION OF FRACTIONAL-ORDER
CHAOTIC POWER SYSTEM BASED ON THE STA WITH
LENS IMAGING LEARNING STRATEGY
A. PARAMETER ESTIMATION OF FRACTIONAL-ORDER
CHAOTIC POWER SYSTEM
The experiment was implemented using MATLAB R2019b
running on an x64-based processor with a Windows10 oper-
ating system. The improved STA was used for the parameter
estimation of the fractional-order six-dimensional chaotic
power system model to verify the effectiveness of the
algorithm. In this paper, the prediction correction method
was used to solve fractional differential equations. When
Pm = 1.1 and β = β1 = β2 = β3 = β4 = 0.999,
the fractional-order six-dimensional power system model
enters a chaotic state. We selected multi-parameter estima-
tion, in which ωB, 1

TA
, q3−Bc

q1
, β1, β2, β3 in the fractional-

order six-dimensional power system model were selected as
the parameters to be estimated, with ωB = 370, 1

TA
= 20,
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q3−Bc
q1

= 70, β1 = 0.999, β2 = 0.999, β3 = 0.999 being the
actual values. The number of iterations was set to 200 and the
population size was 60. For the STA algorithm, the rotation
factor α was 1→10−4, and the values of the rotation, transla-
tion, expansion and axesion factors were 1, fc = 5. The PSO
contraction factor was set to 1.3 and the acceleration factor
was set to 1.6. The improved STA (lens imaging learning
state transition algorithm, LILSTA), STA, and particle swarm
optimization (PSO), were executed independently 15 times
to obtain their average, optimal, worst, and fitness function
values, as shown in Table 1. The fitness function evolution
and parameter estimation curves are shown in Figure 10 and
Figure 11, respectively.
It can be seen from Figure 10 that LILSTA quickly

achieved convergence and accurate estimation of multiple
parameters. Table 1 shows the comprehensive comparison
results for the three algorithms. It is evident that in the multi-
parameter estimation of the fractional-order six-dimensional
chaotic power system, the estimation results of the three
algorithms are close to the true values, but those obtained
using the LILSTA algorithm are superior to those of the
STA, PSO algorithms regardless of the optimal, average, and
worst values. The error of LILSTA’s parameter estimation
of the optimal value reaches 10−9, and even the error of
the worst value is as low as 10−5. As shown in Figure 11,
the LILSTA algorithm achieves an accurate estimation of
multiple parameters. The above results show that LILSTA has
a faster search speed and achieves higher accuracy in multi-
parameter estimation for the fractional-order six-dimensional
chaotic power system model.

B. NOISY PARAMETER ESTIMATION
To appraise the performance of the algorithm on parameter
estimation under the influence of noise that is expected to
occur in practical applications, we added white noise in the
range [−0.1, 0.1] to the system state variables δm, sm,E ′

q,
Efd , δL , VL and used a predictive corrective method to solve
the equation. We used the proposed algorithm to estimate
the parameters of the noisy fractional-order six-dimensional
chaotic power system. The experiment was run 15 times and
the average, best, and worst results were obtained and are
shown in Table 2. Figure 12 and Figure 13 show the conver-
gence process of the objective function and estimated param-
eters, respectively. In the presence of noise, the improved STA
can still perform good parameter estimation for the fractional-
order six-dimensional chaotic power system model, which
reflects its robustness.

VI. CONCLUSION
In this paper, the parameter estimation problem of the
fractional-order chaotic power system is transformed into a
multi-dimensional function optimization problem. Themodel
and its parameter identification algorithm were studied, and
the following conclusions were drawn:
1) the chaotic characteristics of the fractional-order

six-dimensional chaotic power system model are ana-
lyzed.

2) For the problem of parameter estimation, an initial pop-
ulation obtained via a Tent chaotic mapping was used
for the basic STA, as this ensures the ergodicity and uni-
formity of the initial population. The maturity index is

Pg = E ′
qIq + (x ′

d
− xq)Id Iq, (24){

Id = [(sinφ − Yxq) · (YE
′

q − a) − b · cosφ]/A,

Iq = [(cosφ(YE
′

q − a) + (sinφ − Yx ′
d ) · b]/A,

(25)

A = [(cosφ)2 + (sinφ − Yxq)(sinφ − Yx ′

d
)],

a = EbY3 cos(δm + φ − φ3) + Y1VL cos(δL − δm − φ + φ1),

b = −EbY3 sin(δm + φ − φ3) + Y1VL sin(δL − δm − φ + φ1),
Y =

√
(Y1 cosφ1 + Y3 cosφ3)2 + (Y1 sinφ1 + Y3 sinφ3)2,

φ = arctan[(Y1 sinφ1 + Y3 sinφ3)/(Y1 sinφ1 + Y3 sinφ3)],

(26)


P = VtVLY1 cos(r1) − V 2

LY1 cos(φ1) + EbVLY2 cos(r2) − V 2
LY2 cos(φ2),

Q = VtVLY1 sin(r1) + V 2
LY1 sin(φ1) + EbVLY2 sin(r2) + V 2

LY2 sin(φ2),

Vt =

√
V 2
d + V 2

q ,

(27)



Vd = −xqIq,
Vq = E ′

q
+ x ′

d
Id ,

r1 = δt − θ − φ1,

θ = δm + arctan(Vd/Vq),

r2 = δL − φ2.

(28)
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designed to evaluate the maturity of the population, and
the convergence speed and optimization accuracy were
significantly improved using the lens imaging learning
strategy. This approach results in both excellent search
performance and development performance.

3) Finally, the proposed improved STA is used for
the parameter estimation of a fractional-order six-
dimensional chaotic power system model, and its per-
formance is compared with that of the STA, and PSO
algorithms. From the results of the comparison exper-
iments, it is evident that the improved STA can solve
the fractional-order six-dimension chaotic power sys-
temmodel parameter estimation problem, and achieves
higher estimation accuracy.

4) For the fractional-order six-dimensional chaotic power
system model under consideration, the estimated
parameters were very close to the real

values under both ideal and noisy conditions, showing the
effectiveness, robustness and versatility of this algorithm.
However, the impact of real-world noise (such as color
noise [34] and Levy noise [35]) on power systems is worth
studying and is another promising direction.
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