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ABSTRACT The paper introduced a novel approach for automatic assessment of olfactory perceptual-ability
of human-subjects using a functional Near Infrared Spectroscopy device. The assessment requires fuzzy
functional mapping from spectroscopic measurement to perceptual-ability using Type-2 fuzzy reasoning.
The novelty of the work lies in Vertical Slice Based General Type-2 Fuzzy Reasoning which employs
fuzzy meet and union between the planes of type-2 measurement and observation spaces using the classical
definition of t-norms and s-norms. The results of the meet and the union computation are later used as the
Lower and Upper Firing Strength of the fired rule to determine the structure of the inference. Experiments
undertaken confirm the efficacy of the proposed technique over traditional functional mapping, involving
neural networks, regression analysis, and the like. The proposed technique of olfactory perceptual-ability can
be directly employed to determine the thresholds for recognition-probability and discrimination-probability,
when submitted to the subject in presence of aromatic noise. An analysis is undertaken to measure the
computational overhead, which is found of the order of O(m.n) and run-time complexity of 94.78 ms, where
m and n respectively represent discretizations in the vertical slice and features respectively. A statistical test
undertaken confirms the superior performance of the proposed system with others at 95% confidence level.

INDEX TERMS Assessment of subjective olfactory perceptual-ability, type-2 fuzzy logic, functional
near-infrared spectroscopy (f-NIRs), vertical-slice based generaltype-2 fuzzy reasoning.

I. INTRODUCTION
Perception refers to the cognitive processes involved in under-
standing and interpreting stimuli [1]. Olfactory Perceptual-
Ability is concerned with measuring the power/ability of
recognizing and assessment of olfactory stimuli/aroma [2].
The paper attempts to extract the olfactory perceptual-ability
of healthy/brain-diseased subjects using whole brain func-
tional Near-Infrared Spectroscopy (f-NIRs). Because of pos-
sible introduction of noise from undesired neighborhood
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channels, the assessment of olfactory perceptual-ability is
greatly influenced by noisy measurements [3]. The paper
introduces Type-2 fuzzy logic to eliminate the possible
noise induced uncertainty from the assessment of olfactory
perceptual-ability.

The pre-frontal lobe and the frontal lobes in the human
brain respectively are responsible for odor recognition and
encoding in long-term memory [4], [5]. The paper aims
at assessing the olfactory perceptual-ability of human sub-
jects based on 2 experimentally determined parameters,
hereafter called Recognition-probability and Discrimination-
probability [6], [7]. Such study would have interesting
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applications in early diagnosis of people, suffering from the
Alzheimer’s disease [8], [9]. There exist traces of works
on electroencephalography (EEG) based perceptual-ability
assessment of odors [10]. However, until now there is hardly
any work on functional Near Infrared Spectroscopic (f-NIRs)
based assessment of odors. This paper attempts to develop
one f-NIRs device driven hemodynamic response analysis
and assessment of odors. Themerit of using the f-NIRs device
lies in better spatial resolution than EEG. In addition, run-
time complexity of the f-NIRs based olfactory perceptual -
ability assessment is smaller than its EEG counterpart [11].

The f-NIRs devices employed measure the change in oxy-
genated and deoxygenated blood response in the active brain
regions due to olfactory stimulation [12], [13], [14], [15].
Thus the present research has 2-fold motivations. The first
motivation is to recognize the olfactory stimuli presented to
a subject from his/her oxygenated and deoxygenated brain
response to the stimuli. This study in essence aims at deter-
mining sensitivity of the subject to an olfactory stimulus,
when presented with aromatic noise (impurity) of differ-
ent concentration levels. The first motivation has interest-
ing applications in selecting people for tea/liquor industries,
where flavor is an important ingredient for business. The
second motivation of the present paper is to identify the brain
regions involved in the decoding of olfactory stimuli. This
would open up more biological insight on the role of different
lobes/modules in the pre-frontal cortex in the process of
recognizing olfactory stimuli.

The study is undertaken using an array of 8 sources and
8 detectors of the f-NIRs device, where the sources and
detectors aremounted on the pre-frontal region of the subjects
in a special arrangement, so that each detector is located
within a vicinity of 30 mm from the source [16]. The sources
are activated in a time-multiplexed mode, so that one source
is on at a time while all other sources are off at the same
time, ensuring that the detected response is due to a single
source only. This helps identifying the active brain pathways
between a source and a detector, indicating the brain location
involved in the olfactory recognition process.

The f-NIRs response captured form a given source is not
free from intra-subjective noise due to parallel thought pro-
cesses, artifacts due to eye-blinking and/or non-voluntary
motor activations by the subject. One approach to handle
the intra-subjective variations in f-NIRs response at a given
brain location is to employ a reasoning technique, capable of
producing accurate results in identifying active brain lobes,
even in presence of noise indicated above. Fortunately, the
logic of fuzzy sets and in particular Type-2 fuzzy sets has
shown remarkable performance in the past in handling the
present situation. This inspired the authors to employ Type-2
fuzzy sets for the selected application.

It is important to mention here that there are two vari-
ants of type-2 fuzzy sets, called Interval Type-2 Fuzzy Sets
(IT2FS) [17] and General Type-2 Fuzzy Sets (GT2FS) [18].
Although the variants have their own merits and demerits,

we selected GT2FS induced perceptual-ability assessment
for the following reasons. First, GT2FS-based reasoning
employs consulting secondary membership functions of the
antecedent propositions in a rule to arrive at a decision
about the consequent. Later, the membership function of the
inferred proposition is defuzzified to obtain a measure of the
subjective olfactory perceptual-ability [19].

