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ABSTRACT This review provides a detailed synthesis of various in-situ, remote sensing, and machine
learning approaches to estimate soil moisture. Bibliometric analysis of the published literature on soil
moisture shows that Time-Domain Reflectometry (TDR) is the most widely used in-situ instrument, while
remote sensing is the most preferred application, and random forest is the widely applied algorithm to
simulate surface soil moisture. We have applied ten most widely used machine learning models on a
publicly available dataset (in-situ soil moisture measurement and satellite images) to predict soil moisture
and compared their results. We have briefly discussed the potential of using the upcoming NASA-ISRO
Synthetic Aperture Radar (NISAR) mission images to estimate soil moisture. Finally, this review discusses
the capabilities of physics-informed and automatedmachine learning (AutoML)models to predict the surface
soil moisture at higher spatial and temporal resolutions. This review will assist researchers in investigating
the applications of soil moisture in the broad domain of earth sciences.

INDEX TERMS Surface soil moisture, bibliometric analysis, machine learning, remote sensing, NISAR,
AutoML.

I. INTRODUCTION
Soil moisture is a temporary storage of water in the soil
pores [1], [2]. This fraction of water seems negligible
(0.0012%) as compared to the water available on the earth,
but it is crucial for the hydrological cycle and the biological
processes at the air-soil interface [3], [4], [5], [6], [7]. The
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study of spatial and temporal variation of soil moisture is
crucial for different applications such as the prediction of
the flood, drought, and forest fire & climate and agriculture
investigations [8], [9], [10], [11], [12], [13]. Soil moisture can
be estimated/measured at different spatial (local and global)
scales. At the local scale, it is generally measured in the field
by using different direct and indirect methods depending on
the measurement techniques. The amount of moisture content
in a soil sample is traditionally measured by using the direct
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method (i.e., oven dry method). The soil sample is fully dried
in an oven; the difference between the initial and dry weight
of the soil sample gives the moisture content. This method
is destructive, time-consuming, and provides soil moisture
only at discrete locations. Later indirect methods based on
automated sensors, such as theta probes, were developed to
estimate soil moisture. Such indirect methods can measure
the moisture of a soil column at different depths at discrete
locations.

Satellite images (such as Sentinel-1, Sentinel-2, and
Radarsat-2) provide synoptic coverage of the earth’s surface
at different spatial and temporal resolutions. Due to these
capabilities, microwaves together with the optical remote
sensing satellite images, have been proven useful for
monitoring surface soil moisture at the global and regional
scales [20], [21], [22], [23]. The European Space Agency
(ESA), under the ESA-EO mission, launched Soil Moisture
and Ocean Salinity (SMOS) mission in 2009. Later the
Soil Moisture Active Passive (SMAP) was launched in
2015, by the National Aeronautics and Space Adminis-
tration (NASA) under Earth System Science Pathfinder
(ESSP) mission. These satellite missions provide moisture
products on a daily to eight days revisit time, at the
spatial resolution varying from 1 ∼ 50 km. The soil
moisture product of these satellite missions has data void,
particularly at the locations of complex topography and dense
vegetation [24], [25].

Microwave remote sensing images have been widely used
for estimating soil moisture due to their penetration capacity
to the top soil layer and their sensitivity towards dielectric
properties of the material [26], [27]. The microwave signals
exhibit a permittivity (ϵ) gradient between dry soil (∼ 2)
and water (∼ 80) [28], [29], [30]. Various backscattering
models (i.e., theoretical, empirical, and semi-empirical) have
been developed to model soil moisture from microwave
images [31], [32], [33], [34], [35], [36], [37], [38], [39], [40].
These models require quad-polarised (VV, VH, HH, and HV)
microwave images. The quad-polarised microwave images
are often not available for some regions. For example, the
publicly accessible Sentinel-1 images, for most countries,
are available only in dual polarisation [41]. To overcome
this limitation, data-driven models (i.e., machine learning)
have been proposed to predict soil moisture by using
the backscatter values in different polarisation and other
ancillary data (topography, vegetation indices, etc.) as
input features. This approach initially requires in-situ soil
moisture to train and test the machine learning models.
Once the model is trained, it can be used to predict soil
moisture just by using a set of input variables discussed
above.

Few review papers have been published so far discussing
the in-situ soil moisture estimation methods. We have
tabulated these studies in Table 1.McKim et al. [14] presented
a brief review of gravimetric, nuclear, electromagnetic, ten-
siometric, and hygroscopic methods and their pros and cons,
with special emphasis on tensiometric and electromagnetic

methods. Similarly, Zazueta and Xin [16], presented a brief
review of gravimetric, nuclear, and electromagnetic methods
with their associated pros and cons. Stafford [15], carried
out a systematic review on remote, non-contact, and in-situ
methods of soil moisture estimation. Ling [17] presented
a short review on tensiometers, granular matrix sensors,
dielectric sensors, and heat-dissipating sensors for soil mois-
ture measurements with the advantages and disadvantages
of each sensor. Su et al. [18] reviewed the state-of-the-art
soil moisture measurement techniques. In addition, they also
reviewed the impact of various soil-specific parameters on
soil moisture measurements. Recently, Hardie [19], reviewed
the existing and emerging soil moisture sensors that are
preferably used. To the best of our knowledge, none of
the above-discussed reviews have performed bibliometric
analysis that includes a review of the soil moisture sensors,
remote sensing techniques, and machine learning algorithms.
We could not find any review articles that synthesize the
potential use of the in-situ measurements to develop remote
sensing-based machine learning methods to estimate regional
and global soil moisture (Table 1).

The use of machine learning models are increasing rapidly
in almost every application due to their high computational
efficiency. This reflects a sharp increase in publications
on soil moisture estimation that includes machine learning
models. About 537 publications (502 research - 502, review
- 26, and data and editorial - 9) have been published
from 1995 to 2022. From 2012 to 2022 (till 15th January
2022), we found 519 publications on the Web of Science
(WoS) database (Figure 1). USA emerges as the highest con-
tributor with 180 research publications, followed by China,
Germany, India, and Canada. Amajority of these publications
have used in-situ measured soil moisture and satellite images
to train and validate machine learning models. It would
be useful to discuss the pros and cons of all the available
methods and sensors which are generally used to collect
the in-situ measurement along with the discussion of remote
sensing-based machine learning approaches for soil moisture
estimation.

This review first discusses the required theory together
with the advantages and disadvantages of traditional and
automated methods. Among the traditional methods, we dis-
cussed the gravimetric and volumetric methods in detail.
Whereas in the automated methods, we have considered
the radiological techniques (i.e., neutron and gamma rays
probe), soil-water dielectric techniques (i.e., Time-Domain
Reflectometry (TDR), and Frequency-Domain Reflectom-
etry (FDR)), and soil-water potential techniques (i.e., ten-
siometer, resistance block, and psychrometers). Following
this, we have performed the bibliometric analysis of each
method and sensor to analyse their relative usages. We then
discussed various remote sensing techniques for soil moisture
estimation, specifically by using microwave remote sensing.
Lastly, we present a comprehensive comparison of the
machine learning algorithms that are extensively used in soil
moisture study.
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TABLE 1. Summary of the existing review papers on soil moisture sensors. The ✓ and ✗ are to indicate the review scopes that have been covered and
not covered, respectively.

FIGURE 1. Number of publications (research articles, review papers, and others) from 2012 to 2022 on soil moisture
together with the machine learning models from different countries.

This review work is organised into seven different
sections. Section-I discusses the state-of-the-art techniques
in soil moisture measurement, importance, and spatial scale.
We have compared the existing reviews on soil moisture
and finally highlighted the need for the present review.
Section II provides a detailed review of in-situ instruments,
remote sensing methods, and machine learning techniques
to estimate soil moisture. We discussed different methods
and sensors used for in-situ measurement of soil moisture
(i.e., oven-dry, radiological techniques, dielectric techniques,
and potential techniques). We presented a review on the

application of remote sensing images and machine learning
models to estimate surface soil moisture. Finally, we provided
a summary of each method and its key characteristics.
Section III consists of a bibliometric analysis of the methods
and sensors that are frequently used for collecting in-
situ soil moisture measurements (i.e., gravimetric, neutron
probe, tensiometer, TDR, and FDR) and summarises the
findings. Section IV is the bibliometric analysis of the
application and algorithms (i.e., remote sensing, random
forest, neural network, and support vector machine) that are
most frequently used in soil moisture studies. Section V
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FIGURE 2. Road map of the review paper.

contains a comprehensive analysis of ten different machine
learning algorithms that are widely used to model surface soil
moisture. Sections VI and VII are about the overall analysis
and summary of this review. Figure 2 illustrates the structure
of the review work.

