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ABSTRACT As the damage of the gearbox ofwind turbines (WTs)will cause economic losses, it is necessary
to conduct online condition monitoring (CM) on the gearbox. Most WTs are equipped with SCADA system,
and CM method based on Supervisory Control and Data Acquisition (SCADA) data is one of the most
economical methods. K Nearest Neighbor (KNN) algorithm has good robustness, and WTs are typical
nonlinear objects. Based on this, KNN regression model is established for CM, and Distance Correlation
(DC) coefficient is used to select modeling variables to improve the shortcomings of traditional feature
selection algorithm. A large amount of redundant data will be generated during the operation of WTs, and
the efficiency of KNN algorithm is affected by the size of training set. Therefore, an active learning (AL)
algorithm combining multiple strategies is proposed to select high-quality training data. The validity of the
proposed method is verified by the data of an actual WT. The experimental results show that the method
presented in this paper performs well in the comparative experiments, and the online CM results are about
20 days earlier than the SCADA system.

INDEX TERMS Wind turbine gearbox, conditionmonitoring, K-nearest neighbor algorithm, active learning,
distance correlation coefficient.

I. INTRODUCTION
Due to the increasingly serious global environmental prob-
lems, the development of renewable energy has become
a hot issue of global concern [1], [2]. Wind energy is a
common renewable energy, which has the advantages of
abundant reserves and low utilization cost. Therefore, many
countries have begun to vigorously develop wind power
generation technology [3], [4], [5]. With the populariza-
tion of wind power generation technology in the world, the
installed capacity of wind turbines(WTs) has also increased,
thus consuming high operation and maintenance costs [6].
WT is a complex equipment with hundreds of subsystems
and components. According to the relative research [7], the
downtime due to gearbox failure accounts for about 20%
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of all downtime, so the gearbox is considered to be one of
the most troublesome components. Therefore, it is necessary
to study the condition monitoring (CM) technology of WT
gearbox [8].

The condition monitoring (CM) method can be divided
into signal-trending analysis, model-based, and data-driven
methods. Signal-trending analysis usually uses the vibra-
tion signal [10], acoustic emission signals [11] and elec-
trical signals [12], etc. However, the acquisition of these
signals requires the installation of professional sensors, which
will cause additional costs. The model-based method is
to establish accurate models of subsystems and compo-
nents through rich expert knowledge [13]. However, due
to the complexity of WT operation, expert knowledge is
difficult to obtain; And the model usually focuses on a
specific component, which cannot be migrated to other
components.
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Since almost all wind turbines have installed Supervisory
Control and Data Acquisition (SCADA) system, data- driven
methods have become the focus of research [14]. Wang
et al. [15] proposed a data-driven CMmethod based on incre-
mental learning and multivariate state estimation technique,
which updates the training set in real time while keeping
the running time unchanged. Zhang et al. [16] proposed an
machine learning method based on random forest and the
eXtreme Gradient Boosting to establish the data-driven WT
fault detection framework. Shi et al. [17] proposed a CM
method based on XGBoost algorithm, and also proposed a
data preprocessing method based on Density-Based Spatial
Clustering of Applications. The above methods not only
propose CM methods, but also take the selection of training
samples into consideration.

In fact, due to the complex operation conditions of
WTs and the massive historical data recorded by SCADA
system, how to select high-quality training samples for
data-driven methods has always been a hot issue [18]. Some
researchers [19], [20] pointed out that active learning (AL) is
better than learning from samples, and selecting high-quality
samples can effectively improve the generalization ability
of learners. Huang et al. [21] proposed a principle based
on the min-max view of AL to provide a systematic way
for measuring and combining the informativeness and rep-
resentativeness. Ozdemir et al. [22] proposed a new method
combining the representativeness and uncertainty to estimate
the ideal samples from a given data set.

K-nearest neighbor regression (KNNR) algorithm is used
in many field due to its robustness and many scholars have
improved it from different aspects. Song et al. [23] pro-
posed a instance selection method for KNNR algorithm,
which deleted outlier instances and the little-contribution
instances to decrease the size of training set. Hu et al. [24]
established a KNNR model using the adaptation of particle
swarm optimazation, which minimizes the cross validation
error in the capacity estimation. Zhang et al. [25] proposed
data-driven CM method based on ensemble K-nearest neigh-
bor (KNN), which can achieve the desired estimation accu-
racy and improve the operation efficiency. However, the
optimization of the above methods to the model is a one-time
optimization, and there is no dynamic optimization.

