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ABSTRACT Automatic speech recognition of a target speaker in the presence of interfering speakers
remains a challenging issue. One approach to tackle this problem is target-speaker speech recognition,
which conditions the recognition process on an embedding that characterizes the voice of the target
speaker. This enables recognizing only the speech of the target speaker while ignoring interferences. In this
work, we propose an end-to-end target-speaker speech recognition system based on a neural transducer
architecture to allow streaming and on-device recognition. Moreover, a target-speaker speech recognition
system should be able to detect when the target speaker is inactive and output nothing in such a case.
We introduce training and decoding schemes to allow target-speaker activity detection within our proposed
recognition system.We confirm experimentally that our proposed end-to-end system performs competitively
to conventional cascade approaches of a target speech extraction module and a recognition module while
reducing computation costs and allowing streaming decoding.

INDEX TERMS Automatic speech recognition, decoding, deep learning, interference, machine learning,
neural networks, real-time systems, signal processing, speech processing, speech recognition.

I. INTRODUCTION
Automatic speech recognition (ASR) systems have been
dramatically improved with the introduction of deep neural
networks [1]. Conventional ASR systems, i.e., the Hidden
Markov Model hybrid system, currently consist of several
modules, including acoustic, lexicon, and language models.
End-to-end (E2E) ASR, which can directly map acoustic
features to output tokens, has recently attracted increasing
interest from the ASR research community. Recent E2E ASR
systems achieve high recognition performance for single-
talker conditions [2], [3], [4], [5], [6], [7], [8], [9].

The size of E2E ASR systems is much smaller than
that of conventional ASR systems because they do not
need a statistical language model, a dominant factor deter-
mining computation cost and memory usage. Therefore,
E2E ASR is also suited for on-device streaming applica-
tions requiring fast and accurate responses in real time.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

Recurrent neural network-transducer (RNNT) [10] is a
promising technology for streaming E2E ASR applications
and has been extensively investigated for single-speaker ASR
[3], [4], [5], [6], [7], [8], [9].

However, in practice, the input to an ASR system often
consists of a mixture of multi-speakers, such as the target
speaker’s speech mixed with interfering speakers’ voices and
background noise [11]. It remains challenging to recognize
speech in such conditions. This paper addresses the challeng-
ing problem of recognizing a target speaker in a mixture,
i.e., target-speaker ASR (TS-ASR), in a streaming manner to
support applications such as voice search or user-dependent
voice interactive systems. To realize streaming TS-ASR,
we need to 1) identify the target speaker in the mixture,
2) recognize that speaker while ignoring other speakers, and
3) realize this process in a streaming manner.

We can realize TS-ASR by using a cascade of a target
speech extraction (TSE) front-end with an ASR backend as
in [12], [13], and [14]. TSE focuses on extracting a single
target speaker by conditioning the process on a pre-recorded
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enrollment utterance of the target speaker. TSE realizes
thus speaker identification and separation simultaneously.
Cascade systems are modular, making it easy to visualize
the different processing steps. However, although they can
achieve high performance, this comes at the expense of very
high computational costs.

Another approach consists of directly performing TS-ASR
using an E2E system [15], [16], [17]. This can be realized
by conditioning the recognition process on an enrollment
utterance of the target speaker. Such approaches can get rid of
the TSE front-end and its high computation costs. E2E ASR
systems were first investigated for offline systems, where
they conditioned the encoder of an attention-based encoder-
decoder [15], [16], or an RNNT [17] on speaker embeddings.
They demonstrated that such E2E TS-ASR systems could
output the transcription of the target speaker while ignoring
interference. However, these works relied on non-streaming
and computationally intensive models.

We have recently extended these approaches to yield
streaming E2E systems by including a similar mechanism
in an RNNT [18]. We call this framework target-speaker
RNNT (TS-RNNT). The system operates as follows. First,
we compute a target speaker embedding from the enrollment
utterance using a speaker encoder module. The speaker
embedding is used as an auxiliary input to the encoder
of RNNT to inform the system of which speaker is to be
recognized in the mixture. We can incorporate the embedding
within the RNNT encoder with a simple element-wise
operation at an intermediate layer. Note that the embedding
can be computed in advance. Therefore, our proposed
TS-RNNT does not worsen the computational complexity or
the latency of a vanilla RNNT model.

This paper extends our previous study in two directions.
First, in [18], we reported a preliminary investigation where
we implicitly assumed that the target speaker always exists
in the input mixture. However, such an assumption does not
always hold since the target speaker may sometimes be silent
or absent. We call such a situation the inactive target speaker
case, i.e., the enrollment utterance does not correspond to
any of the speakers in the mixture. A TS-ASR system should
be able to identify inactive target speaker cases and output
nothing in such cases. In this paper, we introduce a novel
target-speaker activity detection (TSAD)1 framework within
the TS-ASR systems and evaluate the TSAD performance
of the TS-ASR framework. To the best of our knowledge,
this is the first study to focus on the TSAD in the TS-ASR
framework.

Second, [18] was a preliminary study on the effectiveness
of Conformer-based TS-RNNT to show that it can achieve
better recognition performance than the cascade systemwhile
keeping the inference speed of the vanilla RNNT. However,
on-device applicationsmay require more light-weight models
such as long short-term memory (LSTM)-based models [19].