II. SOIL MOISTURE MEASUREMENTS
A. IN-SITU SOIL MOISTURE
In-situ measurements are classified into direct and indirect
methods. Oven drying methods (both gravimetric and
volumetric soil moisture) are the only direct methods for
soil moisture determination; on the other hand, all the
automated techniques for soil moisture estimation come
under the indirect method. In the direct method, also known
as a destructive method, soil moisture is estimated by
drilling holes into the ground, disturbing the soil root zone
and eventually affecting infiltration and drainage behaviour.
In contrast, indirect methods estimate soil moisture by
developing a functional relationship between the chemical
and physical properties of soil moisture and soil matrix [42].
Automated soil moisture measurement techniques have
been developed to determine the actual amount of water
available to the vegetation and crop. They can be grouped as
quantitative and qualitative. The quantitative method includes

radiological techniques (such as neutron scattering and
gamma-ray attenuation) and soil-water dielectric techniques
(such as time-domain and frequency-domain reflectometry).
They measure the actual amount of moisture content that is
present within the soil layer. The qualitative methods include
soil-water potential instrumentation (such as tensiometer,
resistance blocks, and psychrometers). These techniques
enable repeated measurement of soil moisture at the same
location without disturbing the soil layer. To calibrate the
automated soil moisture probes, soil bulk density is used.
Appendix A provides a detailed review of different methods
(direct and indirect) for the measurement of soil moisture
with their pros and cons. Table 2 summarises the key
characteristics of different in-situ measurement techniques
and instruments.

The International Soil Moisture Network (ISMN) was
launched in 2009 to provide a seamless database of
soil moisture that could be used as ground truth for
various applications, such as calibration and validation of
satellite-derived soil moisture products, and applications
related to hydrology, agronomy, and climate change models
[43], [44], [45], [46]. Up till August 2021, about 2800 operat-
ing stations have been set up successfully globally [47]. The
data recorded at these stations are publicly available. They

13608 VOLUME 11, 2023



A. Singh et al.: Strategies to Measure Soil Moisture

TA
B

LE
2.

Ke
y

ch
ar

ac
te

ri
st

ic
s

of
th

e
in

-s
it

u
m

et
ho

ds
an

d
se

ns
or

s
us

ed
fo

r
so

il
m

oi
st

ur
e

m
ea

su
re

m
en

t.

VOLUME 11, 2023 13609



A. Singh et al.: Strategies to Measure Soil Moisture

FIGURE 3. Distribution of ground stations (status as of August 2021) for soil moisture measurement across the globe. Rectangles (a-e) show the regions
(North America, Europe, Asia, Africa, and Australia, respectively) with the distribution of ground measurement stations.

can be freely downloaded from (https://ismn.geo.
tuwien.ac.at/en/data-access/). The spatial dis-
tribution of the ground stations (soil moisture) is unevenly
distributed globally (Figure 3). For example, one can observe
a dense network in the United States and Europe, and only
a few stations in Africa, India, and Australia (Figures 3a-e).
In these data-scarce regions, one cannot rely only on the
ISMN, especially for applications requiring accurate and
precise soil moisture measurements.

B. REMOTE SENSING
Recent advancements in satellite and airborne remote sensing
have enabled the monitoring of soil moisture at regular
intervals at global and regional scales. Remote sensing can
be used to acquire images in the optical, thermal, and
microwave region of the electromagnetic spectrum. Optical
remote sensing uses the radiation energy reflected from
the Earth’s surface (i.e., surface reflectance) to estimate
surface soil moisture. It provides soil moisture at higher
spatial resolution [60], [61]. The two widely used techniques
in the optical remote sensing of soil moisture are based
on the vegetation index, and single spectral analysis [62].
The former uses the difference in vegetation index to
estimate the surface soil moisture. The single spectral
analysis determines the relationship between soil moisture
and surface reflectance by exploiting the difference in

the reflectance of the water-absorption and non-absorption
bands [63], [64]. Thermal remote sensing uses the radiation
energy emitted by the Earth’s surface (acquired in the
thermal infrared region of the electromagnetic spectrum). The
thermal inertia and temperature index are the two widely
used methods to estimate soil moisture. In thermal inertia
methods, a relationship between thermal inertia and soil
moisture is established by determining the change in the
soil temperature, whereas the temperature index method
uses the land surface temperature to estimate soil moisture.
Besides standalone capabilities, optical and thermal remote
sensing are often used synergically to estimate surface soil
moisture (i.e., triangle, trapezoid, and temporal information-
based method) [65], [66], [67], [68], [69]. With its day-
night capabilities and being less affected by atmospheric
perturbation, microwave remote sensing has emerged as an
effective tool in recent years [70]. The soil moisture signal is
much stronger in the microwave than in optical or thermal.

Themicrowave remote sensing can be categorised as active
and passive. The passive sensors (i.e., radiometer) detect
microwave energy emitted naturally within their field of view,
whereas the active microwave sensors (i.e., scatterometer and
radar) provide a radiation source to illuminate the object.
Both these techniques can sample the surface soil moisture
without being seriously impacted by the non-precipitating
atmosphere. Kondratyev et al. [80] developed an algorithm
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FIGURE 4. Taxonomy of different empirical, semi-empirical, and theoretical models used simulate the radar
backscatter.

to estimate soil moisture using passive microwave images.
They considered the moisture gradient of each soil type
from the emissivity recorded by the radiometer (operating
at a wavelength of 18 cm). They found a high variation
in the observed and the radiometer-derived soil moisture.
Later, Basharinov et al. [81] used a 3 cm radiometer to
estimate soil moisture. Their approach could accurately
estimate soil moisture over sandy and clayey soils. Later,
several experiments have been conducted to improve the
accuracy of the soil moisture derived from radiometer
[82], [83], [84], [85], [86]. Advanced Microwave Scanning
Radiometer for EOS (AMSR-E), launched in May 2002,
provides soil moisture (2002-2011) at spatial resolution
varying from 5 to 50 km at every 2–3 days interval [87].
Aquarius (L-band) satellite mission (2011-2015) has been
used to monitor global soil moisture products of spatial
resolution 40 km at every 7 days interval [88], [89], [90].
Passive satellites such as AMSR-2, SMOS, and SMAP are
currently operational. They provide global soil moisture
products at different spatial and temporal resolutions. For
example, the AMSR-2 satellite (launched in May 2012)
provides soil moisture at a spatial resolution of 25 km at every
2 days interval [91], [92].

The passive microwave remote sensing soil moisture prod-
ucts usually have a low spatial and high temporal resolution.
However, soil moisture estimated from active microwave
remote sensing generally has a high spatial and low temporal
resolution. The commonly available active remote sensing

soil moisture products are scatterometer-derived. ERS Scat-
terometers i.e., ERS-1 (1991-1996) and ERS-2 (1995-2011)
satellites operate at C-band frequency. Magagi and Kerr [93],
Pulliainen et al. [94], and Wagner et al. [95] proposed
different algorithms to estimate soil moisture (spatial resolu-
tion 50 km and revisit time 3-4 days) from the backscatter
values of ERS-1/2 satellites. These algorithms have been
further applied on Advanced Scatterometer (ASCAT) based
satellites such as MetOp-A (from 2006 to 2021), MetOp-
B (from 2012 to present), and MetOp-C (from 2018 to
present) to estimate daily soil moisture at 25 km spatial
resolution. Presently SAR-derived approaches are relatively
less developed as compared to the scatterometers in terms of
their routine use. However, SAR-based soil moisture products
are continuously evolving with the launch of Sentinel-1, and
the status is expected to improve with the upcoming NISAR
mission.