The operation process of the WT gearbox will produce a
large number of repeated low-quality data. To address this
phenomenon, a WTCM method based on AL strategy and
KNNR algorithm is proposed. Firstly, select modeling fea-
tures based on distance correlation (DC) coefficient. Then,
design an AL sample selection algorithm based on uncer-
tainty and representativeness to select high-quality samples
to establish KNNR model, Finally, the Statistical Process
Control (SPC) technology is used to process the residual of
the model output value and observed value to achieve CM.
The SCADA data collected from a WT is used to validate the
feasibility of industrial application of the proposed approach.
Results shows that the proposed method can realize gearbox
CM and provide health rate indicators.

The rest of this paper is organized as follow. Section II
gives a detailed description of KNNR algorithm, DC coef-
ficient and AL strategy. Section III presents the framework
of the proposed WTCMmethod. SectionIV shows the results
of experiments to validate the proposed method. The experi-
mental results are summarized and the conclusions are given
in Section V.

II. METHODOLOGY
This section introduce the KNNR algorithm, AL strategy and
DC coefficient.

A. KNNR ALGORITHM
KNNR algorithm is a common inert algorithm. Its basic
principle is to estimate a testing sample by finding training
samples similar to the testing samples through distance [25].
The specific steps are as follows:

For a testing sample x = (x1, x2, . . . , xn, y) and
the training samples X = {x1; x2; . . . ; xm}, xi =

(xi1, xi2, . . . , xin, yi), i ∈ [1,m].
(1) Calculate the distance between x and all training

samples:

dj(x, xi) =

√√√√ n∑
j=1

(xj − xij)2 (1)

where dj is the distance between x and xi.
(2) FindK training samplesXK

= {xK1 ; xK2 ; . . . ; xKK }, xKp =

(xKp1, x
K
p2, . . . , x

K
pn, y

K
p ) closest to x.

(3) Calculate the output of the model by averaging:

ŷ =
1
K

K∑
p=1

yKp (2)

where ŷ is the output of the model.

B. DC COEFFICIENT
From the previous theoretical analysis, it can be seen that
the selection of prediction variables has a great impact on
the performance of the regressionmodel. Therefore, selecting
appropriate prediction variables is a prerequisite for establish-
ing an ideal model. At present, the commonly used feature
selection methods include Pearson correlation coefficient,
Spearman correlation coefficient and mutual information.
However, these methods can only measure the relationship
between the variables with linear correlation, and has poor
effect on the characteristics of nonlinear correlation.

For a large number of parameters with complex correlation
in WTs, DC coefficient [26] overcomes the shortcomings of
Pearson correlation coefficient, which can not only reflect the
linear relationship between variables, but also represent the
nonlinear relationship between variables.

For 2 random variables x ∈ Rn and y ∈ Rn, (x, y) =

{(xi, yi), i = 1, 2, . . . , n}, the DC coefficient is defined as:

R2(x, y) =
υ2(x, y)√

υ2(x, x)υ2(y, y)
(3)
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where

υ2(x, y) =
1
n2

n∑
i,j=1

Ai,jBi,j (4)

Ai,j =
∥∥xi − xj

∥∥
2 −

1
n

n∑
k=1

∥∥xk − xj
∥∥
2

−
1
n

n∑
l=1

∥xi − xl∥2 +
1
n2

n∑
k,l=1

∥xk − xl∥2 (5)

Bi,j =
∥∥yi − yj

∥∥
2 −

1
n

n∑
k=1

∥∥yk − yj
∥∥
2

−
1
n

n∑
l=1

∥yi − yl∥2 +
1
n2

n∑
k,l=1

∥yk − yl∥2 (6)

Similarly, υ2(x, x) and υ2(y, y) can be calculated as:

υ2(x, x) =
1
n2

n∑
i,j=1

A2
i,j (7)

υ2(y, y) =
1
n2

n∑
i,j=1

B2
i,j (8)

The range of DC coefficient is [0,1]. If the DC coefficient
between two variables is closer to 1, it indicates that their
correlation is stronger. Therefore, the variable with strong
correlation with the prediction variable is selected as the
modeling variable.

