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ABSTRACT Recent years have experienced phenomenal growth in computer-aided diagnosis systems
based on machine learning algorithms for anomaly detection tasks in the medical image domain. However,
the performance of these algorithms greatly depends on the quality of labels since the subjectivity of a
single annotator might decline the certainty of medical image datasets. In order to alleviate this problem,
aggregating labels from multiple radiologists with different levels of expertise has been established. In par-
ticular, under the reliance on their own biases and proficiency levels, different qualified experts provide
their estimations of the ‘‘true’’ bounding boxes representing the anomaly observations. Learning from these
nonstandard labels exerts negative effects on the performance of machine learning networks. In this paper,
we propose a simple yet effective approach for the enhancement of neural networks’ efficiency in abnormal
detection tasks by estimating the actually hidden labels from multiple ones. A re-weighted loss function is
also used to improve the detection capacity of the networks.We conduct an extensive experimental evaluation
of our proposed approach on both simulated and real-world medical imaging datasets, MED-MNIST and
VinDr-CXR. The experimental results show that our approach is able to capture the reliability of different
annotators and outperform relevant baselines that do not consider the disagreements among annotators. Our
code is available at https://github.com/huyhieupham/learning-from-multiple-annotators.

INDEX TERMS Computer-aided diagnosis, deep learning, object detection, multiple annotators.

I. INTRODUCTION
The recent success of computer-aided diagnosis (CAD) sys-
tems can be attributed to the emergence of supervised learn-
ing algorithms [1], [2], [3], [4], [5], [6] and the availability
of large-scale human-labeled datasets [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]. These
systems have been playing a significant role as clinicians’
assistants in their decision-making process when analyzing
medical images or making an assessment of the patient’s
condition [22], [23], [24]. One of the indispensable factors
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contributing to this accomplishment is the need for
high-quality labeled datasets. In fact, in order to possess
these datasets with gold standard labels for training, there
are various costs associated with the collecting procedures,
including costs of cleaning data, diversifying data, obtain-
ing expert labeling of data, and so on, which seems to
be infeasible and economically unjustified to apply those
in many healthcare-related tasks. Additionally, if only one
expert makes annotations for medical datasets, this is more
susceptible to subjectivity, which might increase the uncer-
tainty of those datasets. Instead, in order to alleviate the
subjective criteria in the medical-imaging labeling process,
we may have multiple labels provided by different clinicians
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FIGURE 1. Illustration of the proposed approach that aims to build a deep learning system for abnormal detection on medical scans from multiple
expert annotators. The training process contains two stages. The first stage focuses on truth inference, in which it estimates the true labels using
the WBF algorithm [33] with the implicit annotator’s agreement as confidence scores. The second uses the estimated confidence scores to train a
deep learning-based detector using a re-weighted object detection loss function. To provide abnormality analysis during the testing phase, only the
fully trained image detector is required.

or professional annotators, and this is considered as repeated
labeling [8], [25], [26]. In practice, there might exist a
substantial amount of disagreement among the clinicians
since each of them visually examines the medical images
and provides a subjective version of the gold standard labels.
This problem causes high inter-reader variability [27], [28],
[29], which could come at the significant expense ofmachine-
learning-based models’ performance if those annotations are
used as ground truths blindly.

Many previous approaches have been done to mitigate the
effects of inter-observer variations on annotation procedures,
which can be divided into two main groups: (i) simultaneous
approach and (ii) two-stage approach. In the first category,
models aim to curate labels and learn a supervised network
jointly in an end-to-end fashion. In contrast, in the second
category, the actual estimated labels are first curated from
multiple ones [30], which is known as truth inference, and
subsequently, a supervised model is trained on these labels.
All of those approaches have achieved impressive results on
both classification and segmentation tasks [31], [32]. How-
ever, to the best of our knowledge, very little attention has
been drawn to the same problem in detection tasks. In this
paper, the key consideration of our work is to propose the
two-stage approach to addressing such a problem in super-
vised abnormal detection tasks, where we have multiple
annotators providing a set of possibly nonstandard labels,
but no absolute gold standard. In particular, the key to our
proposed method is to allow deep learning-based detectors
to give an estimate of the actual hidden labels with the aim
of improving their detection capacity of abnormalities from
chest X-ray scans.