This review mainly discusses the SAR-based approaches
which are frequently used for soil moisture estimation. Differ-
ent models (empirical, semi-empirical, and theoretical) based
on the backscattering mechanism of radar signals have been
developed to estimate soil moisture from microwave images
(Figure 4). A detailed review of these models is compiled in
Appendix B. Table 3 provides a summary of recent studies
on estimating soil moisture using backscattering models.
We noticed that the Integral EquationModel (IEM) andWater
Cloud Model (WCM) had been widely used to estimate soil
moisture. The number of publications on soil moisture has
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TABLE 3. State-of-the-art studies in soil moisture estimation using different backscatter models.

increased significantly after the launch of Sentinel-1 satellite
missions. Sentinel-1 satellites acquire images only in dual-
polarised mode; therefore, the backscatter models developed
for the quad-polarised data can not be used for soil moisture
estimation. Researchers have modified the backscattering
models by reducing the unknown parameter surface rough-
ness, which can be estimated from empirical equations. This
enables estimating soil moisture from the dual polarised data.
This modification introduces an approximation error into the
model [96]. Such limitations can be eliminated with data-
driven models.

The data-driven machine learning models require various
input features as the training set, based on which the response
variable is to be predicted (Figure 5). Previous studies have
reported that the microwave backscatter (i.e., VV, VH, HH,
and HV), graphical indicators (i.e., NDVI, and NDWI),
topography (i.e., elevation), geolocation information (i.e.,
latitude and longitude) can be used as potential input features
to predict soil moisture [97]. These features can be obtained
from publicly available remote sensing images and can be
used to train appropriate machine learning models to predict
soil moisture.

FIGURE 5. Illustration of the interlinkage of machine learning with
remote sensing and in-situ observations.

C. SUMMARY AND DISCUSSION
We discussed and summarised the advantages and disad-
vantages of various techniques that are generally used to
measure soil moisture at the local or plot scale. Based
on the applications, time constraints, fund availability, and
accuracy, appropriate techniques to estimate soil moisture
can be applied. We have also reviewed the efficiency of
microwave remote sensing images in estimating soil moisture
at regional and global scales. We discussed recent studies
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FIGURE 6. Strategy used for the data extraction and details of the
bibliometric analysis.

based on backscattering models (empirical, semi-empirical,
theoretical) to assess soil moisture. Finally, we have high-
lighted the potential of machine learning algorithms together
with the in-situ measurement and remote sensing images
to model and predict soil moisture at different spatial and
temporal scales.

III. BIBLIOMETRIC ANALYSIS: IN-SITU
We have performed bibliometric analysis using VOSviewer
(Visualisation Of Similarities) software [98]. This publicly
available software is used to perform bibliometric analysis
on a large number of research manuscripts [99], [100], [101].
We performed this analysis based on the author key-
words of 1223 research manuscripts published in the WoS
from 1970 to 2022 (till 15th January 2022). We further
performed an individual analysis of the more frequently used
in-situ soil moisture methods and sensors. We computed the
cluster size, the number of links, and the total link strength
for gravimetric, neutron probe, tensiometer, TDR, FDR, and
Gamma-rays probe.

Any bibliometric maps generated, visualised, analysed
in VOSviewer consist of items indicating, according to
VOSviewer, a connection or relation between the two items.
Each link represents the bibliographic coupling between them
(i.e., keywords). We have reported the co-occurrence link
between the two items. Each link has a positive strength
associated with it. Higher the strength value, the stronger
the link. The total link strength corresponds to the number
of publications in which the two keywords had occurred
together. Both items and the link between them constitute
a map. Further, different items are grouped together to
form a cluster. A cluster is a set of items present on the
map, and each cluster is assigned a number (and different
colours). The clusters are formed by using the VOS clustering
algorithm [102]. It is a unified algorithm that is widely used
for mapping, and bibliometric clustering networks [103]. The

search term and strategy for performing this analysis are
illustrated in Figure 6.

In stage 1, we downloaded the metadata of 1223 research
documents using the advanced search tool from the official
site of the WoS (https://www.webofscience.com/
wos/woscc/advanced-search). A Boolean logic-
based query is passed to search for the relevant documents.
The query consists of a method or sensor name followed by a
fixed term ‘soil moisture.’ We have not placed any filtering in
the time and document types except for an English language
filter. We fed the downloaded metadata in the VOSviewer
to perform co-keyword burst analysis for each method and
sensor.

The map for each method and sensor is shown in Figure 7
along with their cluster size, number of links, and the
total link strength. We found that the tensiometer emerged
with the most number of clusters (i.e., 7), while the TDR
appeared with the most number of links (i.e., 460) and had
the highest total link strength (i.e., 674). It indicates that
the TDR is the most frequently used instrument for soil
moisture measurements. The application terms associated
with TDR are electrical conductivity, vegetation, drought,
and validation. The neutron probe ranked second with a
total link strength of 214. The gravimetric method appeared
to have the least links (i.e., 86) and the total link strength
of (i.e., 104), indicating its less usage in estimating in-situ
soil moisture. The frequently appearing application terms
considering all methods are field calibration, drought, and
electrical conductivity.

A. SUMMARY AND DISCUSSION
Table 4 reports the result of bibliometric analysis. We per-
formed the complete analysis by considering items (i.e.,
keywords) that occurred at least twice to avoid disconnected
maps. The TDR has the highest number of items (i.e., 60).
They are grouped into six clusters shown in different colours
(Figure 7d). A total of 460 links formed between them, which
resulted in a total accumulated link strength of 674. The most
frequently used item is ‘‘time-domain reflectometry’’. USA
emerged as the country with the most publications, which
considered TDR for in-situ soil moisture, while Brocca et al.
[106] is the most cited publication. FDR has the least number
of items that are grouped into five clusters (Figure 7e),
having 138 links and 173 total link strength. In the case
of FDR, ‘‘moisture’’ is the most frequently used item, and
Kelleners et al. [107] is the most cited publication.

IV. BIBLIOMETRIC ANALYSIS: APPLICATIONS AND
ALGORITHMS
We have performed the bibliometric analysis through the
VOSviewer software to find the most frequently linked
applications with in-situ soil moisture and machine learning
algorithms. We execute a query mentioning the soil moisture
sensors with the term application (i.e., {soil moisture sensor}
OR {application}) to download the metadata from the
web of science database. We then performed co-keywords
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FIGURE 7. Bibliometric analysis of all the prominent in-situ soil moisture measuring methods and sensors. We considered
1223 research manuscripts published in Web of Science from 1970 to 2022 (till 15th January 2022).
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TABLE 4. Comparison of the bibliometric analysis for all the prominent soil moisture estimation methods and sensors.

FIGURE 8. Major application areas of in-situ soil moisture methods and sensors. We considered 1060 research documents
published from 1991 to 2022 (till 15th January 2022) in the web of science.

burst analysis on 1060 documents to find the application
that appeared the most in conjunction with soil moisture
sensors and plotted the corresponding results (Figure 8).
We found several applications associated with the soil
moisture sensors, such as remote sensing, irrigation, control
systems, hydrology, agriculture, geospatial sensor web, data
assimilation, agriculture, floods, and landscape irrigation.
Remote sensing was the most frequent application associated
with the study of soil moisture sensors.

We have also executed a query relating soil moisture and
machine learning term (i.e., {soil moisture} OR {machine
learning}) in the advance search option of the web of science
database. We downloaded the metadata and fed it to the
VOSviewer software. Subsequently, we performed the co-
keyword burst analysis and plotted the corresponding map in
Figure 9. Interestingly, random forest, neural network, and
support vector machine are the top three machine learning
algorithms that have been applied frequently together with
in-situ soil moisture measurement. The other algorithms
are Gaussian process regression, decision tree, automated
machine learning, deep belief network, fuzzy logic system,
and extreme machine learning.

In the upcoming subsections, we elaborate the top three
machine learning algorithms (i.e., random forest, neural
network, and support vector machine) from a regression point
of view. Finally, we summarise the recent research article
that uses machine learning algorithms, in-situ measured soil
moisture, and remote sensing images to predict the soil
moisture in Table 5. We highlight the in-situ measurement
technique, remote sensing datasets, and the corresponding
satellite mission, the machine learning algorithms, the
best-performing algorithms, along with the corresponding
performance metrics, and the study area.