The original contribution of the paper lies in a new formu-
lation of GT2FS based reasoning. The novelty in reasoning
appears due to the incorporation of the following principles.
First, in most of the type-2 research, the observation is rep-
resented by a given value x ′ of the linguistic variable x.
In the present context, the observation is a type-2 fuzzy set at
primary and secondary membership plane for a given value
of the linguistic variable. Such representation is required to
instantiate the rules with multiple measurements in a session
and multiple sessions in a day, which in turn is required
for robust measurement for qualitatively better reasoning.
Second, the GT2FS reasoning employed considers compu-
tation of fuzzy meet and union between the planes of type-2
measurement (undertaken in the training phase) and observa-
tion (undertaken in the test phase) spaces using the classical
definition of t-norms and s-norms. The results of the meet
and the union computation are later used as the Lower Firing
Strength (LFS) and Upper Firing Strength (UFS) of the fired
rules to determine the structure of the inference. Lastly the
obtained inference is defuzzified by Karnik-Mendel Defuzzi-
fication algorithm and the defuzzified value is used as the
measure of subjective perceptual-ability. The performance
of the proposed GT2FS-based reasoning is compared with
existing ones with respect to computational cost and run-time
complexity. Statistical tests undertaken confirm the superior-
ity of the proposed GT2FS-based reasoning with respect to
the traditional ones.

The paper is divided into VII sections. In Section II, a
schematic overview of the proposed principles of olfactory
perceptual-ability assessment is introduced. Section III is
concerned with GT2FS based type-2 fuzzy reasoning for
perceptual-ability assessment. Section IV outlines one inter-
esting technique for the assessment of olfactory perceptual-
ability of a subject. Experimental details are covered in
Section V. Performance analysis is undertaken in Section VI.
Conclusions are listed in Section VII.

II. PRINCIPLES AND METHODOLOGIES
Assessment of olfactory perceptual-ability includes: Data
Acquisition and normalization of f-NIRs data, pre-processing
and filtering, feature extraction, feature selection and
perceptual-ability measurement using the selected features.
Here, the pre-frontal lobe montage is employed to mea-
sure the changes in concentration of the oxy-hemoglobin
and de-oxy hemoglobin at the given time point in each
channels of the f-NIRs device. Fig. 1 provides an overview
of the proposed scheme for olfactory perceptual-ability
measurement.
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FIGURE 1. Proposed block diagram to assess olfactory perceptual-ability
of human subjects.

A. NORMALIZATION OF THE RAW DATA
Let us consider, 2 specific f-NIRs measurements, 1HbOφ (t)
and 1HbRφ (t), respectively representing the increment in
the oxygenated and deoxygenated blood concentration in
the φ-th channel at time instance t . It is well-known that in the
Near-infrared spectra, 1HbRφ (t) < 1HbOφ (t) holds well. So,
normalization of 1HbOφ (t) and 1HbRφ (t) at a given channel
φ requires computing the following 2 parameters:

1HbO−max = Maxt (1HbOφ (t) : t0 ≤ t ≤ T , ∀φ) (1)

1HbR−min = Mint (1HbRφ (t) : t0 ≤ t ≤ T , ∀φ) (2)

where t0 and T indicate the beginning and the end time-point
of an experimental trial for a selected stimulus on a given
subject. The normalized value of the difference signal

δφ(t) = 1HbOφ (t) − 1HbRφ (t), (3)

is computed by

δ̂φ(t) =
(1HbOφ (t) − 1HbRφ (t))

1HbO−max(t) − 1HbR−min(t)
(4)

Now each session contains consecutive five trials with fixed
duration of 15 seconds with a time-spacing of 5 seconds
between two successive trials. The sampling rate of the
f-NIRs device is 7.8 samples/sec [20]. Consequently, each
trial includes 15 × 7.8 = 117 samples. Since the 15 seconds
duration is divided into 3 time-windows, each window con-
tains 117 / 3 = 39 samples.

B. PRE-PROCESSING AND FILTERING
The f-NIRs responses acquired are not free from artifacts.
In fact, 3 distinct types of artifacts, such as i)physiological,
ii) step and iii) spike artifacts often act as contaminations
to f-NIRs data. Physiological artifacts contaminate f-NIRs
response due to fluctuation heart-beat, Mayer wave, respira-
tion and above all eye-blinking. Step artifacts induce f-NIRs
data due to change in environment, such as lighting condition

and also instrumental noise. Spike (also called, motion) arti-
facts come into play due to relative shift/decoupling in the
location of optodes placed and their assigned positions on
the scalp [21], [22], [23]. The last type often causes abrupt
changes in the f-NIRs data. One common approach to elimi-
nate artifacts is to employ a digital filter of desired pass-band.
Here, a Chebyshev type Band-Pass Filter (BPF) [24], [25] of
bandwidth 0.1 to 5 Hz is selected. The choice of the filter is
fixed by its sharp roll-off around the selected cut-off frequen-
cies. Finally, an Independent Component Analysis (ICA) [26]
is undertaken to determine the 20 independent components of
the f-NIRs response corresponding to 20 channels.