As outlined in Figure 1, the proposed detection method
encompasses two stages that estimate the reliability of mul-
tiple annotators and allow a deep learning network to learn
from these curated labels. In the first stage (on the left-handed
side), given a medical image and a set of expert annotations,
a Weighted Boxes Fusion (WBF) algorithm [33] is leveraged
to estimate the true labels and their confidence scores, which

is generally regarded as the Truth Inference step. The second
stage, as shown in the right-handed side of Figure 1, is to
train an object detector on estimated labels with a re-weighted
loss function using implicit annotators’ agreement, which is
represented by the estimated confidence scores. For eval-
uation, we first simulate and test the proposed approach
on a multiple-experts-detection dataset from MNIST [34],
called MED-MNIST. After that, we demonstrate the poten-
tial of a real-world chest X-ray (CXR) dataset with radi-
ologists’ annotations, namely VinDr-CXR. In comparison
to two baselines: (i) treating all of the nonstandard labels
blindly as the ground truth, and (ii) ensembling the models
supervised by individual expert annotations, our proposed
method provides better detection performance in terms of
mAP scores.

To summarize, the main contributions of the article are as
follows:

• We introduce a simple yet effective method that allows
a deep-learning network to learn from multiple annota-
tors. Specifically, the proposed approach aims at esti-
mating the true annotations with confidence scores from
multiple ones and then using those to train a deep
learning-based detector with a re-weighted loss func-
tion. This helps eliminate uncertainty in the learning pro-
cess and provides higher label quality to train predictive
models.

• We evaluate the proposed approach on both simulated
and real medical imaging datasets and find significant
performance improvements compared to the baseline
approaches. We also release the used CXR dataset,
which is available at https://vindr.ai/datasets/cxr.

The rest of this paper is organized as follows. Related
works on learning from multiple annotators and weighted
training techniques are reviewed in Section II. Section III
presents the details of the proposed method with a focus on
how to estimate the ground truth annotations. Section IV pro-
vides extensive experiments on a simulated object detection
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dataset and a real-world chest X-ray dataset. Finally,
section V discusses the experimental results, some key find-
ings, and limitations of this work, and concludes the paper.

II. RELATED WORKS
In this section, we investigate and discuss some research
directions and existing works that are highly related to
our work, including learning from multiple annotators and
weighted training techniques.

A. LEARNING FROM MULTIPLE ANNOTATORS
In classification and segmentation problems, a plethora of
different works has shown the potential in reducing the degree
of annotator disagreement by estimating the actual labels.
Such approaches can be categorized into two groups: two-
stage approaches [30], [35], [36] and one-stage approaches
[31], [32], [37]. Two-stage approaches first infer the true
labels from various ones, then train a model using the curated
ones. The most basic solution for integrating the informa-
tion from multiple labels is based on the majority voting
(MV) [38], in which the majority annotations are treated as
the ground truth. However, such approaches have a poten-
tially serious drawback: MV natively eliminates the uncer-
tainty of the majority labels, and as a consequence, the
generated single label would be suboptimal because of its
bias. Other approaches incorporate additional information
into the truth inference procedure, such as the annotators’
proficiency [39], annotators’ confusion matrix [40], [41],
or the difficulty of each sample [42]. Two-stage approaches
have the advantage of simplicity due to the single-task
manner of each stage, but they might not fully exploit the
raw annotations. One-stage approaches or jointly learning
approaches simultaneously estimate the hidden true labels
and learn the desired model from possibly noisy labels of
multiple annotators by formulating a multi-task problem.
Earlier approaches [43], [44] explore the Expectation Maxi-
mization (EM) algorithm for jointly modeling the annotators’
ability and the latent ground truth. Several recent approaches
employ end-to-end frameworks which enable the neural net-
works to learn directly from the noisy labels by using a [45],
and further developed by incorporating annotators’ confusion
matrix [31], [32], or instance features [37]. However, to the
best of our knowledge, our proposed method is the first one
that aims to handle the detection task.