A. RANDOM FOREST
Random forest regression is a supervised technique that
uses ensemble learning for regression. The random forest
classifier creates several decision trees through the bagging
method during the training phase by optimising the tuning
parameters. According to Breiman [109], the default value of
the tuning parameters for the regression problem is 200 trees
and p/3 number of features in each split. However, the optimal
tuning parameter selection depends on the problem, as the

VOLUME 11, 2023 13615



A. Singh et al.: Strategies to Measure Soil Moisture

FIGURE 9. Machine learning algorithms used for soil moisture retrieval. We considered 512 research documents published from 1995 to 2022 (till 15th

January 2022) in the web of science.

default values may not give promising results [110]. Once
the model is trained, we feed the testing data into the input
of the trained trees. The prediction from each decision tree is
averaged to obtain the final value (Figure 10).

B. NEURAL NETWORK
Neural networks (also known as ANN) are a network of
artificial neurons. For regression-based problems (such as
soil moisture estimation), we generally use a feed-forward
neural network [111], [112]. Figure 11 illustrates a typical
structure of a general feed-forward ANN. It consists of an
input, hidden, and output layer. The input layer consists of
the input features, while the hidden layer consists of several
neurons that collect the weighted input from the previous
layer. The output layer consists of a response variable. A bias
term is linked to each neuron present in the hidden layers.
Further, each layer is followed by an activation function.
The role of the activation function is to decide whether a
particular neuron should be activated or not. It applies a
non-linear transformation at the neuron’s output to make
it capable of solving complex problems [113]. In general,
a linear transformation (i.e., purelin) is used at the input and

the output layer, while a hyperbolic tangent sigmoid transfer
function (i.e., tansig) is used at each hidden layer [114], [115].
In feed-forward ANN, the neurons of one layer are connected
to the neurons of the successive layers, hence do not form any
loop.

To train the feed-forward ANN efficiently, back-
propagation algorithms are widely used. It performs iterative
calculations to determine the optimal weights and bias by
optimising the error function [116]. Readers may refer
[117], [118] to know details on feed-forward ANN.

C. SUPPORT VECTOR MACHINE
Vapnik [119] introduced the most notable classification algo-
rithm (i.e., support vector machine) to the nature of statistical
learning theory (Figure 12). Later, Drucker et al. [120]
modified it to deal with a regression problem known
as support vector machine regression or support vector
regression. The response variable, y(x), can be estimated by
using the following equation;

y(x) =

N∑
i=1

(αi − α∗
i )K (xi, xj) + b (1)
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FIGURE 10. Illustration of the training and prediction of random forest regression algorithm.

FIGURE 11. Illustration of the general architecture of a fully connected feed-forward ANN.

where K (xi, xj) is the kernel function, and b is the bias
term. αi and α∗

i are the Lagrange multipliers. It has
an excellent generalisation capability and is widely used
in different remote sensing applications [121], [122],
[123], [124], [125], [126], [127], [128], [129]. A detailed
study about support vector regression can be found in
literature [130], [131], [132].

D. SUMMARY AND DISCUSSION
Regression-based machine learning algorithms are used to
predict soil moisture. Bibliometric analysis confirms that the
random forest, neural network, and support vector machine
are the frequently used machine learning algorithms for soil
moisture prediction (Table 6). The performance of these
algorithms completely depends on the quality and relevance
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FIGURE 12. Illustration of the working of support vector machine regression.

TABLE 6. Comparison of the bibliometric analysis for the frequently used machine learning algorithms for soil moisture prediction.

TABLE 7. Comparison of the different machine learning algorithms for soil moisture estimation from remote sensing images (predictors) and in-situ soil
moisture (response variable).

of the selected input features. The input feature must contain
information about the target variable. All the relevant features
that explain the physics of soil moisture must be selected.
However, a balance between the number of features and
observations must be kept, considering that many input
features, although relevant, may degrade the performance of
the machine learning model [144]. Selecting the appropriate
and relevant input features is more important than selecting a
machine learning model.

We found that random forest is the most widely
used machine learning algorithm concerning soil mois-
ture estimation (with 387 items, 21 clusters, 3968 links,
and 4348 total link strength). China emerged as the
country with the most publications for soil moisture
prediction using machine learning and remote sensing
images. More specifically Chinese Academy of Sciences
has appeared as the organisation with the most publi-
cations. Some of the most cited publications concerning
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soil moisture and machine learning are Im et al. [143],
and Ahmad et al. [111].

V. COMPARISON OF MACHINE LEARNING ALGORITHMS
Table 5 reports a comparison of studies conducted in the
different study areas, input features, and source of in-situ
measurements. For a fair and unbiased comparison, we must
evaluate the performance of different machine learning
algorithms with the same datasets. We have used the in-
situ soil moisture datasets provided by Singh et al. [96].
Using a calibrated TDR, they measured in-situ soil moisture
at 78 different locations on the Kosi river alluvial fan of
the Himalayan Foreland. We used the in-situ measured soil
moisture as the response variable and extracted nine input
features from Sentinel-1 and Sentinel-2 satellite images and
the digital elevation model of the Shuttle Radar Topographic
Mission (SRTM). Total five input features (i.e., VV, VH,
VH/VV, VH-VV, local incidence angle) from Sentinel-1,
one (i.e., NDVI) from Sentinel-2, and three features (i.e.,
elevation, latitude, and longitude) from SRTM have been
selected.

The entire datasets are divided into training (i.e., 60%)
and testing (40%). The training data has been used to train
ten benchmark algorithms: RF, ANN, SVR, RNN, BDT,
GAM, LR, GPR, GRNN, and logistic regression. Bayesian
optimisation has been used to tune the hyperparameters
of the machine learning models [145]. Once we trained
the models, we used the testing data to evaluate the
algorithms’ performance. We use R, RMSE, and bias as the
performance metrics (Table 7). Among all these algorithms,
ANN outperforms all the other algorithms with R = 0.80,
RMSE = 0.06 m3/m3, and bias = 0.04 m3/m3.

VI. DISCUSSION
In-situ soil moisture measurements are majorly used for
calibrating and validating satellite-derived soil moisture
and land surface models [43]. This study explores some
interesting insights starting from the local scale in-situ
soil moisture measurements to the global scale satellite-
derived soil moisture, which are discussed in the following
subsections.

A. IN-SITU SOIL MOISTURE
We comprehensively reviewed methods and sensors widely
used to collect (or measure) in-situ soil moisture. We sum-
marised the key features (i.e., accuracy, reliability, advan-
tages, disadvantages, cost, calibration, and suitable soils)
of these methods in Table 2. Depending on the require-
ments and constraints, one can use different techniques.
For example, to measure precise soil moisture values, the
conventional approach can be used, whereas if fast and
precise measurement is needed, TDR should be used. Before
inserting it in the ground, TDR needs to be calibrated for
optimal performance, which is time-consuming. Also, the
cost associated with TDR is high. For a low-cost solution,
Tensiometer can be used for fast and precise soil moisture.

Although, it is not recommended for dry soils, and more
specifically, for finer texture soils such as clays because of
their high water-holding capability. Hence, a proper balance
between accuracy, cost, and time must be kept depending
on the requirements. Further, for long-term continuous in-
situ measurements to analyse the trends in the water cycle
worldwide, the harmonised data from ISMN can be used.
The only limitation associated with ISMN is the non-uniform
distribution of the networks worldwide.

We performed the bibliometric co-keywords burst analysis
on the frequently used methods and sensors. To do so,
we considered 1223 research publications from the web of
science database. The results demonstrate that TDR is ref-
ereed in most publications concerning in-situ soil moisture,
indicating it to be the most frequently used soil moisture
sensor for in-situ measurements. This is probably because
of its very precise and fast measurements post calibration
[146], [147]. We have summarised the key findings of the
bibliometric analysis in Table 4. The most cited publications
for each method are gravimetric [95], neutron probe [104],
tensiometer [105], TDR [106], FDR [107], and Gamma-ray
probe [108]. Remote sensing is the most common application
linked with soil moisture sensors. This primarily includes
assessing the satellite-derived soil moisture product through
direct point-to-pixel comparison [148], [149].