C. FEATURE EXTRACTION
Next, the filtered 20 individual components are fed to the fea-
ture extraction module to extract the important set of features.
The total 15 second duration of a trial is divided into 3 equal
time-windows of 5 second each. Let, the normalized differ-
ence signal δ̂i,φ(t) denote the i-th feature of the φ-th channel
for i = 1 to n and φ =1 toM . Let T be the sampling interval.
Then the discrete features δ̂i,φ(t) is expressed as δ̂i,φ(kt), for
k = 0, 1, 2, . . . ,K . Two distinct types of features, called
static and dynamic features, are used in the present context.
The static features at fixed time points t = kT for integer
k = 0, 1, 2, . . . , (K − 1) are listed below:

1) Signal mean (m) of HbO blood concentration,
2) Signal variance (σ ) of HbO blood concentration,
3) Signal slope (τ ),
4) Skewness (sk) of HbO blood concentration,
5) Kurtosis (ku) of HbO blood concentration
6) Time to reach maximum value of HbO blood concentra-

tion from the onset of the stimulus,
7) Area under the normalized difference signal δ̂i,φ(t),
8) Root Mean Square (RMS) value of HbO and
9) Average energy (E).
The dynamic features, on the other hand, are obtained

by taking the difference of static features over successive
sampling intervals [27]. For example, for the static feature
δ̂i,φ(kt), the dynamic feature i from the φ-th channel is
obtained by

1δi,φ(kT ) = δ̂i,φ(kT ) − δ̂i,φ((k − 1)T ) (5)

for i = 1 to n and φ = 1 toM , k = 0, 1, 2, . . . , (K − 1).
In the present application, we have 9 × 3 = 27 static

features and 9 × 2 = 18 dynamic features. Consequently,
we have 27 + 18 = 45 features for each channel, thereby
providing M × n = 20 × 45 = 900 features per individual
subject. The product: M. n being large enough, a feature
selection algorithm is required to select fewer features from
M. n features.

D. FEATURE SELECTION
Several interesting feature-selection algorithms are available
in the current literature on pattern recognition [28]. Principal
Component Analysis (PCA), for instance, is one of such
algorithms that utilize the principles of linear independence
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of the eigen vectors of a real symmetric co-variance matrix
constructed from the feature space of the given training
instances. Among other well-known feature-selection algo-
rithms, 2 popular techniques: Sequential Forward Search
(SFS) and Sequential Backward Search (SBS) need special
mentioning [29]. However these algorithms too are not free
from all shortcomings. One fundamental limitation of these
algorithms is Nesting effect, where features once selected
in SFS (discarded in SBS) cannot be discarded (selected)
once again. Additionally, none of these approaches optimally
select the best set of features [30]. Evolutionary algorithms
have shown promising applications in optimal feature selec-
tion with reference to the given criteria [31], [32]. This paper
employs Differential Evolution (DE) algorithm to optimally
select the top N out of n features with an aim to optimize the
given criteria. The choice of DE is induced by the authors’
previous experience of using the algorithm [31], [32] along
with its high computational speed, fewer control parameters
and faster convergence among the evolutionary and swarm
class of algorithms.

The following 2 objective functions are optimized jointly
in solving the DE-induced feature selection algorithm.

Let fi,R,x be the i-th feature of the x-th data sample belong-
ing to class R, fi,R,y be the i-th features of the y-th data sample
belonging to class R. Similarly, fi,R′,y be the i-th features of
the y-th data sample belonging to different class R′ where,
R′

̸= R. Let N be the total number of features, n be the
reduced number of features with n ≤ N . Here, J1 be a
measure of intra-class separation, and J2 be a measure of
inter-class separation.

J1 =

∑
∀R

∑
∀i

∑
∀x

∥∥fi,R,x − fi,R,y
∥∥ (6)

J2 =

∑
∀i

∑
∀R′, ∀R
R′

̸= R

∑
∀x ∈ R
∀y ∈ R′

∥∥fi,R,x − fi,R′,y
∥∥ (7)

Now, we need to maximize J2 to maintain large inter-class
separation, and minimize J1 to reduce intra-class separation.
Let J be the composite objective function aiming at maximiz-
ing J2 and minimizing J1 jointly,

J =
J1

λ + J2
(8)

where λ is a positive component. A positive value of λ in
[0.01 10] is chosen to optimize J using a meta-heuristic
optimization algorithm. Although any meta-heuristic algo-
rithm could have been employed to handle the problem,
Differential Evolution algorithm has been selected here for
its proven performance, such low computational overhead,
small size and also our familiarity with the algorithm for
around one decade. Finally, 20 best features (optimally
selected) out of 900 extracted features are transferred
to generate training instances of the proposed reasoning
module.

E. GENERATION OF TRAINING INSTANCES
Here, for each basic olfactory stimulus, 6 sessions per subject
is considered, where each session includes 5 trials for healthy
and brain-diseased persons. Consequently, for 25 healthy
subjects we have 25 × 10 stimuli × 6 sessions/stimulus × 5
trials/session = 7500 training instances and for 5 brain-
diseased person, 5 × 10 stimuli × 6 sessions/stimulus × 5
trials/session = 1500 training instances are generated,
thereby yielding 7500 + 1500 = 9000 training instances.
Further, 3 different levels of concentration is considered for
each stimulus. Thus, a total of 9000 × 3 = 27000 training
instances is generated to serve the purpose.

F. TYPE-2 FUZZY REASONING FOR PERCEPTUAL-ABILITY
ASSESSMENT
After feature selection is over, the f-NIRs features are fed to
a Type-2 fuzzy reasoning module to determine the centroid
of the Type-2 fuzzy inference. The centroid is a measure of
odor concentration grade of the subject for a given olfactory
stimulus.

III. GT2FS BASED REASONING FOR
PERCEPTUAL-ABILITY ASSESSMENT
This section provides detailed design of GT2FS based rea-
soning for the assessment of perceptual-ability from f-NIRs
features during recognition and discrimination of aromatic
substances.

A. CONSTRUCTION OF TYPE-2 FUZZY MEMBERSHIP
FUNCTION
Let f1, f2, . . . , fn be n features for the proposed reasoning
problem and yj is a measure of odor concentration of a
selected aroma by a given subject. Let fi is Ãi be a fuzzy
proposition used to build up the antecedent part of the fuzzy
rule j, and yj is Bj is a fuzzy proposition to develop the
consequent of the same rule. Here, Ãi for i = 1 to n are
vertical slice based GT2FS given by < fi, µÃi(fi)(u) >, where
µÃi(fi)(u) is the vertical slice at a given fi for m discretizations
u1, u2, . . . , um along the u-axis. Similarly, B̃j is a vertical slice
based GT2FS consequent given by < yj, µB̃j(yj)(u) > . The
vertical slices GT2FS Ãi and B̃j are obtained from 6 sessions
in a day, where each session includes 5 trials, thereby obtain-
ing 30 instances in a day.