B. WEIGHTED TRAINING EXAMPLES
Previous works on the use of weighted training examples
can be divided into two groups: (i) emphasize hard examples
and (ii) emphasize easy examples. Methods in the group
(i) include hard-example mining [46], [47], which is a boot-
strapping technique over the difficult examples; boosting
algorithms [48], where the misclassified examples in preced-
ing weak classifiers are assigned with higher weights; and
focal loss [49] that addresses class imbalance problems by
adding a regulator to the cross-entropy loss for focusing on

hard negative examples. Approaches in the group (ii) are
instances of broader topics such as curriculum learning [50],
which is biologically inspired by gradual human learning,
with easier examples preferred in early training stages; learn-
ing with noisy labels [51], [52], which prefers examples with
smaller training losses as they are more likely to be clean.

Unlike any approaches above, we propose in this paper
a re-weighted loss function that assigns more weights to
more confident examples that determine by the consensus
of multiple annotators. Our experimental results validate the
correctness of this hypothesis.

III. PROPOSED METHOD
We describe in this section our main contribution which is
a framework to enhance anomaly detection from medical
images via multiple annotators. After estimating the hidden
actual labels, the framework allows the object detector to
supervisely learn from these estimated labels.

A. PROBLEM FORMULATION
Given a set of N training images X = {xi}Ni=1 with corre-

sponding bounding box annotations y =

{
ỹ(r)i

}N
i=1

, where

ỹ(r)i representing the bounding box label for the example xi
provided by r th annotator in a set of R multiple annotators.

In this work, we use labels
{
ỹ(r)i

}N
i=1

to estimate a single
set of actual labels with corresponding confidence scores
{yi; ci}Ni=1, then a supervised object detector is trained with
these estimated labels by using the proposed re-weighted
loss function. In order to evaluate the effectiveness of the
proposed method, we use a gold-standard test set containing
M examples T =

{(
x(j), y(j)

)}M
j=1. In medical imaging sce-

narios, where the true labels are not available, we obtain the
gold-standard test labels y(j) from the consensus of a group
of competent radiologists. Figure 1 shows an overview of our
method.

B. ESTIMATING THE ACTUAL LABELS
We estimate the actual labels using Weighted Boxes Fusion
(WBF) algorithm [33]. This technique is originally used for
combining predictions from multiple sources, e.g., predic-
tions from different detection models. We modify the WBF
algorithm and describe it in Algorithm 1, where the bound-
ing box labels of different annotators are combined into
a single set of bounding boxes with corresponding confi-
dence scores. They are then used to train the image detectors
with a re-weighted loss function. The qualitative results of
Algorithm 1 on the VinDr-CXR dataset are illustrated in
Figure 2. The greater agreement between annotators (two or
three annotators have the same diagnosis for a finding on the
image) reach, the more correct the fused bounding box is.

C. TRAINING METHODOLOGY
Object detection is a multi-task problem where two loss
functions are used: (1) the localization lossLloc for predicting
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FIGURE 2. (a) Visualization of multiple expert annotations on a chest X-ray example from the VinDr-CXR dataset [26] and (b) the fused boxes with
confidence scores obtained by the WBF algorithm.

bounding box offsets and (2) the classification loss Lcls
for predicting conditional class probabilities. In this work,
we focus on one-stage anchor-based detectors. A general
form of the loss function for those detectors can be written
as