B. SATELLITE SOIL MOISTURE
Microwave remote sensing is considered the most preferred
technique for soil moisture observation [150], [151]. Due to
the lack of availability of quad-polarised images in the public
domain [41], [152], [153], the use of the data-driven model
to estimate surface soil moisture has increased exponentially
(Figure 1). Random forest, neural network, and support vec-
tor machine are the widely used algorithms for predicting soil
moisture (Figure 9). These regression-based algorithms map
various satellite-derived features (topographic information
(i.e., DEM), SAR backscatter, graphical indicator (such as
NDVI), optical reflectance, etc.) with the in-situ soil mois-
ture. Further, a new synthetic feature can be created through
a linear data fusion of the existing input features [132]. Since
all the input features have different units andmagnitudes, they
must be brought to the same level through various scaling
algorithms, such as zscore, min-max, scale, and center mean
scaling. If scaling is not performed, the feature having a
higher magnitude will govern the machine learning model
and produce a biased result [154], [155]. After the feature
pre-processing, they are randomly split into the training
and testing datasets. The split ratio can be 60:40 (training
60% and testing 40%) or 70:30 (training 70% and testing
30%) or 80:20 (training 80% and testing 20%) depending
upon the number of observations [155], [156], [157].
At least 30 observations on the testing data are needed for the
results to be statistically significant. The training features and
the corresponding in-situ soil moisture can be directly used to
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FIGURE 13. Co-keywords analysis of the term NISAR mission. A total of 71 research publications have been considered
from the web of science database. The map has 19 clusters, 3326 links, and 281.5 total link strength.

FIGURE 14. Co-keywords analysis of the term AutoML (automated machine learning model). A total of 185 research
publications have been considered from the web of science database. The map has 22 clusters, 1562 links, and 184.5 total
link strength.

train the machine learning model, which the testing data can
validate.

C. FUTURE WORK
As mentioned earlier, the SAR images have high sensitivity
towards soil’s dielectric property and are more frequently
used for soil moisture estimation at a regional and global
scale. The majority of the available SAR satellite missions

provide only dual polarised backscatter images. The upcom-
ing NASA-ISRO Synthetic Aperture Radar (NISAR) satellite
mission will provide quad-polarised images in the public
domain. It is the first of its kind in which dual-band (i.e.,
L- and S-band) data will be acquired within the samemission.
It is a joint venture between NASA and the Indian Space
Research Organisation (ISRO). NASA is developing the
L-band SAR that will operate at a wavelength of 24 cm, and
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FIGURE 15. Co-keywords analysis of the term physics-informed machine learning. A total of 412 research
publications have been considered from the web of science database. The map has 21 clusters, 1817 links,
and 203.5 total link strength.

ISRO is developing the S-band SAR that will operate at a
wavelength of 9 cm. Themission is expected to be operational
in early 2024 (i.e., January 2024). The synergic use of
L- and S-band quad-polarised imageswill improve the quality
of the existing soil moisture retrieval process. A co-keywords
bibliometric analysis of the term NISAR mission is shown in
Figure 13.

Recent developments in the machine learning community
can also improve the quality of satellite-derived soil moisture.
For example, the use of automated machine learning and
physics-informed machine learning has increased recently.
Both these algorithms have great potential to excel in the field
of remote sensing of soil moisture. AutoML is mainly used
to solve real-world problems where the complete process
is automated, starting from feature engineering to selecting
the best machine learning algorithm [145]. Various types
of cloud-based platforms are available to execute AutoML,
such as H2O.ai, Google Cloud AutoML, Microsoft Azure
AutoML, TPOT (Tree-based Pipeline Optimisation Tool),
and many more [158]. To better understand the increasing
popularity of AutoML, we performed the co-keywords
bibliometric analysis and plotted the map indicating the
metrics for the last three years (Figure 14). Another state-of-
the-art machine learning algorithm is the physics-informed
machine learning [159]. It integrates the data-driven model
with the physics associated with the concern problem.
The main objective of physics-informed machine learning
is to modify the error function or loss function involved
in the optimisation process. The traditional loss function
(i.e., either MSE or RMSE) is replaced by a modified
function that incorporates the general governing physics

of the problem. We have also performed the co-keywords
bibliometric analysis of the term physics-informed machine
learning for the last three years (Figure 15).
Hence, the concurrent use of accurate in-situ soil moisture

measurements and the upcoming satellite missions in con-
junction with the latest development in the machine learning
community will be helpful in improving the accuracy, spatial
resolution, and temporal resolution of the satellite-derived
soil moisture products.

D. LIMITATIONS
Although we have explored some of the crucial results
concerning soil moisture estimation, this study has some
limitations. First, we have only considered the data from the
web of science database to perform the bibliometric analysis,
which considers research publications written in English.
This leads to underestimating potential researchers using
their vernacular languages to write research manuscripts.
Further, the research publications published in new journals
are not considered as these journals usually take a few years
to get indexed in the web of science database. In addition,
we have not considered research manuscripts that are in the
public domain as a preprint. In this contribution, we have
only reviewed the SAR-based remote sensing approaches for
soil moisture estimation among all available remote sensing
approaches.

VII. CONCLUSION
The use of soil moisture information coupled with machine
learning algorithms has created a new era in the field
of hydrology, climate change studies, and agriculture.
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The significant increase in the computation facilities has
encouraged the use of big data (i.e., remote sensing images)
for estimating soil moisture information at the global and
regional scale. Developing an efficient machine learning
model for global and regional soil moisture prediction
requires potential features from remote sensing imagery and
accurate in-situ soil moisture information. In this paper,
we presented a comprehensive review of the methods and
sensors for accurate in-situ soil moisture measurements.
We also demonstrated the performance of ten machine
learning models for soil moisture estimation considering
satellite-derived input features.

The bibliometric analysis of all the frequently used in-situ
soil moisture methods and sensors confirms that the TDR is
the most frequently used sensor for measuring in-situ soil
moisture. Remote sensing is the most likely application for
soil moisture sensors. Simultaneously, we also looked for the
top machine learning algorithms used in conjunction with
in-situ soil moisture. Surprisingly, we found random forest,
neural network, and support vector machines as the most used
machine learning algorithms. Lastly, we elaborated on these
algorithms and presented the recent state-of-the-art studies
that presented global or regional soil moisture information
by using machine learning, remote sensing, and in-situ soil
moisture information. This review will help researchers to
effectively select the frequently used in-situ soil moisture
estimation method and the best-performing machine learning
algorithms for global and regional soil moisture using remote
sensing images.

APPENDIX A IN-SITU SOIL MOISTURE METHODS
AND SENSORS
This section discusses the strength and weaknesses of the
conventional oven drying method and different variants of
automated techniques to quantify surface soil moisture. This
review highlights the challenges, future opportunities, and
application of these methods.

A. OVEN DRY: GRAVIMETRIC AND VOLUMETRIC SOIL
MOISTURE
Over the past several years, the gravimetric method for soil
moisture estimation has been regarded as the most reliable
and robust method. Gravimetric soil moisture, mg, is defined
as the ratio of the mass of the water in the soil sample to
the mass of the dry soil. It is expressed in [kg/kg]; however,
for the comparative study in the earth sciences, it is usually
expressed in percentage. Mathematically mg is defined as

mg =
mwater
msoil

=
mwet − mdry

mdry
(A.1)

where mwater is the mass of the water in the soil sample,
expressed as the difference between the weight of the soil
sample before drying, mwet , and after drying, mdry. msoil
& mdry is the mass of the dried soil. Firstly, 50 g of soil
sample is collected from the field with minimum disturbance
of the soil structure [42]. Then the collected soil sample

is immediately placed in a pre-weighed container. As the
container will be placed in an oven, it should withstand high
temperatures. An aluminum can is commonly used in the
laboratory for electrified heated oven drying. However, non-
metallic containers are preferred over aluminum cans if the
samples are to be dried in a microwave oven, as microwaves
are impenetrable to the metallic cans, which can result in an
electrical short circuit. If the collected soil samples are to be
transported for a considerable distance, then sterile zip-seal
sampling bags should be used to avoid moisture loss from
evaporation. The standard drying procedure of the sample
involves putting the sample container in an electrified heated
oven at a temperature 105◦C until the mass gets stabilised to
a constant value over a time interval of 24 hours [48], [160].