C. AL STRATEGY
During the actual operation of WTs, a large number of
samples labeled as ‘‘normal’’ will be generated [9]. If these
samples are directly used as training samples, the following
problems will exist: (a). Low quality samples may be mixed
in the samples, making the established model difficult to
achieve the desired prediction accuracy. (b). There is a lot
of redundancy in the sample, which wastes storage space.
To solve the above problems, AL strategy is used to develop
appropriate sample selection methods, and actively select the
samples that can best improve the performance of the current
model, so as to maximize the performance of the model,
and effectively alleviate the dependence of the model on the
number of training samples. The research object of this paper
is pool-based AL strategy.

As shown in Fig. 1, AL strategy is a process of iteratively
selecting samples. First, use the existing training set training
the model, score the candidates and determine the selection
order according to the model and sample selection query Q,
and then select the top ranked samples for manual judgment.
If the conditions are met, add the training set and start a new
round of sample selection until the stop condition is reached.

The three common strategies for pool-based AL are bases
on uncertainty, diversity and representativeness. As shown in
Fig. 2, green dots represent training samples, and other dots
represent candidates in the sample pool, nd the black solid

FIGURE 1. The framework of AL strategy.

FIGURE 2. Schematic diagram of AL strategy.

line divides the samples into two clusters. Uncertainty means
that the candidate is located at the decision boundary or has
the minimum conditional entropy, such as the blue dot in
Fig. 2. Selecting such samples can expand the decision space.
Representativeness means that the candidate is located in the
center of the cluster or high density area, as shown in the
orange point in Fig. 2. Select this type of sample will obtain a
more typical sample. Diversity means that candidates are far
away from training samples, such as the yellow dots in Fig. 2.
Since such samples often introduce outliers, this property is
not considered in this paper.

III. PROPOSED WTCM MTHOD
This section will introduce the framework of the proposed
WTCM method, and gives a detailed description of each
phase.

A. AL SAMPLE SELECTION METHOD BASED ON
UNCERTAINTY AND REPRESENTATIVENESS
In order to select high-quality samples to construct training
set, an AL sample selection method considering uncertainty
and representativeness is proposed. The flow chart of sample
selection method is as Fig. 3.

Firstly, the uncertainty of a candidate is scored based on
the model prediction error.
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FIGURE 3. The flow chart of AL-based sample selection method.

(1) Randomly divide the training set into two parts D1 and
D2 with the same size, and establish KNNR model based on
these two training sets.

(2) Input candidate x into the two models and obtain the
output ŷ1 and ŷ2 of the models.
(3) The score of uncertainty can be defined as follows:

Q1 =
∣∣ŷ1 − ŷ2

∣∣ (9)

The greater the Q1, the greater the uncertainty of the can-
didate.

Then, the representativeness of a candidate is scored based
on the K-nearest neighbor distance.

(1) Calculate the Euclidean distances between candidate x
and other candidates in the pool.

(2) Find K nearest distances dKi , i ∈ [1,K ] of x.
(3) Calculate the sum of the K nearest distances:

ds =

K∑
i=1

dKi (10)

And the score of representativeness can be defined as
follows:

Q2 = 1/ds (11)

That is, the smaller the K-nearest neighbor distance of the
candidate, the higher the representativeness.

Finally, the comprehensive score Q of candidate x is cal-
culated. In order to avoid the impact of different orders of
magnitude, multiplication is used:

Q = Q1 × Q2 (12)

Therefore, candidates with high comprehensive scores
should be preferred.

FIGURE 4. The flow chart of the proposed WTCM method.

B. THE PROPOSED WTCM METHOD BASED ON NORMAL
BEHAVIOR MODELING
Normal behavior modeling (NBM) [27] is an important
branch of data-driven WTCM. Its principle is to use his-
torical normal data to establish a model about predictive
variables, and to judge whether the equipment operation state
is abnormal by analyzing the observed value and residual
error of predictive variables. The proposedWTCMmethod is
divided into data preprocessing, offline modeling and online
monitoring:

(1) Data preprocessing includes removing missing or
abnormal data for data cleaning, selecting features for model
establishment based on DC coefficient, and performing nor-
malization processing

(2) In the offline modeling stage, firstly, high-quality train-
ing samples should be selected from the candidates based on
AL strategy. Then the KNNR model should be established
based on NBM. Finally, the EWMA method should be used
to analyze the output of the model and design the threshold.

(3) The online monitoring stage is to input the real-time
SCADA data into the established KNNR model to obtain
the residual of the output value and observation value of the
prediction characteristics, and use the sliding windowmethod
to analyze the residual. Finally obtain the health rate of the
equipment in combination with the set threshold.