To construct Ãi, 30 daily samples of feature fi collected
over 10 days. Let the measurement l of fi on day v be denoted
by fi,l,v. Thus for l = 1 to 30, we obtain the mean

f i,v =

30∑
l=1

fi,l,v

30
(9)

and variance

σ 2
i,v =

30∑
l=1

(fi,l,v − f i,v)
2

30
(10)
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FIGURE 2. Construction of T2FS. (a) Type-1 MFs for ten days,
(b) Computing union of Type-1 MFs, (c) Flat top approximation of fig. (b).

to construct one type-1 Gaussian MF: Ai,v, for v = 1 to
10. A vertical slice based GT2FS is constructed using type-1
Ai,v, v = 1 to 10 by the following 2 steps.

1) First a footprint of uncertainty (FOU) [33] is constructed
for Ãi with Lower Membership Function (LMF) and
Upper Membership Function (UMF) obtained by

LMF = µ
Ãi
(fi) = Min

∀v
(µAi,v (fi)), (11)

UMF = µÃi (fi) = Max
∀v

(µAi,v (fi)). (12)

In order to maintain the convexity criteria of the proposed
GT2FS, the peaks of the constituent type-1 MFs are joined
with a straight line of zero slope, resulting in a flat-top
approximation [34] (Fig. 2(a-c)).

2) Now, at the measurement points fi = f ′
i , an isosceles

triangle with peak = 1 is drawn to represent µÃi(f ′
i )
(u),

the secondary plane.

For construction of B̃j, the concentration grade of the odor
stimulus obtained from the oral response of the subject is
evaluated from each session comprising 5 trials, and thus for
6 sessions in a day, 6 measures of concentration grades are
available [35]. A Gaussian type-1 MF is constructed with
mean and variance respectively as the mean and variance of
6 oral responses. Thus for 10 days, 10 such type-1 Gaussian
MFs are available, which are used to develop an IT2FS like
the one presented to construct the IT2FS Ãi.

Now, for construction of the vertical slice GTFS with
the observed data, the experiment includes g sessions, each
containing h trials for feature fi for i = 1 to n, where all
sessions are taken on the same experimental day. A type-1
Gaussian MF A′

i,j is computed for each session j with mean
µ′
i,j and variance σ 2

i,j. Next a GT2FS Ã′
i,j = G(µ′

i,j, σ
2
i,j) is

constructed for j = 1 to s using steps similar to adopted for
construction of vertical slice GT2FS from measured data.

The vertical slice Ã′
i =< fi, µÃ′

i(fi)
(u) > formed is expected

to have small spread along the u-axis as the data samples are
collected on the same day.

FIGURE 3. Construction of the vertical slice GT2FS with the (a) measured
data and (b) observed data.

B. SECONDARY MEMBERSHIP COMPUTATION
The following steps are adopted to evaluate the secondary
membership functions.
1. Due to the centre of the footprint of uncertainty (FOU)

yields maximum certainty, thus the secondary member-
ship µÃi(f ′

i )
(umid ) have a peak (≈1) at the center, where

ui = umid = (ui + ui)/2, here ui be the primary member-
ship at a given measurement point fi = f ′

i , lying within the
FOU, whereas, ui and ui are the maximum and minimum
values of primary membership ui lying on the FOU.

2. The secondary membership µÃi(f ′
i )
(ui), exponentially

decaying towards the boundaries of the FOU from its
centre. The rate of decay is controlled by a parameter
η > 0. Formally,

µÃi(f ′
i )
(ui) = µÃi(f ′

i )
(umid ). exp(−η |umid − ui|), (13)

for ui ≤ ui ≤ ui. The value of controlling parame-
ter η is selected adaptively by computing the difference
between odor concentration grade obtained from the pro-
posed model and verbal response of the subject-evaluated
score about odor concentration grade (Fig. 3(a)).

C. ARCHITECTURE OF GT2FS BASED REASONING
Consider one typical rule j to compute the recognition-ability

aroma j given by If f1is̃A1,j, f2is̃A2,j, . . . , fn,jis̃An,j, Then y is
B̃j. Let µÃi(fi)(u) be the vertical plane at linguistic variable
fi for the primary membership u in the GT2FS Ãi for the
fuzzy proposition: fi is Ãi . The fuzzy reasoning module
attempts to derive type-2 fuzzy inference y is B̃j, indicating
the oral scores of olfactory stimulus for known MFs of the
measurements: fi is Ãi for all i.

Let f1 = f ′

1, f2 = f ′

2, . . . , fn = f ′
n be a measurement point.

The secondary grade of membership at fi = f ′
i is a vertical

slice, represented by an isosceles triangle (Fig.3 (a)). In other
words, the triangular vertical plane contains a set of type-2
MFs µÃi(f ′

i )
(u) for u = u1, u2, . . . , um. It is noted that, in the

present application the value of m is selected optimally as a
used-defined positive integer. Let µÃ′

i(f
′
i )
(u) be the observed

MF for i = 1 to n features. For selection of fi = f ′
i , i = 1 to

n, first the end-points of the UMF are identified satisfying
the following criterion. Let fi = f 1i and f 2i be the 2 end-
points, such that UMFi(f 1i ) = UMFi(f 2i ) = th, where the
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threshold th = 0.05 is selected optimally (Fig.3(b)). For opti-
mal selection of th, Evolutionary algorithm is employed to
maximize the accuracy of the proposed model. The location
of the vertical plane is fixed at fi = f ′

i = (f 1i + f 2i )/2. This is
repeated for i = 1 to n.