Due to excessive oxidation at 105◦C, a loss of organic
matter in the sample occurs, which can be minimised by
reducing the temperature from 105◦C to 70◦C. Hence,
a trade-off exists between the temperature and the loss of
organic matter from the sample. Doing so will affect the
accuracy of the actual moisture content. However, nowadays,
microwave ovens are used to rapidly determine the moisture
content of organic and organo-mineral soils instead of
electrified heated ovens. Although microwave ovens provide
a faster estimation of the moisture content, while the organic
matter loss is comparable to that of electrified heated
ovens [161].

Volumetric soil moisture, mv, is more meaningful than
gravimetric soil moisture as it considers the soil’s bulk density
and porosity. It is defined as the ratio of the volume of the
liquid water, Vwater , to the volume of the soil, Vsoil . Usually,
mv is expressed in percentage, but contemporary hydrological
communities are adoptingmv in [m3/m3].Mathematically,mv
is defined as;

mv =
Vwater
Vsoil

(A.2)

Equation A.2, can be extended to get a relationship
between mv and mg

mv =
mwater/ρwater
msoil/ρsoil

= mg ∗
ρsoil

ρwater
(A.3)

where ρsoil is the soil bulk density, ρwater is the water density.
Both ρsoil and ρwater are expressed in [g/cm3]. Since the
density of water is about 1 g/cm3, so Equation A.3 can be
reduced to;

mv ≈ mg ∗ ρsoil (A.4)

If the soil sample contains a substantial amount of stone or
gravel, the accuracy of the estimated soil moisture content
can be affected, as the stones that are present in the
sample contribute directly to the mass measurement of the
sample without contributing equally towards the soil porosity.
To avoid the effect of stones, Klute et al. proposed the
following equation;

mv = mg ∗

(
ρsoil

ρwater

)
∗

(
1 +

Mstones

Mfines

)
(A.5)
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whereMstones andMfines respectively represent the masses of
the stone and fine soil fraction present in the collected soil
sample.

Although the microwave oven has decreased the time
required for oven drying, it is still a time-consuming and
destructive method when compared to automated techniques.
These limitations imply that we cannot use this method to
measure soil moisture repeatedly over the same location.
In spite of its limitations, this method is a benchmark for the
calibration process for automated soil moisture measurement
techniques.

B. RADIOLOGICAL TECHNIQUES: NEUTRON PROBE AND
GAMMA RAYS PROBE
The neutron probe is widely used to measure volumetric
soil moisture in a larger sphere. In contrast, the gamma-
ray probe measures the soil moisture (volumetric) in a thin
layer. Both these methods use portable equipment and can
provide multiple measurements of soil moisture at a point
of interest after calibration. The neutron probe is the first
automatic technique that indirectly measures the volumetric
moisture of the soil samples. This microprocessor-based
device became popular during the 1950’s [162]. It consists
of two components: (i) a probe with a shield cover and
(ii) an electronic counting system (Figure 16). Both the
components are connected via an electric cable [163]. The
required depth is measured by lowering the probe into an
access tube. The working principle of this probe is based
on the interaction of high-energy neutrons with the nuclei
of hydrogen atoms beneath the soil surface. A radioactive
source emits high-energy neutrons, which after emission, get
slow after several elastic collisions with the hydrogen atoms’
nuclei. This retardation process is known as thermalisation.
Since the element Beryllium has the highest neutron count,
it is used exclusively as the radioactive source [164].

The hydrogen atom has nearly the same mass as a neutron
and is ten times more capable of slowing down neutrons
upon collision than other nuclei. Also, the average loss
in energy upon collision is much higher when a neutron
collides with atoms of low atomic weight, such as hydrogen.
In soil, hydrogen is mainly present in water molecules,
which effectively slows down the neutron compared to other
elements present in the soil. This slowing down of the neutron
increases the density of thermalised neutrons near the neutron
probe. The density of the thermalised neutrons is proportional
to the volumetric soil moisture. Some fraction of the slowed
neutron returns to the probe, and the counter increments
its value by 1. The actual volumetric moisture content is
determined from the previously developed calibration curve
that relates the volumetric moisture content with the count
ratio (CR) [165], [166], as given below;

CR =
Csoil

Cbackground
(A.6)

where Csoil is the actual count of the thermalised neutrons
recorded in the counter and Cbackground is the thermalised

neutrons in the reference medium. CR is considered rather
than the actual count of the neutrons received to enhance
the experimental reproducibility. Challenges involved in
operating neutron probes are: (i) the access tube should not
be so thick that it itself contributes to the thermalisation
process, (ii) the access tubemust be made up of non-corrosive
material; otherwise, it will start absorbing the neutrons, (iii)
should not be any air void present between the tube and
the soil matrix, and (iv) contains radioactive substances.
Although the neutron probe provides much reliable soil
moisture information at multi-depth, it fails to provide
accurate moisture information at lower depths because a
fraction of the neutrons escape from the soil surface into the
air [167].

In contrast to the neutron probe, the gamma-ray probemea-
sures the soil moisture by directly emitting the gamma-ray
into the desired location along the soil column. It essentially
consists of two separate systems: (1) a radiation system that
includes a radioactive source and electronic parts to measure
the intensity of the desired gamma-radiation energy levels;
and (2) a transportation system for elevating and lowering the
core of undisturbed soil in relation to the radioactive source
and detector. Any substance through this radiation passes,
including soil solids, soil-water, and the container housing
the soil, absorbs some of it. The quantity of gamma radiation
absorbed by the soil-water can be calculated by separately
estimating the densities and thicknesses or widths of the soil
system and container. The amount of radiation that passes
through soil reduces as its water content increases. On the
other hand, the amount of radiation traveling through a soil
system increases as its water content drops [168].Meanwhile,
the use of the gamma-ray probe method is restricted to the
laboratory, as it can scan a thin layer only, and the operation
cost of the gamma-ray technique is relatively high. The
advantage of the gamma-ray probe over the neutron probe
is that it provides accurate measurement of soil moisture
information for the upper layer of the soil surface, i.e., a few
centimeters below the air-soil interface.

C. SOIL-WATER DIELECTRIC TECHNIQUES: TIME DOMAIN
AND FREQUENCY DOMAIN REFLECTOMETRY
Both neutron and gamma-ray probes were the dominating
techniques for many decades until a group of Canadian
geophysicists came up with the concept of utilising dielectric
properties of soil to measure the moisture content [169]. Both
TDR and FDR measure the soil-water mixture’s dielectric
constant to estimate the soil moisture content. As the
dielectric constant, ϵ, of soil is 2, pure water is ≈80, and
of the soil-water mixture is between 2 ∼ 40, it creates a
gradient between pure water and soil with soil-water mixture
ranging from very dry to very wet [29]. The behaviour
of electromagnetic (EM) waves from frequencies ranging
from 1 to 1000 MHz in the soil is used to measure this
gradient in ϵ. It is then converted to volumetric moisture
through the calibration equation.
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FIGURE 16. Schematic diagram of a neutron probe instrument.

TDR determines the bulk dielectric constant, ϵb, of the
soil from travel time analysis from which the volumetric
moisture content is calculated. The travel time, t , of the EM
pulse or wave initiated along the wave-guide (formed by the
parallel rods of length, L, with soil as the dielectric material
in between) is calculated. The propagation velocity can be
calculated, v, by v = (2L/t) through the travel time analysis.
As the EM pulse has to travel the rod twice (down and
back), 2L length is considered. After calculating v, the ϵb is
calculated by

ϵb =

(
c
v

)2

=

(
ct
2L

)2

(A.7)

where c is the speed of light (EM pulse) in vacuum (3 ×

108 m/s). The travel time for the TDR-generated EM pulse
(essentially a step signal) and its reflection is calculated
based on the apparent length or the EM length of the TDR
probe, which can be identified on the TDR output screen
or the oscilloscope attached to it. The mark x1 and x2 in
(Figure 17) represent the passing of the input step signal

from epoxy to the probe and reflection from the end of
the probe, respectively. The difference between the two
marks, x2 − x1, gives the apparent length of the TDR probe.
As the water content increases, so does the apparent length,
which increases the soil’s bulk dielectric constant. Both these
parameters are related according to;