IV. CASE ANALYSIS
A. DATA DESCRIPTION
The SCADA data used to verify the progressiveness of the
proposed WTCM method is collected from a real WT with
a rated power of 1.5MW in Hebei Province, China. The
cut-in wind speed of this double fed WT is 3m/s, the rated
wind speed is 12m/s, the cut-out wind speed is 25m/s, and
the sampling interval of SCADA data is 1min. According
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FIGURE 5. The DC coefficient of variables.

to the fault record of SCADA system, the WT had a fault
named ‘‘gearbox oil temp higher than the upper limit’’ from
2017/11/17 8:30 to 2017/11/18 14:30.

The sampling interval of SCADA system is 1min, and the
theoretical maximum sample size will more than 430,000.
However, the data driven modeling method in this paper does
not need to use a lot of training data, so the data set is de
sampled, and the sampling interval is increased to 5 minutes
to reduce the amount of data.

B. DATA PREPROCESSING
This experiment uses the SCADA data of a wind farm in
Hebei Province, China from 2017/02/01 0:00-2017/11/17
8:30. Firstly, the unavailable data in historical SCADA data
are deleted, including the following data: missing data, data
with active power less than or equal to zero, data with wind
speed less than the cut-in speed, and data with wind speed
greater than the cut-off wind speed. The samples with abnor-
mal operating parameters are removed based on the Laida
criterion, and 52,000 samples are finally left.

There are about 60 operating parameters recorded in the
SCADA system of the WT. Since this paper studies gearbox
faults, the parameters related to the pitch system, yaw system
and some grid side that are not closely related to the gearbox
are not considered for the time being. Therefore, select the
following variables: generator active power, generator speed,
ambient temp, wind speed, gearbox oil inlet pressure, gearbox
oil inlet filter pressure, main bearing speed, gearbox high
drive bearing temp, gearbox high non-drive bearing temp and
gearbox oil temp.

Since the gearbox oil temp is often used to reflect the
health of the gearbox, the gearbox oil temp is selected as the
prediction variable. The DC correlation coefficient between
variables is shown in Fig. 5.
According to the DC coefficient between the variables, the

correlation between gearbox high non-drive bearing temp and
gearbox high drive bearing temp is as high as 0.9573, and
the DC coefficient between generator active power, generator

TABLE 1. The range of selected variables.

speed and main bearing speed also exceeds 0.9. Therefore,
gearbox high non-drive bearing tempt and generator active
power are retained in these five variables. The ambient temp
and wind speed are added to the input variables as variables
that can reflect the environmental factors. Finally, according
to the DC coefficient, the selected input variables are genera-
tor active power, ambient temp, wind speed, gearbox oil inlet
pressure, gearbox oil inlet filter pressure and gearbox high
non-drive bearing temp. The range of the variables is shown
in Tab. 1.

Normalize the samples to avoid dimensional influence, the
formula is as follows:

x∗
=

x − xmin

xmax − xmin
(13)

where x is the raw data, xmin is the minimum of the corre-
sponding parameter, xmax is the maximum of the correspond-
ing parameter.

Select 2,5000 data from 6/1 0:00 to 11/17 8:30 as the exper-
imental data. The first 1,5000 data are used as the original
training set, the 1,5001st-1,6000th data as the verification set,
and the 1,6001st-2,5000th data as the testing set.

C. PERFORMANCE ANALYSIS OF AL-BASED SAMPLE
SELECTION
This part will discuss the relevant parameters of sample selec-
tion based on AL, and compare the sample selection method
proposed in this paper with other sample selection methods.
The quality of the training set is measured by its Mean
Absolute Error(MAE), Root Mean Square Error(RMSE) and
R-square on the verification set:

MAE =
1
m

m∑
i=1

∣∣yi − ŷi
∣∣ (14)

RMSE =

√√√√ 1
m

m∑
i=1

(yi − ŷi)
2 (15)

R2 = 1 −

∑m
i=1 (yi − ŷi)

2∑m
i=1 (yi − ȳ)2

(16)

wherem is the number of testing samples, ȳ is the mean value
of observed value.

1,000 training samples are randomly selected from 1,5000
training samples as the benchmark training set, and the
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FIGURE 6. The RMSE with different number of selected candidates.