1Note that the problem TSAD tackles differ from target-speaker voice
activity detection (TS-VAD), since we only detect if a target speaker is active
or not in a mixture but not the fine starting and end time of the speaker
utterance as TS-VAD does.

In this study, we investigate whether our proposed TS-RNNT
framework is also effective for other light-weight types
of streaming encoders such as unidirectional LSTM and
latency-controlled bidirectional LSTM.

Our proposed system meets thus the requirement of
a streaming ASR system, as it 1) can identify a target
speaker in a mixture and detect target speaker inactivity,
2) output the transcription associated with the speech of the
target speaker and nothing if it is inactive and 3) perform
this process in a streaming manner and with lightweight
models.

We conduct experiments to compare our proposed
TS-RNNT with a cascade combination of TSE and RNNT
(TSE+RNNT) for offline and streaming modes. Experi-
ments show that our TS-RNNT is effective for LSTM-
and Conformer-based models, and our proposed TS-RNNT
matches the performance of TSE+RNNT in offline con-
ditions at significantly lower computation cost. More
importantly, it greatly outperforms a TSE+RNNT sys-
tem in streaming mode. Moreover, our TSAD framework
for TS-RNNT also equals the performance of the TSE
module [20], [21].

To summarize, the main contributions of this paper are as
follows.

• We present an E2E TS-ASR framework, i.e., TS-RNNT,
which can recognize only the target speaker’s voice
in both offline and streaming manners. Especially,
compared to prior E2E TS-ASR works as [12], [16],
and [17], our proposed TS-RNNT framework is the
first work that achieves streaming TS-ASR. Noticeably,
it can perform TS-ASR while keeping the decoding
speed of a vanilla RNNT.

• We also introduce a new decoding scheme that
allows us to perform TSAD within our proposed
TS-RNNT system. Our TSAD can detect when the
target speaker is inactive and output nothing in that
case. The TSAD process can also work in a stream-
ing manner. Compared to prior works that perform
TSAD in the TSE front-end [20], [21], it is the first work
to propose an E2E TS-ASR that can simultaneously
perform TSAD.

• We demonstrate that our target-speaker ASR matches
the recognition and detection performance of con-
ventional state-of-the-art cascade systems while sig-
nificantly reducing computation costs and realizing
practical streaming target-speaker ASR.

• Finally, we explore lightweight model configurations
for our proposed TS-RNNT, which allows on-device
processing.

In the remainder of the paper, we introduce related works
in Section II. In Section III, we define the problem of TS-ASR
and introduce the conventional cascade approach and our
proposed E2E TS-ASR based on RNNT. In Section IV,
we discuss the problem of TSAD and introduce a modified
decoding scheme to perform TSAD. We then validate our
proposed method experimentally in Section V. Finally,
Section VI concludes our paper.
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II. RELATED WORK
A. RELATION WITH SEPARATION-BASED APPROACH
Using speech separation instead of TSE or TS-ASR is another
way to perform ASR when the input is a mixture of multiple
speakers. Speech separation estimates every speaker’s speech
signal contained in the mixture. It does not perform speaker
identification and would thus need to be enhanced with a
speaker identification module to achieve TS-ASR.

Like TS-ASR, separation-based approaches have been
used for both cascade and E2E systems. Some works, partic-
ularly related to our study, proposed streaming multi-talker
ASR systems with RNNT [22], [23], [24]. In [22] and [23],
they recognize the speech of all the speakers in a mixture;
this is computationally demanding because the number of
decoders equals the number of speakers in the mixture.
Moreover, [22], [23], and [24] do not identify the speakers
and thus cannot be used directly for TS-ASR. Arguably,
it would be challenging to identify the target speakers when
the output of the system is text. In [25] and [26], multi-
talker ASR with speaker identification was proposed, but
extra parameters and computations are needed for the speaker
identification module. In contrast to [22], [23], and [24], our
proposed TS-RNNT focuses only on the target speaker, which
can significantly reduce the computational complexity when
dealing with TS-ASR applications.

B. HANDLING OF INACTIVE SPEAKERS FOR TSE
There have been few works dealing with the inactive speaker
issue of TSE [20], [21], [27], [28], [29]. Previous works
[20], [27], [28], [29] have proposed a TSAD framework
using the TSE model that determines whether the speaker
in the input speech is the target speaker or not. The TSE-
based TSAD uses two TSE outputs. One is a target speaker’s
embedding extracted from an enrollment speech of the target
speaker. The other is a speaker embedding extracted from
the output signal of TSE, i.e., the enhanced speech. The
cosine similarity between these embeddings is used to detect
the presence of the target speaker. The TSAD determines
the target speaker is active if the cosine similarity is larger
than a threshold. This TSAD does not need extra data or
modification to the training scheme of a conventional TSE
system. Unfortunately, this framework cannot be applied
to TS-RNNT directly because it does not output enhanced
speech. Thus, we propose a feasible but effective approach to
realizing TSAD in TS-ASR.

III. TARGET-SPEAKER ASR (TS-ASR)
In this section, we introduce the TS-ASR systems used in our
experiments. We first explain the TSE front-end and RNNT-
based ASR back-end modules, which are the foundations
of this work. Then we introduce our proposed TS-RNNT
system.