ϵb =

(
x2 − x1
VpL

)2

(A.8)

where Vp represents the relative propagation velocity, it is
user-specific and normally set to 0.99 [170]. The ϵb depends
upon several factors such as the bulk density of the soil,
soil porosity, measurement or operating frequency of the
TDR, soil temperature, dipole moment (induced by water,
air, or mineral), and water status (bound or free water).
Various attempts to estimate volumetric moisture content
from ϵb and consideration of the above-stated factor have
resulted in the development of two models that establish a
relationship between volumetric water content and ϵb. The
first one is an empirical model developed by Topp et al. [171],
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FIGURE 17. Schematic diagram of a Time-Domain Reflectometry (TDR) instrument.

while the second one was the dielectric mixing model
proposed by Dobson et al. [172] in 1985. The TDR probes
measure the soil moisture with high accuracy (within 1%
or 2%), it does not contain radiation hazards, minimum
calibration is required (soil specific calibration is not
required), have minimal soil disturbance, and have high
spatial and temporal resolution [170]. However, the TDR
measurements can be affected by various factors, such as high
saline and high conductive soils. High soil salinity and/or
high conductive clay soil contributes to the attenuation of
the reflected pulses that, in turn, overestimates the value of
the dielectric constant and hence the soil moisture [173],
[174]. Other disadvantages associated with TDR are a
requirement of soil-specific calibration for soil having a
high amount of bound water, relatively expensive, and small
sensing volume capacity (around 1.2 inches around the
wave-guide).

In contrast to TDR, the FDR probes are based on capac-
itance techniques. The probe consists of a pair of metallic
plates/circular rings/rods placed in a plastic access tube.
This arrangement forms a capacitor with soil as a dielectric.
This capacitor is connected to an oscillator (operates at a
frequency of 100 MHz) to form an electronically tuned
circuit. The oscillator’s operating frequency is controlled
within a specified range to find the resonant frequency (peak
amplitude), which is related to soil moisture [175]. Figure 18
illustrates a schematic diagram of the arrangement ofmultiple

circular metallic ring-type sensors to measure soil moisture
at different depths. FDR is a good alternative to the TDR in
high-saline soils. It also has a better resolution than TDR and
is relatively inexpensive due to the low-frequency circuits.
A soil-specific calibration is required for FDR as it operates
at a frequency lower than 100 MHz. At these frequencies,
the bulk permittivity of the soil is more prone to change
by the temperature, salinity, electrical conductivity, and
clay content (Maxwell-Wagner effect) [176]. Commercially
available capacitance sensors include CS616 − L Water
Content Reflectometer, ECH2O probes (Decagon Devices,
Inc.), andCS620HydroSense® probe (Campbell Scientific),
HYDRA probe (Stevens WMS, Inc.). (The manufacturer
names are mentioned only for reference purposes).

Apart from TDR and FDR, Amplitude Domain Reflec-
tometry (ADR), Phase Transmission (PT), and Time Domain
Transmission (TDT) are also used for soil moisture estima-
tion based on soil-water dielectrics [177]. The accuracy of all
these instruments generally depends on the calibration, sensor
type, material, and dry bulk density. The variance component
analysis shows that the contribution of these factors is 42%,
29%, 18%, and 11%, respectively [178].

D. SOIL-WATER POTENTIAL TECHNIQUES: TENSIOMETER,
RESISTANCE BLOCK, AND PSYCHROMETERS
Water content within different soils (i.e., sand, silt, and clay)
varies largely due to the huge variation in the particle surface
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FIGURE 18. Schematic diagram of multiple Frequency Domain
Reflectometry (FDR) sensors.

area. Water content is available at the Field Capacity (FC)
and PermanentWilting Point (PWP) are different for different
soils. At FC, the water content in the sand is as low as 7 %,
whereas in clay, it is around 40 %. Similarly, at PWP, the
water content in sand ranges between 1 % to 2%, whereas in
clay, it ranges between 25% to 30%. Therefore, the technique
that best estimates the vegetation and crop water availability
is the soil-water potential or tensiometric (also known as the
energy status of water). It measures the relative amount of
energy or work that is required to detach a unit of water from
soil [179]. It is expressed in energy per unit mass [Jkg−1],
and it can be measured by several indirect techniques, such as
tensiometers, resistance blocks, and psychrometers. All these
methods measure how compact the soil holds the water but
do not directly measure its water content. Also, none of these
methods are capable of measuring the full range of possible
soil-water potential values, i.e., tensiometers perform well in

the case of wet soil. In contrast, resistance blocks perform
well in the case of dry soil.

Tensiometer measures the matric potential (a component
of water potential) of the water. This instrument consists of
a removable cap, a vacuum gauge at the top of the tube,
and a porous ceramic cap at the bottom. The tube is filled
with water, and it is inserted into the soil as illustrated in
Figure 19. In the case of dry soil, the water flows out of the
tensiometer, which results in the creation of a vacuum. The
vacuum gauge measures the suction. The gauge reading is
the direct measurement of the force required to remove water
from the soil. Further, dryness in the soil results in higher
vacuum readings. In contrast, the reverse process will occur
when moisture is added to the soil. The moisture from the soil
flows back into the tensiometer until the vacuum is reduced
to its lowest possible value [180]. Nowadays, electronically
governed pressure transducers are widely used instead of
mechanical readers [181].

Apart from tensiometers, resistance blocks, and psychrom-
eters are also used to measure the soil-water potential to
estimate the soil moisture [182], [183]. Also, recently, a new
technique [184] has been proposed for the measurement of
soil suction and water content as deep as 7 m from the topsoil
surface.

APPENDIX B RADAR BACKSCATTER MODELS
In this section, we review the most widely used radar
backscatter models (Dubois model, Oh (1992, 1994, 2002,
& 2004), Water Cloud Model (WCM), and Integral Equation
Model) to indirectly predict the surface soil moisture.

A. DUBOIS MODEL
Dubois et al. [34] developed an empirical model based
on the scatterometer and airborne datasets. It consists of
two equations (i.e., HH and VV) in terms of sensors and
target parameters. The sensor parameters (i.e., wavelength
(λ) and incidence angle (θ)) are known for a specific
satellite mission. The unknowns are the target parameters
(i.e., surface roughness (s) and soil permittivity (ϵ)). One can
invert equations B.1 and B.2 simultaneously to get the two
unknowns (s and ϵ). Once the soil permittivity is known,
soil moisture can be estimated by using universal Topp’s
equation B.3.

σ 0
HH = 10−2.75

(
cos1.5θ
sin5θ

)
100.028εtanθ (k.s.sinθ)1.4λ0.7

(B.1)

σ 0
VV = 10−2.35

(
cos3θ
sin3θ

)
100.046εtanθ (k.s.sinθ)1.1λ0.7 (B.2)

mv = −5.3 × 10−2
+ 2.92 × 10−2ϵ − 5.5 × 10−4ϵ2

+ 4.3 × 10−6ϵ3 (B.3)

Dubois model performs well under the following validity
conditions;

• It must be applied over bare and sparsely vegetated
areas to obtain accurate results. It is applicable over
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FIGURE 19. Schematic diagram of a tensiometer.

the area with NDVI < 0.4, known as the Dubois
criterion. They have also established an equivalent
relation corresponding to the Dubois criterion in terms
of radar backscatter. They found that NDVI < 0.4
is equivalent to the cross-polarised ratio σ 0

HV /σ 0
VV

< -11dB (i.e., σ 0
HV /σ 0

VV < -11dB corresponds to
NDVI < 0.4).

• It is valid only for the frequency range of 1.5 GHz
to 11 GHz (i.e., λ between 2.72 cm to 20 cm).

• The incidence angle of the SAR pulses θ , should be
between 30o to 65o.

• It gives the best result for k · s ≤ 2.5 and mv ≤ 0.35.

B. OH MODELS
Oh et al. [31], [32], [33], [185] have proposed a series
of empirical and semi-empirical models. Oh 1992 model
relates the co-polarized (p=σ 0

HH/σ 0
VV ) and cross-polarized

(q=σ 0
HV /σ 0

VV ) ratio with the sensor and target parameters.
Like that of Dubois, we need to invert equations B.4 and B.5
simultaneously to estimate the surface roughness (or RMS
height) and soil permittivity.

p =
σ oHH

σ oVV
=

[
1 −

(
θ

90o

)1/30o

e−k.s
]2

(B.4)

q =
σ oHV

σ oVV
= 0.23

√
0o(1 − e−k.s) (B.5)

where 0o is the Fresnel reflectivity of the surface at the nadir
and is given by

0o =

∣∣∣∣1 −
√

ϵ

1 +
√

ϵ

∣∣∣∣2 (B.6)

Oh 1992 model provides better results under the following
conditions:

• This model is only applicable on the bare surface.
• It provides good agreement for 0.1 ≤ ks ≤ 6, 2.5 ≤ kl

≤ 20, and 0.09≤ mv ≤ 0.31.