The following steps are adopted for automated reasoning
using vertical slice based general type-2 fuzzy sets.

1. Obtain the fuzzy meet operation between µÃi(f ′
i )
(u) and

µÃ′
i(f

′
i )
(u) for i = 1 to n. The fuzzy meet operation computes

the t-norm of µÃi(f ′
i )
(u) and µÃ′

i(f
′
i )
(u) for a given feature i,

∀u ∈ {u1, u2, . . . , um}, and saves the result in a set Pi, where

Pi = {µÃi(f ′
i )
(u) ∩ µÃ′

i(f
′
i )
(u) : ∀u ∈ {u1, u2, . . . , um}} (14)

2. Next, a set S1 is constructed, where

S1 = {p1tp2t . . . tpn|p1, p2,...,pn ∈ P1 × P2 × . . . × Pn},

(15)

for pi ∈ Pi for i = 1 to n and t denotes the t-norm operation.
Here, p1tp2t . . . tpn denotes a cumulative t-norm computed
pair-wise in order from the left to the right.

3. Similarly,

S2 = {p1sp2s . . . spn|p1, p2,...,pn ∈ P1 × P2 × . . . × Pn}

(16)

is computed, where s denotes the s-norm operation and pi ∈

Pi for i = 1 to n. Here, p1sp2s . . . spn denotes a cumulative
s-norm computed pair-wise in order from the left to the right.

4. Lastly, the largest element from S1, called the Greatest
Lower Bound (GLB), and the smallest element from S2,
called the Least Upper Bound (LUB) are computed for the
j-th fired rule as follows.

GLBj = p′

1tp
′

2t . . . tp
′
n (17)

where, p′

1tp
′

2t . . . tp
′
n ≥ p1tp2t, . . . tpn ∈ P1 × P2 × . . . × Pn

and

LUBj = p′′

1sp
′′

2s . . . sp
′′
n (18)

where p′′

1sp
′′

2s . . . p
′′
n ≤ p1tp2t, . . . tpn ∈ P1 × P2 × . . . × Pn.

5. Finally, Lower Firing strength (LFS) and Upper Firing
strength (UFS) for the j-th fired ruleare defined as in (19) and
(20) respectively.

LFSj = Min(LUBj,GLBj), (19)

UFSj = Max(LUBj,GLBj). (20)

D. TYPE-2 FUZZY (T2FS) INFERENCE GENERATION
Given a consequent GT2FS B̃j, the inference generation
involves 2 main steps.

1. a) A type-reduction is performed from GT2FS to IT2FS
by taking the product of primary membership u and sec-
ondary membership µBj(y′j)

(u) for all u lying inside the FOU
for a given value of yj = y′j ∈ Yj, thus producing a set Sj, as
in (19).

Sj = {u.µB̃j(y′j)
(u)

∣∣∣ u ∈ Jyj = {u1, u2, . . . , um} ⊆ [0, 1],

foryj = y′j, ∀yj ∈ Yj} (21)

b) Identify the positive elements of Sj (by dropping zero
elements) and call the resulting set S ′

j .

S ′
j = {sj ∈ Sj|sj > 0} (22)

c) Compute the Revised Upper Membership Function
(R-UMF) and Revised Lower Membership Function
(R-LMF) of the consequent Fuzzy Set for Rule j at yj = y′j
by taking the smallest and the largest element of set S ′

j .

R− UMF(y′j) = µB̃′
j
= largest element in S ′

j (23)

R− LMF(y′j) = µ
B̃′
j
= Smallest element ofS ′

j . (24)

The R-UMF and R-LMF are shown by firm lines in Fig. 4.
2. Compute the following transformation to obtain the

resulting IT2MF B̃′
j = [µ

B̃′
j
, µB̃′

j
], where

µ
B̃′
j
= min(LFSj, µB̃j

) (25)

and

µB̃′
j
= min(UFSj, µB̃j ) (26)

7. Now for multiple firing rules, the union of the type-2 fuzzy
interfaces is given by

µB̃′ = ∪
∀j

µB̃′
j
, (27)

where, the inferred IT2MF B̃′
j = [µ

B̃′
j
, µB̃′

j
], is

µB̃′ = max
∀j

(µB̃′j
) (28)

µ
B̃′

= min
∀j

(µ
B̃′ j
) (29)

8. Next, to evaluate the left and right end point cen-
troids, we perform the well-known Enhanced Karnik-Mendel
(EKM) defuzzification technique [36]. Finally, the centroid
(C) is measured by taking the average of Clower and Cupper ,
where Clower be the left end point centroid and Cupper be the
right end point centroid.

C =
Clower + Cupper

2
(30)

Here, the centroid C is represented as the quantitative grades
of odor concentration in [0, 100] scales, which is perceived
by the subject. The architecture of the proposed Vertical-Slice
based GT2Fs model is illustrated in Fig. 4.

An error metric for aroma R of a subject is evaluated by
ER = |DR − CR| for optimal parameter selection in the train-
ing phase and to compare the relative merit of the proposed
type-2 fuzzy technique with the state-of the-art techniques
in the test phase. Here, DR be the desired concentration
grade obtained from the oral response of a subject about the
perceived concentration grade of a given odor stimulus R and
CR be the computed odor concentration grade obtained from
the GT2Fs based reasoning model.