Let X = [x1, . . . , xT ′ ] ∈ RT ′

be the single microphone
input speech mixture of duration T ′. Mixture X consists of
the target speaker’s speech X target and X interference, which
contains the interference speakers’ speech and background

FIGURE 1. Overview of TS-ASR systems. The left (a) and right (b) figures
illustrate the cascade system (conventional method) and the integrated
system (proposed method), respectively.

noise. Note that we consider only a single interfering speaker
in our experiments, but the derivation of the method does
not depend on the number of interference speakers. Y =

[y1, . . . , yU ] is the transcription, i.e., the sequence of tokens
of lengthU , associatedwith the utterance spoken by the target
speaker, where yu ∈ {1, . . . ,K }. K is the number of tokens
in the vocabulary. Here tokens can be characters or subword
units. For TS-ASR, we use enrollment speech Aclue that only
contains the target speaker’s speech for extracting the speaker
information. Thus Aclue determines the target speaker.

A. OVERVIEW OF CASCADE TS-ASR (TSE+RNNT)
Fig. 1 (a) is a diagram of the cascade TS-ASR system
composed of the TSE and ASR modules described below.

1) TSE FRONT-END
The TSE module extracts the target-speaker’s speech, X target,
from mixture X using enrollment speech Aclue. We use
the time-domain TSE system we introduced in [12], [13],
and [14], which is similar to [30] and [31].

First, we compute the intermediate representation of the
target-speaker,H target, from enrollment speechAclue by using
speaker encoder f Spk-Enc(·), which consists of a multi-layer
neural network followed by a linear layer. H target is averaged
into the embedding, htarget, by a time-average pooling layer.
Then, we use a speaker extraction network, f SE(·), to extract
the target speech given the embedding, htarget. The above
operations, which yield the estimated target speech signal
X̂
target

, are defined as follows:

H target
= f Spk-Enc(Aclue

; θSpk-Enc), (1)

htarget =
1
T ′

T ′∑
t ′=1

htargett ′ , (2)

X̂
target

= f SE(X,htarget; θSE). (3)
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In this work, we insert embedding htarget at the n-th layer
of f SE(·) by determining the Hadamard product between
the embedding and the output of that layer. The parameters
θTSE ≜ [θSpk-Enc, θSE] are jointly learned by optimizing the
source-to-distortion ratio (SDR) [32]. The training loss of
the TSE module, LTSE, is thus the negative SDR defined as
follows:

LTSE = −10 log10
∥X target

∥
2

∥X target
− X̂

target
∥2

. (4)

We can see that TSE module training requires parallel data
consisting of speech mixture and the clean speech signal of
the target speaker, X target. Given the difficulties of producing
real recordings of mixtures and clean targets, we rely on
simulated data for TSE system training.

2) ASR BACK-END
We adopt an RNNT-based ASR back-end [10] that can
perform streaming ASR. RNNT learns the mapping between
sequences of different lengths. It consists of an ASR
encoder and a prediction network, which allows the posterior
probabilities to be jointly conditioned on not only the ASR
encoder outputs but also previous predictions. It proceeds as
follows.

First, target speech signal X target is transformed into a
sequence of acoustic features, i.e., log Mel-filterbank, using
a feature extractor f FE(·). The features are then encoded
into length-T sequence, HASR

=
[
hASR1 , . . . ,hASRT

]
, via an

ASR encoder network f ASR-Enc(·). Next, the tokens, Y , are
also encoded into HPred

=
[
hPred1 , . . . ,hPredU

]
via prediction

network f Pred(·). These two encoded features are passed
to a feed-forward network, f Joint(·), to compute the token
posterior probabilities, ŷt,u. The above operation is expressed
as follows:

hASRt = f ASR-Enc(f FE(x targett ′ ); θASR-Enc), (5)

hPredu = f Pred(yu−1; θPred), (6)

ŷt,u = Softmax
(
f Joint(hASRt ,hPredu ; θ Joint)

)
, (7)

where Softmax(·) indicates a softmax operation. All learn-
able parameters, θRNNT ≜ [θASR-Enc, θPred, θ Joint], are
optimized by using RNNT loss and the forward-backward
algorithm [10].

For training, we use target speech signals X target corrupted
with noise to attain a robust system; ground truth tokens
Y are used for loss computation. At test time, we use the
extracted signal estimated with TSE, X̂

target
, and previous

prediction ŷt,u of RNNT itself is fed to the prediction network.
Note that we do not optimize the TSE and ASR modules
jointly. This is because the joint training of TSE and ASR
is required each time the TSE module is updated. Therefore,
joint optimization is too expensive for practical use.

B. PROPOSED TARGET-SPEAKER RNNT (TS-RNNT)
In this paper, we propose an integratedmodeling approach for
TS-ASR using RNNT, which operates in a fully E2E manner,
and yields streaming ASR.

1) TS-RNNT ARCHITECTURE
Fig. 1 (b) is a schematic diagram of our proposed TS-RNNT
system. The TS-RNNT architecture is based on the vanilla
RNNT described in III-A2, and we incorporate TSE essence
into it. The difference is that the encoder of our TS-RNNT
inputs the speech mixture directly and uses the target speaker
embedding to inform which speaker in the mixture is to
be decoded. This is performed in a similar process as the
TSE front-end but within the encoder, i.e., a similar speaker
encoder module and a fusion mechanism at an intermediate
layer using the Hadamard product.