L
(
p, p∗, t, t∗

)
= Lcls

(
p, p∗

)
+ βI (t)Lloc

(
t, t∗

)
I (t) =

{
1 if IoU {a, a∗} > η

0 otherwise.
(1)

where t and t∗ are the predicted and ground truth box coor-
dinates, p and p∗ are the class category probabilities, respec-
tively; IoU {a, a∗} denotes the Intersection over Union (IoU)
between the anchor a and its ground truth a∗; η is an IoU
threshold for objectness, i.e. the confidence score of whether
there is an object or not; β is a constant for balancing two loss
terms Lcls and Lloc [53].
We use fused boxes confidence scores cik obtained from

Algorithm 1 to get a re-weighted loss function that empha-
sizes boxes with high annotators agreement. The new loss
function, which we name Experts Agreement Re-weighted
Loss (EARL) can now be written as

L
(
p, p∗, t, t∗

)
= cLcls

(
p, p∗

)
+ cβI (t)Lloc

(
t, t∗

)
, (2)

IV. EXPERIMENTS
We validate the proposed method in both synthetic and real-
world scenarios: (1) the MED-MNIST, an object detection
dataset, which was simulated fromMNIST [34] with multiple
annotations; (2) VinDr-CXR [26], a chest X-ray dataset with
labels provided by multiple radiologists. In the following

sections, we describe those two datasets and our experiment
setup, as well as experimental results.

A. DATASETS
1) MED-MNIST DATASET
Based on MNIST [34] – a database of handwritten digits,
we synthesize a multiple-experts-detection dataset, called
MED-MNIST, in two steps: (1) in order to generate a dataset
for the detection task, we randomly merge various digits into
black-background images, where each digit regarded as an
object with a corresponding bounding box (as visualized in
Figure 3), (2) multiple annotations are assigned to each object
representing the different opinions of experts. In the case of
this simulation dataset, we make an assumption that those
experts have the same proficiency p. These annotations are
generated with two values: (i) class labels and (ii) object
coordinates. In order to synthesize the expert annotations on
class labels, a unique transition matrix Ak (k ∈ {1, . . . ,R})
is generated for each expert Ek to represent the expert mis-
classification through probability distributions. We further
use an additional class, namely no_obj, for simulating
the false negative mistakes. The exemplars of a transition
matrix are visualized in Figure 4. Regarding the object coor-
dinate perturbations, we replicate the bounding box anno-
tations by randomizing the bounding boxes that are highly
overlapping with the given true bounding box. Both factors
(i) and (ii) are controlled by proficiency p. Specifically, Ak
are diagonally dominant (aii > aij for all i ̸= j), and aii =

min(max(ζ, α), 1) with α ∼ N (p, σ ) , ζ and σ are hyperpa-
rameters and set to 0.05 and 0.5, respectively. The simulated
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Algorithm 1 The WBF Algorithm Applied for Multiple Expert Annotations
Input: An image x with a list of annotations ỹ given by a set S(R) of R experts. The expert r ∈ S(R) with proficiency pr

provides the annotations including rx boxes, Ar =
[
box1, . . . , boxrx

]
. All of the experts’ annotations being

merged into a list A.
Output: A list of k fused boxes F = [box1, . . . , boxk ].

1 Declare empty lists L and F for boxes clusters and fused boxes, respectively. Each position in the list L can have a
cluster of boxes or a single box. Each position in F has only one box, which is the fused box from the corresponding
cluster in L.

2 Iterate through all boxes in A in a cycle and attempt to find a matching box in the list F . Two boxes are defined matched
if they have a high degree of overlap (e.g. IoU > 0.4). If there are more than one matching boxes in F , the one with the
highest IoU will be chosen.

3 If the matching box is not found in step 1, add the current box to L and F as new entry for the new cluster before
moving on to the next box in the list A.