17784 VOLUME 11, 2023



M. Laha et al.: Olfactory Perceptual-Ability Assessment by Near-Infrared Spectroscopy

FIGURE 4. Inference generation for the proposed GT2FS based reasoning.
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1) TIME-COMPLEXITY
The computation of the upper and lower firing strength is
done by 2 ways. The first step we compute the largest value of
p1tp2t . . . tpn∀um and the smallest value of p1sp2s . . . spn∀um
which requires the computational cost of O(m.n) for s-norm
computation and a complexity of O(m) for t-norm complex-
ity [19]. Here, n denotes the number of linguistic variables
in the antecedent and m denotes the number of discretization
along the ui axis. So the total computational cost of the above
process is O(m.n) + O(m) ≈ O(m, n)

E. OPTIMAL PARAMETER SELECTION OF GT2FS
REASONING MODEL
Parameter selection is here performed by a grid search algo-
rithm [35] (Fig. 5). First, a random selection of parameters:m,
η, th and λ in user-defined ranges: m ∈ [4, 10], η ∈[0.1, 0.8],
th∈ [0.02, 0.08], λ ∈ [0.01, 0.09] is performed to initialize the
feature selection and Vertical slice based GT2FS reasoning in
order. An error metric ER = DR − CR for a given stimulus R
is computed, where DR be the oral response of the subject
about concentration of the stimulus, and CR is the computed
response by the GT2FS reasoning and defuzzification for
the same stimulus. The process of feature selection, GT2FS
reasoning and error estimation is continued for all stimuli R,
and a metric J = (

∑
∀R
E2
R)

1/2 is evaluated. The J obtained

for the current choice of parameter set is compared with
previous J obtained for the last assigned parameter set. The
parameter set obtained for the smaller J is saved. The above
process is repeated for finitely large number of iterations
imax(= 104, say). Finally, when iteration i attains imax, the
optimal parameters are recorded for on-line testing later.

IV. OLFACTORY PERCEPTUAL-ABILITY ASSESSMENT
In this section we develop a measure of perceptual-ability
in terms of recognition-probability and discrimination-
probability.

A. RECOGNITION PROBABILITY
Let C be the centroid of the inferred type-2 MF, representing
the model response about the concentration grade of the odor
stimulus percieved by the subject and ρ be the actual concen-
tration of the aromatic substance presented to the subject. The
following conditional probabilities are defined to measure
the subjective perceptual-ability of a person with a minimum
value α assuming that the concentration ρ of the aromatic
substance is limited to β.

P(C ≥ α|ρ ≤ β) =
p((C ≥ α) ∩ (ρ ≤ β)

P(ρ ≤ β)
(31)

where

P((C ≥ α) ∩ (ρ ≤ β)

=

n(S1|s1∈S1 satisfying C≥α and ρ≤β jointly)
Total no of points inS

n(S|s∈S satisfying ρ≤β)
Total no of points in S

FIGURE 5. Schematic Overview of the proposed grid search algorithm to
obtain the optimal parameters m, η, th and λ for the optimum J .

=
n(S1|s1 ∈ S1 satisfying C ≥ α and ρ ≤ β jointly)

n(S|s ∈ S satisfying ρ ≤ β)
(32)

and n(S) and n(S1) are the cardinality of the sets S and S1
satisfying the selected conditions.

B. DISCRIMINATION PROBABILITY
Let γ be the concentration in parts per million (ppm) of
an impurity added to an aromatic substance. A probabilistic
measure is defined below to estimate the perceptual-ability of
the subject in presence of impurity. Formula (31) provides an
estimate of perceptual-abilityC with a minimum value alpha,
assuming that the concentration of the aromatic impurity is
less than a threshold β.

P(C ≥ α|γ ≤ β) =
P((C ≥ α) ∩ γ ≤ β

Pγ ≤ β
(33)

where

P((C ≥ α) ∩ (γ ≤ β)

=

n(S2|s2∈S2 satisfying C≥α and γ≤β jointly)
Total no of points in S

n(S|s∈S satisfying γ≤β)
Total no of points inS
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FIGURE 6. (a) Experimental set-up, (b) source detector connection of pre-
frontal_8 × 8 montage (c) Channel setup for pre-frontal lobe montage.

=
n(S2|s2 ∈ S2 satisfying C ≥ α and γ ≤ β jointly)

n(S|s ∈ S satisfying γ ≤ β)
(34)

In case (ρ ≤ β) and (γ ≤ β) are independent, the composite
probability:

P(C ≥ α|ρ ≤ βandγ ≤ β)

= P(C ≥ α|rho ≤ β) × P(C ≥ α|γ ≤ β) (35)

holds. This formula provides the basis of perceptual-ability
with a minimum value α assuming that ρ of the aromatic
substance is limited to β and impurity of the aromatic
noise ≤ γ .

To assess the perceptual-ability of subjects, the β is fixed
up to a moderate finite value βmin(=10), selected optimally
from various experimental events, and a suitable value of α is
determined, so as to obtain a constant area in the fixed number
of v days’ data by the left topmost rectangle, representing β <

10 and α above a threshold αth. Here, the importance is to
find αmin for each subject. Thus subjects may be ranked in
ascending order of αmin.

V. EXPERIMENTS AND RESULTS
This section attempt to designing the following experiments
of the olfactory perceptual-ability assessment of human sub-
jects using the f-NIRs device. Experiment 1 deals with Hemo-
dynamic response analysis for increasing concentration of

aromatic substance. Experiment 2 provides automatic feature
extraction for different concentration level of the olfactory
stimulus. Experiment 3 provides the sensitivity analysis of the
model parameters. Experiment 4 aims at perceptual-ability
assessment of a subjects.