TS-RNNT encoder f ASR-Enc
′

(·) is a modified version of
ASR encoder f ASR-Enc(·); it receives the speaker embedding
extracted from speaker encoder f Spk-Enc(·). The TS-RNNT
encoder output hASR

′

t is defined as follows:

H target′
= f Spk-Enc

′

(f FE(Aclue); θSpk-Enc
′

), (8)

htarget
′

=
1
T

T∑
t=1

htarget
′

t , (9)

hASR
′

t = f ASR-Enc
′

(f FE(xt ′ ),htarget
′

; θASR-Enc
′

), (10)

where H target′ with length-T is the speaker encoder outputs
given input Aclue as the enrollment utterance, which is
averaged on the time axis and embedded into htarget

′

.
htarget

′

and l-th layer intermediate output of the ASR
encoder are multiplied using the Hadamard product in
f ASR-Enc

′

(·). Therefore, the prediction and joint networks
have the same architecture as the vanilla RNNT in
III-A2. All networks with learnable parameters θTS-RNNT ≜
[θSpk-Enc

′

, θASR-Enc
′

, θPred, θ Joint] are jointly optimized by
using RNNT loss.

When decoding with the TS-RNNT, we first need to
register in advance the speaker embedding, htarget

′

, which is
extracted from the enrollment utterance using the speaker
encoder. Then, to decode the target speech from a mixture,
we compute the acoustic features of the mixture signal,
f FE(xt ′ ), and input them with the speaker embedding htarget

′

,
to the encoder. finally, the ASR decoder outputs the ASR
results Ŷ . Therefore, TS-RNNT can perform TS-ASR faster
than the cascade system since there is no external extraction
module. Moreover, we can train TS-RNNT using only
the target-speaker’s transcription Y , unlike the TSE, which
requires the clean speech signal of the target speaker.
This may facilitate training on real multi-speaker mixture
recordings since, arguably, it is easier to transcribe than
collect clean speech associated with a real mixture.

2) STREAMING TARGET-SPEAKER ASR BY TS-RNNT
In order to extend TS-RNNT into a streaming model,
we replace the full-context ASR encoder with a left-to-
right encoding module, i.e., causal encoder, as in [3]
and [6]. Note that we do not need to change the speaker
encoder module streaming mode because it only needs to
operate once to register the target-speaker’s clues htarget

′

in
advance. The performance of current TSE front-ends tends to
degrade severely when operating in streaming mode. On the
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FIGURE 2. Overview of TS-RNNT with target-speaker activity detection
(TSAD). Top (a) and bottom (b) figures illustrate active and inactive cases,
respectively.

other-hand, streaming-type ASR models can well model
speech sequences. As we set the TSE functionality within
the RNNT encoder, we expect superior performance over the
cascade models.

In addition, tuning a cascade system is more involving
than the integrated system because the trade-offs between
recognition performance and latency of each module, i.e.,
TSE and ASR, must be separately tuned. On the other hand,
the integrated modeling, i.e., TS-RNNT, needs to tune just the
ASR encoder to address the trade-off. Thus TS-RNNT would
be easier to tune than cascade systems.

IV. TARGET-SPEAKER ACTIVITY DETECTION (TSAD)
TS-ASR, i.e., TS-RNNT, only recognizes the target speaker’s
speech from the mixture, as depicted in Fig. 2 (a). In terms
of user experience and speech privacy, the users do not want
TS-ASR to recognize other speakers’ speech for the inactive
speaker cases. Fig. 2 (b) shows the desired behavior of a
TS-ASR system for inactive speaker case; TS-RNNT ignores
the interference speakers’ voices and outputs the non-target
speaker label ‘‘<nts>’’, which indicates the absence of the
target speaker in the mixture. We call this framework, which
determines whether the target speaker’s speech is contained
in the input speech or not, TSAD. TSAD is essential for
practical use-cases of TS-ASR. In the following subsections,
we explain a conventional TSADusing TSE and our proposed
approach that performs TSAD within the TS-RNNT system.

A. TSAD USING TSE
For cascade systems, we can use a simple TSAD framework
using a TSE system [21]. First, the auxiliary network
computes a speaker embedding by applying the speaker

encoder to extracted speech hX̂
target

since we showed in
prior works that this can extract discriminative speaker
embeddings [33]. We then make the TSAD decision by
looking at the cosine similarity between the embeddings

computed from the enrollment and the extracted speech as
follows,

cCosine =

{
1 if f Cosine(htarget,hX̂

target

) > η

0 otherwise
(11)

where f Cosine(htarget,hX̂
target

) is cosine similarity between

htarget and hX̂
target

, and η is a threshold. cCosine means active
case if it is 1, and otherwise inactive case. Therefore,
this simple TSAD simply verifies whether it matches the
enrollment characteristics or not.

B. TS-RNNT WITH INTERNAL TSAD
The above TSAD approach can detect inactive speaker
relatively well. However, it cannot be applied to TS-RNNT
because TS-RNNT does not explicitly generate the enhanced
speech X̂

target
, and thus TS-RNNT cannot compute the cosine

similarity as in (11). To solve this problem, we propose
an alternative TSAD framework for TS-RNNT, which
performs TSAD during decoding. To this end, we introduce a
non-target speaker label ‘‘<nts>’’ that represents whether the
target speaker’s speech is not present in the input mixture.
TS-RNNT can implicitly model TSAD using ‘‘<nts>’’ by
including it in training data, and thus it can also handle
the inactive speaker case. We explain the modifications
of the training and decoding steps to realize the TS-RNNT
with the TSAD framework in the following subsections.