4 If the match is found in step 1, add this box to the list L at the position pos which corresponds to the matching box in the
list F

5 Set the fused box’s coordinates F[pos] to be the weighted average of T boxes accumulated in cluster L[pos] with the
following formulas:

x1,2 :=

∑T
i=1 pix1,2∑T
i=1 pi

y1,2 :=

∑T
i=1 piy1,2∑T
i=1 pi

6 Set the the fused boxes’ confidence scores in F to the number of boxes in the corresponding cluster in L once all boxes
in A have been processed.

c := cmin (T ,N )

The fused boxes with confidence scores now represent the annotators’ level of agreement.

FIGURE 3. The MED-MNIST dataset with multiple expert annotations, obtained by perturbing boxes and classes from the MNIST dataset [34].

bounding boxes are subject to IoU with the true bounding
box being larger than p. In particular, the number of expert

annotations per sampleR is 3, and the proficiency p is 0.8. The
simulated MED-MNIST dataset consists of 5,000 samples
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FIGURE 4. Visualization of the original and synthesized transition matrices. To simulate the false negative scenario, we use an additional class called
no_obj.

for training, 1,000 for hold-out validation, and 1,000 for
testing.

2) VinDr-CXR DATASET
VinDr-CXR [26] is the largest public chest X-ray database
with radiologist-generated annotations. It consists of 18,000
chest X-ray scans, with 15,000 for training and 3,000 for test-
ing sets, all of which have the labels of both the localization
of abnormal areas and the classification of common thoracic
diseases. In practice, the annotations were obtained by a
group of 17 radiologists who have at least eight years of expe-
rience. Each image in the training group was independently
labeled by three radiologists, while that in the testing set
were meticulously treated and obtained by the consensus of
5 radiologists. Several samples from the VinDr-CXR dataset
are shown in Figure 5.

3) RADS-VinDr-CXR DATASET
One idiosyncratic characteristic of the VinDr-CXR dataset
[26] is that 94.28% of the abnormal scans in the training set
(3,315 out of 3,516) were annotated by a group of three radi-
ologists with their correspondence IDs being R8, R9 and R10.
As a result, we generate Rads-VinDr-CXR, a sub-dataset that
includes only samples annotated by those three radiologists.
The Rads-VinDr-CXR is appropriate to validate the proposed
approach.

B. EXPERIMENTAL SETTINGS
1) EVALUATION METRIC
For all experiments, we validate the detection performance
using the standard mean average precision metric at a thresh-
old of 0.4 (mAP@0.4) [54]. Specifically, a predicted object is

a true positive if it has an IoU of at least 0.4with a ground truth
bounding box. The average precision (AP) is the mean of
101 precision values, corresponding to recall values ranging
from 0 to 1 with a step size of 0.01. The final metric is
the mean of AP overall lesion categories. We also employ
mAP@[0.5:0.95:0.05] as an additional metric to assess the
model’s performance on different IoU thresholds, ranging
from 0.5 to 0.95 with a step size of 0.05.

2) IMPLEMENTATION DETAILS
The main detector used in our experiments is
YOLOv5-S [55]. The network is built with PyTorch 1.7.1 and
trained on two NVIDIA RTX 2080 Ti GPUs. All training
and testing images are resized to the dimension of 640 ×

640 pixels. The detector is trained for 50 epochs with 1 cycle
learning rate decay [56] using the SGD optimizer [57]. The
initial learning rate is set to 1e-3. To validate the robustness
of the proposed approach across different deep learning
detectors, we further train and evaluate EfficientDet [58]
with sizes D3 and D4. Specifically, all images are resized to
640×640 pixels, and themodel is trained for 30 epochs with a
constant learning rate 3e-4 using the AdamW optimizer [59].

3) COMPARISON WITH STATE-OF-THE-ART METHODS
To the best of our knowledge, there is no existing
multiple-annotators model for object detection tasks in the
literature. We compare the performance of our proposed
method against two baselines: a) assuming all of the anno-
tators’ opinions as the ground truth; b) an ensemble of inde-
pendent models trained on separate radiologists’ annotation
sets. On the Rads-VinDr-CXR dataset, we further compare
our method with the Rads-ensemble, which is the ensemble
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FIGURE 5. Visualization of abnormal findings (different bounding box colors represent different findings) from the VinDr-CXR dataset: (top)
Each scan in the training set was annotated by three different radiologists; (bottom) Test set annotations were obtained from the consensus
of five radiologists.