A. FNIRS DATA ACQUISITION AND EXPERIMENTAL
FRAMEWORK
The experiments on the assessment of olfactory perceptual-
ability of a subject have been conducted in Artificial Intelli-
gence laboratory of Jadavpur university, Kolkata, India. The
whole brain f-NIRs (NIRScoutTM imager) device, manufac-
tured by NIRx Medical Technologies LLC, is used to capture
the hemodynamic response of the subject. The whole brain
f-NIRs data acquisition system and the experimental setup
is shown in Fig. 6(a). The f-NIRs device contains 8 infrared
(IR) sources and 8 infrared detectors to acquire the brain
response of a subject during olfactory stimulation [35]. The
combination of 8 source and 8 detectors forms 8 × 8 =

64 data channels, among them, 20 channels are utilized for
data acquisition, followed by nearest neighboring source-
detector combinations according to 10-10 optode placement
strategy. Fig. 6(b) shows the Topographic layout and the
source-detector arrangement of the pre-frontal lobe. Fig. 6(c)
identifies the possible combination of channels. For example,
the channel 2-3 represents the IR pathway from source 2
to detector 3, and is positioned at the top left corner in the
topographic layout.

B. PARTICIPANTS
Thirty volunteers, in the age group of 20-45 years, partici-
pated in the experiment [37], [38] after maintaining all safety
measures according to Helsinki declaration received in 2004
[49]. The participants include 25 healthy subjects with age
below 45 years and 5 are suffering from the olfactory disor-
der. Among them 2 are suffering from Hyposmia (indicating
reduced ability to detect odors), one from Anosmia (having
complete inability to detect odors) and two from Parosmia
(having inability to detect distorted odors).

C. STIMULUS PRESENTATION FOR ORDER
CLASSIFICATION
Each subject is advised to take a comfortable resting position
to avoid possible pick-ups of muscles artifacts [39]. The
experiment comprises three sessions, with three trials per
session. Each odor is presented for 15 second duration with
3 different concentration levels (Low, Medium and High).
Ten distinct smell stimuli (Rose water, Male perfume, Cumin
seeds, coriander seeds, Coco powder, Sandal wood powder,
Camphor oil, Eucalyptus oil, Hydrogen sulphide, Ammo-
nia) have been used in various concentration values (High,
medium and low). Next to assess the discriminating-ability
of the basic aromatic substance in presence of aromatic noise
the noise amplitude is gradually increased, so as to determine
the threshold amplitude of noise at which the subject fails
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FIGURE 7. Structure of the stimulus used with timing for olfactory perceptual-ability assessment.

FIGURE 8. Hemodynamic parameters and the topographic maps obtained
during the different concentration levels of aromatic substance.

to recognize the base olfactory stimulus. Experiments are
conducted over 30 subjects and the threshold values of noise
are determined for each subject for each pair of base and noisy
aromatic stimuli. Fig.7 illustrates one sequence of olfactory
stimuli.

D. EXPERIMENT 1: (HEMODYNAMIC RESPONSE
ANALYSIS FOR INCREASING CONCENTRATION OF
AROMATIC SUBSTANCES)
This experiment attempts to determine the effect of increas-
ing concentration of the solid (liquid) aromatic substance
in gm/cc (gm/ml). The experiment begins with rest condi-
tion, before presentation of an aromatic stimulus. The rest
period is continued for 5 seconds. After these 5 seconds,

FIGURE 9. Extracted f-NIRs feature to discriminate three different
concentration levels of the aromatic substance.

the concentration is increased by 25% and the hemoglobin
concentration (in m-moles) is recorded by the f-NIRs
system. Fig. 8 shows that the hemodynamic parameters
like Oxy-hemoglobin blood concentration (Hboxy), De-oxy
hemoglobin blood concentration (Hbdeoxy) and the total
hemoglobin consumption (Hbtot) changes over time. Fig. 8
provides the hemoglobin concentration for increasing con-
centration of the aromatic substance. It is apparent from
the figure that oxygen consumed (i.e., the difference of
oxy-hemoglobin concentration and de-oxy-hemoglobin con-
centration) increases with increased concentration with aro-
matic substance.

The following biological implication follows directly from
the topographic map [15] in Fig. 8.

1. Initially, the activation takes place in to the pre-frontal
region.

2. The activation shifts to the middle frontal cortex (MFC)
after 12 seconds duration from the presentation of the
stimulus.

3. The activation of the orbito frontal cortex (OFC) [40]
is reduced gradually (green colored pad in the Fig.8) with
increased concentration of the aromatic stimulus.

4. With increased in concentration of the aromatic sub-
stance, the activation of the Dorso-lateral pre-frontal cortex
(DLPFC) and Ventro-lateral pre-frontal cortex (VLPFC) are
increased.

E. EXPERIMENT 2: (AUTOMATIC FEATURE EXTRACTION TO
DISCRIMINATE 3 DEGREES OF CONCENTRATION LEVELS)
The motivation of the present experiment is to discriminate
the f-NIRs features for 3 concentration levels of Aromatic
substance. We adopt Evolutionary Algorithm (EA) technique
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FIGURE 10. (a-d) Parametric Sensitivity of error metric ER for the
proposed GT2FS reasoning technique.

to select the best possible f-NIRs features from the extracted
f-NIRs features. EA selects most significant 20 features from
a large dimension (=900 features) feature sets. Fig. 9 depicts
these 20 optimal features from the feature value plot for
three degrees of concentration levels. It is clear from the plot
that the feature f81 (mean HbO concentration of channel 4),
f123 (mean HbO concentration of channel 12), f158 (mean
HbO concentration of channel 18), f191 (standard deviation
of HbO concentration of channel 15), f262 (avg. energy of
channel 7), f265 (avg. energy of channel 14), f302 (avg. energy
of channel 19), f322 (skewness of channel 5), f358 (skewness of
channel 11), f370 (skewness of channel 17), f428 (kurtosis of
channel 5), f525 (kurtosis of channel 5) have the maximum
inter-class separation.