TABLE 2. The ablation experiments of proposed method.

remaining 1,4000 training samples are selected as candidates.
First, the step size of the sample selection method should be
determined, that is, the number of candidates selected each
iteration.

Fig. 6 shows the change of RMSE at different step sizes,
which also reflects the change of training set quality. When
the step size is 200, most of the RMSE curves are at the
lowest of the four curves, and the fluctuation amplitude is
small. When the number of selected candidates reaches about
6,000, the RMSE with a step size of 200 is always the lowest.
A few peaks on the curve may be due to the introduction of
some outliers, but with the increase of the number of selected
candidates, RMSE still decreases. When the step size is 100,
rmse has several peaks, which indicates that a small step size
may introduce outliers to reduce the generalization accuracy
of the model. When the step size is large, RMSE does not
have a peak, but fluctuates greatly. Therefore, the step size is
determined to be 200.

Combined with the elbow rule, when the step size is 200,
and the number of selected candidates reaches 6,000, the
RMSE declines slowly and the curve trend gradually flattens.
Therefore, the number of selected candidates is determined
to be 6,000 (the number of training samples is 7,000), and the
RMSE is 0.019 at this time.

We will conduct ablation experiments on the method
proposed in this paper. The subjects are I. Benchmark
training set without feature selection; II. Pearson correla-
tion coefficient + benchmark training set; III. DC coef-
ficient + benchmark training set; IV. DC coefficient +

AL sample selection based on uncertainty; V. DC coef-
ficient + AL sample selection based on representative-
ness; VI. DC coefficient + proposed AL sample selection
method.

According to the ablation experiment, method III performs
better than method I and method II in all aspects of the

TABLE 3. The performance of KNNR model with different training sets.

TABLE 4. The performance of KNNR model with different training sets.

verification set, so it can be seen that the DC coefficient has
a good effect on the nonlinear object such as WT.

Compared with Method III, IV, V and VI, the performance
of Method VI is better than that of the other three methods in
all aspects, which proves that the AL sample selectionmethod
proposed in this paper, which considers uncertainty and repre-
sentativeness, is better than the ALmethod considering single
strategy, and can select training samples with better quality.

The following table lists the performance and operation
time of KNNR model on the verification set under different
training sets.

The RMSE of the verification set on the training set
selected based on AL decreased by 36.6%, MAE decreased
by 41.1%, and R2 increased by 7.1% compared with the
benchmark training set. Compared with the original training
set, RMSE increased by 35.7%, MAE increased by 40%,
R decreased by 2.2%. Because the complexity of KNNmodel
is about O(n), n is the number of training samples, the oper-
ation time of the AL-selected training set is less than half of
the original training set

Next, we investigate the performance of the sample selec-
tion method in this paper, passive learning (PL) method and
distance based active learning (DAL) [28] methods when
the number of selected candidates is consistent. PL refers
to randomly selecting a certain number of candidates to join
the training set each time, while DAL refers to selecting the
candidate with the farthest distance to join the training set.

Compared with AL, the rmse of PL increased by 26.3%,
MAE increased by 35.7%, and R2 decreased by 4.4%.
Meanwhile, the RMSE of DAL increased by 36.8%, MAE
increased by 57.1%, and r increased by 5.5%. The worst
performance of DALmay be due to the introduction of a large
number of outliers by selecting the sample farthest from the
training set. In contrast, the active learning method in this
paper has the best effect.

D. CONDITION MONITORING OF GEARBOX FAULT
This section will calculate the output of the verification set on
the established KNNR model, and set the threshold by ana-
lyzing the observed value and residual value of the predicted
value of the output variable through SPC technology. Then

13550 VOLUME 11, 2023



C. Bao et al.: Wind Turbine Condition Monitoring Based on Improved Active Learning Strategy and KNN Algorithm

FIGURE 7. Observed value and prediction value of the verification set.

the testing samples is input into KNNR model to realize CM
and fault early warning.

Fig. 7 shows the CM curve of the verification set. The blue
line is the prediction value of verification set, and the red line
is the observed value.

Fig. 7 shows the output curve of the KNNR model, but the
fault degree of a single sample cannot be quantified based
on only two curves. Therefore, it is necessary to calculate the
residuals of observed and predicted values and set thresholds,
so that the residual curve can be converted into a binary early
warning.