TABLE 1. Experimental results on the MED-MNIST dataset. The highest
scores are highlighted in red.

TABLE 2. Experimental results on the VinDr-CXR and Rads-VinDr-CXR
datasets with the YOLOv5-S detector. The highest scores are highlighted
in red.

of independent models trained on separate radiologists’ anno-
tation sets. In this case, theWBF algorithm is used to combine
the predictions of those models.

C. EXPERIMENTAL RESULTS
Table 1 and Table 2 report the experimental results of
the YOLOv5-S detector on MED-MNIST and VinDr-CXR
datasets, respectively. On both synthetic and real-world
datasets, the proposed approach outperforms the baselines,
even with the ensemble of individual experts’ models.
Specifically, on the test set of the MED-MNIST dataset,
our method reports an overall mAP@0.4 of 0.980 and
an overall mAP@[0.5:0.95:0.05] of 0.849. These results
are much higher the performance of the baseline with
mAP@0.4 = 0.975 and mAP@[0.5:0.95:0.05] = 0.815,

TABLE 3. Experimental results on the VinDr-CXR dataset while
EfficientDet is used as the detector. The scores are measured in
mAP@[0.5:0.95:0.05], with highest values highlighted in red.

boosting the mAP scores of the baseline by 0.51% and
4.2%, respectively. Experimental results on the VinDr-CXR
and Rads-VinDr-CXR datasets also validate the effective-
ness of the proposed method. We achieve an overall
mAP@0.4 of 0.200 on the VinDr-CXR dataset and an over-
all mAP@0.4 of 0.158 on the Rads-VinDr-CXR dataset.
We emphasize that these results outperform both the baseline
model, the individual model trained on the label provided
by the individual annotator (i.e. R8, R9, R10), as well as the
ensemble model.

The experimental results with EfficientDet detector are
provided in Table 3. We found that better detection perfor-
mances compared to the baseline have been reported. This
evidence confirms the robustness of the proposed approach
across deep learning detectors.

V. DISCUSSIONS
To the best of our knowledge, the proposed method is the first
effort to train an image detector from labels provided by mul-
tiple annotators, which is crucial in constructing high-quality
CAD systems for medical imaging analysis. In particular,
we empirically showed a notable improvement in terms of
mAP scores by estimating the true labels and then integrating
the implicit annotators’ agreement into the loss function to
emphasize the accurate bounding boxes over the imprecise
ones. The idea is simple but effective, allowing the overall
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framework can be applied in training any machine learning-
based detectors.

Despite the fact that the proposed method has a higher pre-
dictive performance than the relevant baselines, we acknowl-
edge that the proposedmethod has some limitations. First, the
overall architecture is not end-to-end. It may not fully exploit
the benefits of combining truth inference and training the
desired image detector. Second, applying the WBF algorithm
to annotation sets with a high level of noise may produce
low-quality training data. This case is quite impractical in
the medical imaging field when the annotators are compe-
tent clinical experts, but it frequently occurs in the general
learning from crowds problems.

VI. CONCLUSION
We introduced a framework for supervised object detection
models to learn from multiple annotators by estimating the
actual labels beforehand. We leveraged the Weighted Boxes
Fusion (WBF) algorithm to obtain the aggregated annotations
with the implicit annotators’ agreement as confidence scores.
The estimated annotations are then used to train a deep learn-
ing detector with a re-weighted loss function that incorporates
the confidence scores for localizing abnormal findings more
accurately. We demonstrated that the proposed approach out-
performs current state-of-the-art baselines in both synthetic
and real-world scenarios.
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