• If the surface is rough, then this model may be used for
0o ≤ θ ≤ 70o, in contrast, if the surface is smooth, then
this model may be used for 20o ≤ θ ≤ 70o

Later in 1994, Oh proposed a new expression for q to
incorporate the effect of the incidence angle [185], and the
corresponding model is known as Oh 1994 model.

q =
σ oHV

σ oVV
= 0.25

√
0o(0.1 + sin0.9θ )(1 − e−[1.4−1.60o]k.s)

(B.7)

Again in 2002, Oh modified the expression for p and q, and
a new expression is proposed for σ oHV [32].

p =
σ oHH

σ oVV
= 1 −

(
θ

90o

)0.35mv−0.65

e−0.4(k.s)1.4 (B.8)

q =
σ oHV

σ oVV
= 0.1

(
s
l

+ sin1.3θ
)1.2

(1 − e−0.9(k.s)0.8)

(B.9)

σ oHV = 0.11m0.7
v cos2.2θ (1 − e−0.32(k.s)1.8) (B.10)

Oh 2002 model has three equations (p, q, and σ oHV ) with three
unknowns namelymv, s and l. First, the equations B.8 and B.9
need to be inverted to estimatemv and s. Afterward, using the
estimated s, we need to invert equation B.10 to calculate the
correlation length, l.

Oh 2002 model gives the best results under the following
condition:

• This model is only applicable on the bare surface.
• It provides good agreement for 0.13 ≤ks ≤ 6.98 and
0.04 ≤mv ≤ 0.291 m3/m3.

• The incidence angle, θ , should be between 10o to 70o.
Oh and Kay [186] and Baghdadi et al. [187] observed that

themeasurement of a correlation length, l, may not be correct.
Also, the cross-polarisation ratio, q, in Oh 2002 model is
insensitive to the roughness parameters, l. Motivated by this,
Oh in 2004, proposed a new expression for q, which is
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FIGURE 20. Computation of soil moisture and surface roughness from Oh
2004 model.

independent of the term l [33].

q =
σ oHV

σ oVV
= 0.095

(
0.13 + sin1.5θ

)1.4

(1 − e−1.3(k.s)0.9 )

(B.11)

With the elimination of l, Oh 2004 model has three
equations with two unknowns (mv and s). Three values of
mv and two values of s are required to solve these equations.
The final value of the soil moisture and surface roughness is
calculated by the process explained in Figure 20. Here, pmax is
calculated with maximum s (5.5 cm) and minimum mv (0.01
cm3/cm3). Themultiple estimates obtained are then averaged
out by equations B.12 and B.13.

s =
(w1s1 + w2s2)
(w1 + w2)

(B.12)

mv =
(w3mv1 + w4mv2)

(w5 + mv3)
(B.13)

where w1, w2, w3, w4 and w5 are weights. The value for w1,
w2, w3, w4 and w5 that gives the best inversion results are 1,
1/4, 1, 1 and 1, respectively.

This model gives the best results under the following
conditions:

• This model is only applicable to the bare surface.
• It provides good agreement for ks < 3.5 and
mv > [−6.286/ln(θ/90)]−1.538

C. WATER CLOUD MODEL
A semi-empirical Water Cloud Model (WCM) was proposed
by Attema and Ulaby [36]. It assumes the vegetation canopy
as a cloud with water droplets embedded in it randomly.
The model simulates the backscattering coefficient for the
vegetation canopy as well as the underneath soil. WCM
model has two assumptions:

• The shape and size of the vegetation layer are consistent
and similar.

• It ignores the multiple scattering across vegetation and
the Earth’s surface.

Mathematically, the WCM can be expressed as;

σ 0
pp = σ 0

veg + L2σ 0
soil (B.14)

σ 0
veg = AV1cosθ (1 − L2) (B.15)

L2 = e(−2BV2secθ) (B.16)

where σ 0
pp is the total co-polarised backscattered coefficient,

σ 0
veg is the backscatter contribution from the vegetation cover,

σ 0
soil is the backscatter contribution from the soil surface, L2 is

the twoway vegetation attenuation.A andB are the vegetation
parameters where A represents the albedo of the vegetation
and B represent the attenuation factor. V1 and V2 are the
vegetation descriptors.

The radar backscattering contribution from the soil surface
can be accurately extracted by subtracting the vegetation
effect.

σ 0
soil =

(σ 0
pp − σ 0

veg)

L2
(B.17)

The backscattering coefficient is a function of surface
roughness and soil moisture. Among these two, the surface
roughness remains unchanged for a short period; in that
case, the change in the backscattering coefficient reflects the
change in the soil moisture. The radar backscatter follows a
linear relation with the soil moisture, which can be expressed
as

σ 0
soil = C + D · mv (B.18)

where C and D are bare soil parameters obtained from linear
model fitting. The equation B.18 is inverted to calculate the
soil moisture. The physical significance of the parameter
D indicates the sensitivity of the radar signal to the soil
moisture, and C represents the calibration constant.

D. INTEGRAL EQUATION MODEL
The Integral Equation Model (IEM) is the widely used
theoretical backscattering model which is applicable for a
validity range (Equations B.19 and B.20) that are commonly
encountered for agriculture.

ks ≤ 3 (B.19)(
(kscosθ)2
√
0.46kL

exp
(

−

√
0.92kL(1 − sinθ )

))
< 0.25 (B.20)
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For bareland, the backscattering coefficient for
co-polarisation (pp=HH or VV) is given by;

σ 0
pp =

k
2
|fpp|2e−4k2s2cos2θ

+∞∑
n=1

(4k2s2cos2θ )n

n!
W (n)(2ksinθ, 0)

+
k
2
ℜ

(
f ∗
ppFpp

)
e−3k2s2cos2θ

+∞∑
n=1

(4k2s2cos2θ )n

n!

×W (n)(2ksinθ, 0)

+
k
8
|Fpp|2e−2k2s2cos2θ

+∞∑
n=1

(k2s2cos2θ)n

n!
W (n)(2ksinθ, 0)

where ℜ is the real part of the complex number, f ∗
pp is the

conjugate of complex number fpp. For cross-polarisation, the
backscattering coefficient is given by

σ 0
hv =

k
16π

e−2k2s2cos2θ
+∞∑
n=1

+∞∑
m=1

(k2s2cos2θ)n+m

n!m!
(B.21)

fhh and fvv is given by

fhh =
−2Rh
cosθ

(B.22)

fvv =
2Rv
cosθ

(B.23)

where Rh represents the Fresnel coefficient at horizontal
polarisation

Rh =
µrcosθ −

√
µrϵr − sin2θ

µrcosθ +

√
µrϵr − sin2θ

(B.24)

and Rv represents the Fresnel coefficient at vertical polarisa-
tion

Rv =
ϵrcosθ −

√
µrϵr − sin2θ

ϵrcosθ +

√
µrϵr − sin2θ

(B.25)

Fhh and Fvv are given by

Fhh =
2sin2θ
cosθ

[
4 Rh −

(
1 −

1
ϵr

)
(1 + Rh)2

]
(B.26)

Fvv =
2sin2θ
cosθ

[(
1 −

ϵrcos2θ
µrϵr − sin2θ

)
(1 − Rv)2

+

(
1 −

1
ϵr

)
(1 + Rv)2

]
(B.27)

W (n) is the Fourier transform of surface correlation
function ρ(x, y) given by

W (n)(a, b) =
1
2π

∫ ∫
ρn(x, y)e−i(ax+by)dxdy (B.28)

where ρ(x, y) is exponential for low surface roughness value
given by

ρ(x) = e−( xL ) (B.29)

and ρ(x, y) is Gaussian for high surface roughness value given
by

ρ(x) = e−( xL )
2

(B.30)
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