1) TRAINING
In the training step, our TSAD approach requires only a
simple modification of the conventional training scheme. The
training data for TS-ASR consists of mixtures, the target
speaker’s transcriptions, and the enrollment utterance of the
target speaker. In TS-RNNT without the TSAD framework,
a mixture always contains the target speaker’s voice. The
enrollment utterance always comes from one of the speakers
in the input mixture. The system is trained with a loss
function between the network output and the target speaker’s
transcription.

Our approach for TS-RNNT with the TSAD framework
randomly replaces the target speaker’s enrollment utterances
with those from another speaker, which is not contained in
the input mixture. The corresponding ground truth tokens
are replaced with a single non-target speaker label, ‘‘<nts>’’.
The percentage ρ of random replacement for each epoch
is a hyperparameter. These replaced enrollment speech and
ground truth sequence are used as speaker encoder input and
the target of RNNT loss computation, respectively. Thus we
expect that the TS-RNNT with an internal TSAD framework
can directly determine inactive case with the output of the
‘‘<nts>’’ symbol, and thus no external module for TSAD is
needed.

2) DECODING
In the decoding step, TS-RNNT trained with the above

TSAD framework simultaneously recognizes the target
speaker’s speech in the input mixture and determines
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TABLE 1. Data generation setup. The number of utterances in (a) is double that of (b) due to the single-speaker case of (b). Single-talker ASR system
(RNNT) was trained using (a). (b) was used for TSE and TS-RNNT training. All experiments were performed on (c).

Algorithm 1Alignment-Length Synchronous Decoding [34]
With Target-Speaker Activity Detection (ALSD-TSAD)

1: function ALSD-TSAD(hASR1:T , Umax, Nbs, Nbest, λ);
Input: ASR encoder output, maximum output length,
beam size, N-best size, threshold for TSAD
Output: Most likely hypotheses

2: B = {φ, 1, s0}; F = {}; V = {}

3: hPredφ , sφ = f Pred(φ, s0)
4: for i = 1, . . . ,T + Umax do
5: A = {}

6: if i ≤ T then
7: ŷ′t,u = Softmax

(
f Joint(hASRi ,hPredφ )

)
8: V = V ∪ {(<nts>, ŷ′t,u(<nts>), sφ)}
9: end if

10: for (y, δi−1(y), su−1) ∈ B do
11: u = |y|
12: t = i− u+ 1
13: if t > T then
14: continue
15: end if
16: hPredu , su = f Pred(yu−1, su−1)
17: ŷt,u = Softmax

(
f Joint(hASRt ,hPredu )

)
18: δi(y) = δi−1(y) ∗ ŷt,u[φ]
19: A = A ∪ {(y, δi(y), su−1)}
20: if t == T then
21: F = F ∪ {(y, δi(y))}
22: end if
23: for k ∈ Y do
24: δi(y+ k) = δi−1(y) ∗ ŷt,u[k]
25: A = A ∪ {(y+ k, δi(y+ k), su)}
26: end for
27: end for
28: B = PruneAndRecombineHyps(A) [: Nbs]
29: end for
30: Vbest = Sorted(V ) [1]
31: if λ ≥ δbest(<nts>) ∈ Vbest then
32: return Sorted(F) [: Nbest] #Default ALSD
33: else
34: return Vbest #Determine inactive speaker
35: end if

whether the mixture contains the target speaker’s speech.
We add TSAD functionality to our decoding algorithm,
which is based on alignment-length synchronous decoding
(ALSD) [34], [35]. Algorithm 1 shows the ALSD algorithm,
where we emphasize in red the modifications introduced
to enable TSAD. In the following, we first describe the

original ALSD algorithm and then explain our modifications
to support TSAD functionality, which is referred to as
ALSD-TSAD.

TheALSD algorithm operates decoding along the length of
T +Umax, whereUmax is a hyperparameter that is an estimate
of the maximum output sequence length. For decoding,
we prepare two hypothesis sets A and B. The hypothesis
B = {y, δ, s} is initialized with blank symbol φ, its score 1,
and the prediction network state s0. At the i-th iteration of the
for-loop, output token sequence y and its score are computed
for each hypothesis of B that contains token sequence y, its
score δi−1(y), and its prediction network state su−1. First, the
blank hypothesis is added to A with current token sequence
y, its score δi−1(y), which is updated by the blank transition
probability denoted as ŷt,u[φ], and its state su−1. Note that
the hypothesis is also added to the final hypothesis F if t
reaches T . Then token k , its score, and current state su in token
set Y , which is a vocabulary set excluding φ, are added to A.
Next, we prune and merge duplicate token sequences in A;
this yields B which is reduced to beam size Nbs for the next
step i+ 1. Finally, at the end of the procedure after reaching
T +Umax, the default ALSD returns the N-best hypotheses in
F sorted in descending score.