SPC [29] technology refers to Process Control by means of
mathematical statistics. It analyzes and evaluates the produc-
tion process, timely finds signs of systematic factors accord-
ing to feedback information, and takes measures to eliminate
their effects, so as to maintain the process in a controlled state
only affected by random factors, so as to achieve the purpose
of quality control.

For a random variable XÑ(µ, σ 2), its probability of falling
in [µ − 3σ, µ + 3σ ] is:

P(µ − 3σ < X < µ + 3σ ) ≈ 0.99 (17)

If X exceeds the range of Eq. 17 for a long time, it can be
considered that the process is affected by abnormal factors
and has faults.

In practical application, the mean X̄ and standard deviation
S of the residual sequence are used to replace the µ and σ of
the normal distribution. The calculation formula is as follows:

X̄ =
1
n

n∑
i=1

ei (18)

S =

√√√√ 1
n− 1

n∑
i=1

(ei − X̄ )2 (19)

where n is the number of samples.
The upper control limit (UCL) and low control limit (LCL)

is calculated as follows:

UCL = X̄ + 3S (20)

LCL = X̄ − 3S (21)

If the residual exceeds the control limit for a long time,
it is considered that the gearbox has had a significant

FIGURE 8. Observed value and prediction value of the testing set.

FIGURE 9. Residual of the testing set.

failure at this time. In this pare, UCL = 0.0485 and
LCL = −0.0453.

The CM results of the testing set on the KNNR model are
shown in Figure 8. The blue line is the predicted value of the
model, and the red line is the observed value.

As shown in Fig. 8, the observed values of about the first
1,000 samples are normal, and the oil temp is maintained
within a certain range at this time, which is in a stable
operating state. The oil temp change frequency of the 1,001st
to 5,000th samples is slower than before, and the oil temp
has reached a lower level many times, indicating that the
equipment may be in an early deterioration stage at this time.
After about 5,000 samples, the oil temp rises significantly and
fluctuates violently, indicating that the equipment has had an
obvious fault at this time.

The blue line in Fig. 9 represents the residual of the
observed and predicted values, and the red line represents
the control limit. About the first 1,000 samples basically
have no overrun, and about the 1,000th to 5,000th samples
have exceeded the limit for many times, but the range is not
high. After the 5,000th sample, the residual error exceeds the
control limit significantly and for a long time. In reality, the
residual may exceed the limit due to the sensor jumping at
a certain time. If the residual triggers an alarm every time it
exceeds the limit, it may give a false alarm, so the sliding
window method is used to deal with the residual error.

If the window length isM = 1000, the average value Ei of
the residual sequence in ith window is:

Ei =
1
M

i+M−1∑
j=i

ej (22)

where ej is the jth residual of the ith window.
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FIGURE 10. CM result of the testing set.

Fig. 10 shows the residual curve processed by the sliding
window method. The previous curve did not exceed the limit.
At the 4,024 window, the curve exceeded the threshold and
was still rising. After that, the curve fluctuated greatly, but
the overall trend was upward, indicating that the equipment
had a serious fault at this time. According to relevant records,
the sampling time of the 5,023th sample is 2017/10/28 21:45.
Therefore, the method proposed in this paper can detect faults
and trigger alarms about 20 days earlier than SCADA system.

V. CONCLUSION
In this paper, a WTCMmethod based on KNNR algorithm is
proposed, and its effectiveness is proved by actual SCADA
data. The DC coefficient is used to select modeling variables.
In order to select high-quality samples to construct training
set, an AL-based sample selection method considering multi-
ple strategies is proposed. Based on the experimental results,
we draw the following conclusions:

(1) For WT, a nonlinear object, DC coefficient has advan-
tages over the commonly used Pearson correlation coefficient
in feature selection, and the generalization accuracy of the
model has been significantly improved.

(2) Compared with only considering a single AL strat-
egy, the AL-based sample selection method considering
two strategies can select higher quality training samples,
and greatly reduce the size of the training set within the
allowable range of reduced model generalization accuracy,
which reduces the storage space and improves the operation
efficiency.

(3) The KNNR model proposed in this paper can realize
CM of the WT gearbox. Compared with the SCADA system,
the method in this paper can trigger the fault alarm about
20 days earlier, which is helpful to find the early deterioration
phenomenon. And the method in this paper is also applicable
to other objects.

The disadvantage of this method is that the training set
cannot be updated over time to adapt to the performance
changes of WT. The next research direction will be to solve
the common concept drift problem of WTCM.
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