F. EXPERIMENT 3: SENSITIVITY ANALYSIS
A sensitivity analysis is undertaken to test optimality of ER
with respect to 4 parameters m, η,th and λ. Fig.10 provides
the results of off-tuning the parameters from their optimal
values, which shows a rise in ER for off-tuned parameter.
It is important to note that the optimal values attained in our
experiments are λ = 0.052, th = 0.05, η = 0.26, andm = 6.

G. EXPERIMENT 4: PERCEPTUAL-ABILITY ASSESSMENT
OF A SUBJECT
This experiment aims at measuring the perceptual-ability of
a subject in two phases. In the first phase we identify the
recognition probability of a subject and in the second phase,
we can measure the discrimination probability of that subject
(Fig.11). Now for a given β(=56) and fixed no. of points in
the left top area (over 5 days), the parameter α is evaluated
by shifting the dotted line along y-axis. This is repeated for
30 subjects. Let the α -values obtained by the above process
are α1, α2, . . . , α30 for 30 subjects.
Similarly, we can also measure the discrimination prob-

ability for a given α(=0.7) and the impurity concentration

FIGURE 11. Perceptual-ability assessment with the basis of
(a) Recognition-Probability and (b) Discrimination- Probability of a
subject.

( γ ) is evaluated by shifting the dotted line along the
x-axis. Let the γ value obtained by the above process are
γ1, γ2, . . . , γβ up to the maximum recognition threshold
( β ). For 30 subjects we obtain β1, β2, . . . , β30. Then we
rank subjects depending on the in-equality α4 > α9 >

α1 > . . . > α2 > α7 and β4 < β9 < β1 < . . . <

β2 < β7 where subject 4 has the highest perceptual-ability
and subject 7 has the least perceptual-ability. To rank sub-
jects based on odor perceptual-ability, we undertake 3 steps.
First we compute recognition probability and discrimination
probability for ER 30 subjects, of which only 10 are shown in
Table-1 for space limitation. Second, we take their product to
compute perceptual-ability of the individual subjects. Lastly,
we sort the subjects based on the descending order of their
perceptual-ability. The ranks of the subjects thus obtained are
indicated in the table itself.

VI. PERFORMANCE ANALYSIS AND STATISTICAL
EVALUATION
This section deals with the experimental basis of performance
analysis of the proposed Type-2 fuzzy set induced reasoning
techniques with the traditional and existing ones.

A. PERFORMANCE ANALYSIS OF THE PROPOSED
GT2FS METHODS
To compare the relative performance of the proposed type-2
fuzzy reasoning with the existing techniques, we employ the
ER metric as the performance index of the proposed algo-
rithm. Table-2 provides the results of metric obtained by the
proposed type-2 fuzzy set based reasoning techniques against
non-fuzzy reasoning algorithms [41], [42], [43], type-1 [44],
and type-2 fuzzy algorithms [37], [45], [46], [47] are realized
and tested with the best settings of parameters of individual
algorithms for the present perceptual task. The list of param-
eters of all algorithms is illustrated in the Appendix section of
the authors’ previous paper (Table-IV of section A.3 in [35]).
This experiment has been performed over 25 healthy subjects
and 5 brain-diseased subjects, comprising 10 stimuli, includ-
ing 6 sessions each, covering 30 × 3 × 10 × 6 = 5400 train-
ing instances. It is apparent from Table-2 that the proposed
reasoning algorithm outperforms its nearest competitors by
an error metric of 1.5%. Moreover, It is also observed form
the same table that the run time complexity of the proposed
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TABLE 1. Olfactory perceptual-ability assessment for ten subjects.

TABLE 2. Comparison of ER obtained by the proposed reasoning method
against existing methods of a subject.

GT2FS algorithm is 94.7 milliseconds, which is comparably
less than the other existing GT2FS based techniques.

B. STATISTICAL VALIDATION
To statistically validate the proposed reasoning technique
we employ the well-known Wilcoxon Signed rank test [48].
Here, Algorithm B is any one of the 7 algorithms listed in
Table-3 and Algorithm A is the reference algorithm (here
reference is the proposed algorithm). To validate the H0 be
the null hypothesis, we evaluate the test statistics

W =

Tr∑
i=1

[sgn(EAR,i − EBR,i).ri] (36)

where, EAR,i and E
B
R,i are the measures of error metrics ER at

the i-th training instances of algorithm A and Algorithm B
respectively. Tr be the total number of training instances and

TABLE 3. Statistical analysis with the reference algorithm: Proposed
GT2FS method.

ri be the rank of the pair at i-th training samples. The results of
the statistical test are provided in Table-3. The plus andminus
value in the table represents the W values of algorithm A
and B which is significant or not significant. Here, 95%
confidence level is achieved with the degree of significance,
at the level of 0.05.

VII. CONCLUSION
The paper proposes a new approach to assess the olfactory
perceptual-ability of human subjects using f-NIRS induced
type-2 fuzzy reasoning. To measure perceptual-ability, com-
putation of 2 parameters: recognition probability and discrim-
ination probability are computed. Three experiments have
been performed to measure olfactory perceptual-ability. The
first experiment is undertaken with three different levels
of concentration of the aromatic stimulus to measure the
recognition threshold of the subject. The second experiment
is concerned with noisy aromatic stimuli to determine dis-
crimination threshold of the primary aromatic stimulus. The
third experiment is performed to rank subjects based on
their measure of perceptual-ability. A run-time complexity
analysis envisages that the proposed algorithm outperforms
its competitors by a large margin. Statistical tests undertaken
byWilcoxon Signed Rank test, also indicates relatively better
performance of the proposed technique with its competitors
by a confidence level of 95%. The proposed research outcome
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may find interesting and useful application as a bio-marker
for the early Alzheimer’s disease. It would also serve as a
tool for the selection of tea-tasters based on their measure of
olfactory perceptual-ability from brain-response to olfactory
stimuli.
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