ALSD-TSAD is delineated by the red lines in Algorithm 1.
First, we introduce an additional hypothesis set V for
TSAD (in line 2) and preliminarily compute the prediction
network output hPredφ and its state sφ for blank token φ

(in line 3). For each step i in the for-loop, we compute
the output posterior probability ŷ′t,u conditioned on the
prediction network output hPredφ (in line 7), and then add a
hypothesis to V with non-target speaker token ‘‘<nts>’’, its
probability ŷt,u[<nts>], and its prediction network state sφ
(in line 8). Note that a non-target speaker token probability
ŷt,u(<nts>) is computed for every time frame i. Finally,
we extract the highest hypothesis Vbest from V sorted in
descending probability ŷt,u[<nts>] (in line 30). Our modified
ASLD-TSAD algorithm returns the N-best hypotheses if
δbest(<nts>) is larger than threshold hyperparameter λ (in line
32), otherwise it returns the non-target speaker hypothesis
Vbest (in line 34). Therefore, we simultaneously perform
TSAD during the decoding process while performing the
original ALSD. As we can see, the TSAD framework is
independent of ALSD, and thus it can be easily implemented
with other decoding algorithms.

V. EXPERIMENTS
A. EXPERIMENTAL SETUPS
1) DATA
We evaluated our proposal on the simulated two-speaker
mixtures with background noise. The speech recordings were
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taken from the Corpus of Spontaneous Japanese (CSJ) [36],
sampled at 16 kHz. The noise recordings were taken from
CHiME-3 corpus [37], which consists of real noise recordings
recorded on the bus, cafe, pedestrian area, and street junction.
The signal-to-noise (SNR) ratio of the mixtures was set
between 0 and 20 dB. The overlap ratio of the input mixture
was about 89% on average for both training and evaluation
sets.

We used almost the same data as in previous works
[12], [13], [14], and the difference is that the amount of data
was increased. The details are shown in Table 1. The total
training data amounts to 800 hours of speech. The training,
development, and evaluation datasets consisted of different
speakers. We evaluated performance in terms of character
error rate (CER) for ASR and equal error rate (EER) for
TSAD. We also measured inference speed in terms of real
time factor (RTF: decoding time/data time).Wemeasured the
RTF using a Python implementation of the algorithm running
on an Intel Xeon 2.40GHz CPU.

2) SYSTEM CONFIGURATION OF TSE MODULE
We adopted the time-domain SpeakerBeam as the structure
of the TSE module [13], [31]. Time-domain SpeakerBeam
is an extension of Conv-TasNet [32] to extract a target
speaker’s speech given an enrollment utterance. We used
the open-source implementation of Conv-TasNet2 as a basis
for our implementation of time-domain SpeakerBeam. The
hyperparameters of the speaker extraction network were set
as follows: N = 256, L = 20, B = 256, R = 4, X = 8,
H = 512 and P = 3 following the notation in [32]. The
speaker encoder consisted of a 1-D convolutional encoder and
a single layer of stacked 1-D convolutional blocks.

We also implemented a streaming/causal TSE model as
an extension of the time-domain SpeakerBeam. We replaced
every convolution function of the TSE model with causal
convolution functions and replaced global layer normaliza-
tion (LN) with channel-wise LN to satisfy causality. The
algorithmic latency of the streaming TSE model is 1.25ms
(= 20samples/16k), which is negligible with regard to the
latency of ASR decoding. All TSE models were trained with
the dataset (b) in Table 1.

3) SYSTEM CONFIGURATION OF ASR MODULE
The input features for ASR models were 80-dimensional
log Mel-filterbank coefficients. We used SpecAugment [38]
during training. In this paper, we adopted 3262 characters
as the output tokens. The training and evaluation data
were preprocessed following the Kaldi and ESPnet toolkits
[35], [39], [40]. The minibatch size was set to 64 in all
experiments. In this work, we adopted LSTM-based and
Conformer-based encoders as detailed below and briefly
described the resulting architecture in Fig. 3.
Our LSTM-based experiments investigated three dif-

ferent encoder types: unidirectional LSTM (ULSTM),
bidirectional LSTM (BLSTM), and latency-controlled

2https://github.com/funcwj/conv-tasnet

FIGURE 3. Overview of TS-RNNT configurations. (a) and (b) illustrate
LSTM- and Conformer-based TS-RNNT, respectively.

BLSTM (LC-BLSTM) [41]. All encoders had two-layer
2D-convolutional neural networks (CNNs) followed by six-
layer (LC-) BLSTM with 512 cells per direction. The CNNs
in all layers had max-pooling layers with two strides. The
memory cells were doubled when using the ULSTM encoder.
The chunk sizes for LC-BLSTM, Nc and Nr , were set to
60 in the input feature space before CNNs. The average
latency of ULSTM- and LC-BLSTM-based systems were
30ms and 930ms, respectively. As the prediction network,
we adopted a ULSTM layer with 768 cells. The joint network
receives the output of the encoder and the prediction network,
reduces their dimensions to 640, and then predicts the target
token. The speaker encoder for LSTM-based TS-RNNT had
two-layer 2D-CNNs followed by three-layer BLSTM with
512 cells per direction due to memory usage during training.
ULSTM and BLSTM encoders were first pre-trained [7]
using the AdaDelta optimizer [42] with early stopping; the
parameters were then fine-tuned. In the fine-tuning step,
learning rate scheduling is essential, so we used the Adam
optimizer [43] with the learning rate scheduler [38]. For the
LC-BLSTMmodels, we initialized the parameters with those
of a BLSTM model and then fine-tuned them.

For the Conformer-based experiments, we used an offline
conformer consisting of the same encoder architecture as
Conformer (L) [2] with a kernel size of 15. We used two-
layer 2D-CNNs followed by 17 Conformer blocks, with the
stride sizes of both max-pooling layers at each layer set to 2.
The prediction network had a 768-dimension uni-directional
LSTM (ULSTM) layer followed by a 640-dimension feed-
forward layer. The speaker encoder for TS-RNNT had the
same architecture as the ASR encoder, but the number of
blocks was reduced from 17 to 6. The model parameters of
the offline Conformer were randomly initialized.

For the streaming systems, we used two similar con-
figurations as the offline system except that the encoder
was replaced by a causal Conformer (Uni-Conformer) [3]
and a latency-controlled Conformer (LC-Conformer) [6].
For all the streaming systems, we replaced the depth-wise
convolution and batch normalization of the ASR encoders
with causal equivalent and LN, respectively. The streaming
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TABLE 2. CER as a function of the layer-l at which the speaker encoder
outputs were fused with the ASR encoder. The results are for offline
TS-RNNTs. ‘‘All’’ indicates that the fusion was applied to all layers of the
encoder.

TABLE 3. Comparisons of cascade and proposed TS-RNNT systems using
LSTM and Conformer (Conf.) in terms of CERs and RTFs at each SNR. All
models performed offline decoding. Note that RTFs exclude computation
time of speaker encoder in TSE and TS-RNNT, since it can be performed
offline.

systems were trained using attention masks, as in [6]. The
latency of the Uni-Conformer with infinite history and few
look-ahead frames, i.e., CNNmodule, was 30ms. The left and
current chunk sizes of LC-Conformer were set to ∞/680ms
and 600ms, respectively, so the average latency was 330ms
(= 600ms/2 + 30ms). Here ∞ means that the encoder
sees all past frames. The model parameters of the streaming
Conformer parameters were initialized with those of an
offline Conformer.

‘‘RNNT’’ and ‘‘TS-RNNT’’ were trained with the dataset
(a) and (b) in Table 1, respectively. All models were trained
with RNNT loss by using the Adam optimizer with 25k
warmup for a total of 100 epochs. For training the TS-RNNT
with TSAD, we set the percentage, ρ, of enrollment
utterances replaced by an utterance not in the mixture at
5%. For decoding, we used alignment-length synchronous
decoding with a beam size of 8 [34].

B. EXPERIMENTAL RESULTS
1) ABLATION STUDY
First, we investigate the best position for the fusion of the
ASR encoder and the speaker encoder outputs using offline
Conformer-based TS-RNNTs. Table 2 shows the CERs at
each SNR. We can see that applying the speaker encoder
output to just the first ASR encoder output, l = 1, attained
the best performance under all SNR conditions. Hereafter,
we adopted l = 1 for all TS-RNNT models.

2) CASCADE VS. INTEGRATED SYSTEM USING OFFLINE
MODELS
Next, we compare the baseline cascade systems, TSE+RNNT,
with the proposed integrated system, TS-RNNT, for offline
decoding. The comparisons were performed using LSTM-
and Conformer-based (TS-) RNNT. Table 3 shows the CERs
and RTFs for each SNR condition. The RNNT baseline shows
the CER obtained when recognizing the mixture without

performing TSE using the RNNT back-end. As expected,
this system performs poorly as it cannot identify the target
speaker in a mixture. By using the TSE model as front-end,
TSE+RNNT using LSTM- and Conformer-based encoders
could recognize the target-speaker’s speech and achieve CER
of 24.4% and 16.5% on average, respectively. This result
confirms the importance of the TSE module. However, the
RTF of TSE+RNNT was much larger than that of RNNT
decoding. We could reduce the RTF of the TSE+RNNT
system by adopting a smaller TSE model such as [44], but
this would increase the CER. Regardless of how efficient this
TSE front-end could be, it would inevitably increase the RTF.

On the other hand, both LSTM- and Conformer-based
TS-RNNT achieved competitive or better CERs than the
cascade system while equaling the RTF of RNNT. Our
proposed framework, i.e., TS-RNNT, is effective for both
LSTM- and Conformer-based systems, and the CERs of
Conformer-based TS-RNNT were better than those of the
LSTM-based system. Moreover, in particular, the CERs
of TS-RNNT are better than those of the cascade system
under severely noisy conditions, i.e., SNR 5 and 0 dB.
This is probably because the TS-RNNT system is trained
in an E2E manner, and thus is not affected by processing
artifacts that may limit the performance of the TSE+RNNT
system under severe noise conditions. We could improve the
performance of the TSE+RNNT cascade system by jointly
training both modules or retraining the ASR back-end on
processed speech [17]. However, the RTF of such a system
would remain higher than our proposed TS-RNNT.

3) CASCADE VS. INTEGRATED SYSTEM USING STREAMING
MODELS
We investigated the effectiveness of TS-RNNT for streaming
models using both LSTM and Conformer. Table 4 shows
the CERs under each SNR condition. ‘‘ASR-Enc type’’
indicates the type of streaming LSTM or Conformer, and
‘‘#frames’’ is the number of look-back and look-ahead frames
for the ASR encoders of the RNNT and TS-RNNT models.
Note that we investigated two types of LC-Conformer;
LC-Conformer with infinite history context and
LC-Conformer with a historical context limited to 71 frames.
A ‘‘✓’’ and ‘‘✗’’ in the ‘‘Streaming’’ column indicates
that the module is operating in streaming mode or offline
mode, respectively. All systems are fully streaming systems
except system ID L1, L4, C1, C4, and C7, which operate
offline due to the TSE front-end. The SDR improvements in
offline and streaming TSE models were 15.1dB and 11.1dB,
respectively, which mirrors the tendency reported in prior
separation studies [32].

From the table, we observe that the proposed streaming
TS-RNNTmodels (systems C3, C6 and C9) offer comparable
performance to cascade TSE+RNNT with the offline TSE
module (systems C1, C4 and C7). On the other hand, the
performance of LSTM-based TS-RNNT models (systems
L3 and L6) were worse than those of cascade TSE+RNNT
with the offline TSE module (systems L1 and L4), and self-
attention-based model, i.e., Conformer, is superior compared
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TABLE 4. Comparisons of cascade and proposed TS-RNNT systems. ‘‘✓’’ and ‘‘✗’’ indicate streaming and offline mode, respectively. Systems that have a
‘‘✓’’ for the ‘‘Streaming All’’ column attained fully streaming inference. TS-RNNT does not use any TSE (‘‘N/A’’). Boldfonts indicate the best performance
for fully streaming systems for each type of ASR encoder.

to LSTM even for TS-RNNT models. Both LSTM- and
Conformer-based TS-RNNT systems significantly outper-
form streaming cascade systems, i.e., TSE+RNNT with
the streaming TSE module (systems L2, L5, C2, C5 and
C8) for all five encoder types. Comparing the performance
of the offline TS-RNNT system of Table 3 and the best
streaming system of Table 4 (system C6), we observe a
relative performance gap of about 20%,whichmay be slightly
worse than the gap observed for tasks with clean speech [9].
Closing this gap will be part of our future work.

The LC-Conformer with infinite lookback context (system
C6) achieves the best overall performance with a latency of
just 63 frames, i.e., 330 ms. Note that the performance of the
LC-conformer′ degrades when we limit the lookback context
(systemC7, C8, and C9) toward practical use, which indicates
that the future context is important, but so is the past context
when processing overlapped speech.

These results demonstrate the effectiveness of the
integrated system for streaming decoding using both
LSTM- and Conformer-based TS-RNNTmodels, as it avoids
the performance degradation caused by the streaming TSE
module and achieves performance competitive with the
offline TSE module while matching the inference speed of
a vanilla RNNT. In both offline and streaming experiments,
Conformer-based TS-RNNT systems had much better CERs
than LSTM-based systems. The results of Table 4 show
that the Conformers model outperforms the ULSTM and
LC-BLSTM models. However, LSTM-based models are
easy to carry over long histories, i.e., the hidden state,
for long-form speech, making it lightweight in terms of
memory usage. Consequently, although there is a recognition
performance degradation, LSTM-based RNNT systems
could be advantageous for on-device processing. Hereafter,
we adopted Conformer-based TS-RNNT models for TSAD
experiments.

4) TARGET-SPEAKER ACTIVITY DETECTION RESULT
Finally, we evaluated the TSAD capability of the proposed
TS-RNNT. In this experiment, we prepared 6,000 × 5

TABLE 5. CERs of each system without (‘‘-’’) and with (‘‘✓’’) TSAD
training. Note that threshold λ in Algorithm 1 was not set, and we
measured the upper bound of CERs. Each system without TSAD training
corresponds to offline TS-RNNT models in Table 3, and streaming
TS-RNNT models in Table 4.

TABLE 6. Comparisons of TSE and proposed TS-RNNT systems for TSAD.
‘‘✓’’ and ‘‘✗’’ in full streaming (fs) column indicate streaming and offline
mode, respectively.

additional evaluation samples to simulate inactive speaker
cases. We used the same mixtures as in the previous
experiments but randomly selected enrollment utterances
from speakers, not in the mixtures. For the active speaker
cases, we selected the target speaker as the speaker contained
in the input mixture as in the previous experiments.
In this experiment, we also considered the inactive speaker
cases where the target speaker is inactive for the whole
mixture. Based on the active and inactive speaker samples,
we evaluated the performance of TSAD.

First, we evaluated the impact of training with TSAD on
ASR performance for the active examples. Table 5 lists the
CERs of each TS-RNNT system trained without and with
the proposed TSAD framework in IV-B1. Here, to eliminate
the effect of the TSAD errors, decoding is conducted without
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FIGURE 4. DET curves for TSAD with streaming TSE or TS-RNNT on each
SNR. Horizontal and vertical axes mean false positive rate (FPR) and false
negative rate (FNR), resectively. Each plot ‘‘⋆’’ indicates corresponding
EERs in Table 6.

TSAD functionality by setting the TSAD threshold λ = 0 in
Algorithm 1 (i.e., the system always outputs the hypothesis).

These systems with ‘‘-’’ mean TS-RNNT without TSAD
training, and the results are the same as in Table 3 and 4.
We can see that the systems with TSAD training achieved
comparable CERs to those without TSAD training, and
the TSAD training framework did not degrade the ASR
performance of TS-RNNT.

Next, we evaluated the TSAD performance of the proposed
TS-RNNT with TSAD. Table 6 shows the EERs under each
SNR condition using TSE models and TS-RNNT models
with TSAD; we varied threshold hyperparameters η for TSE
as in (11), and λ for TS-RNNT as in Algorithm 1. ‘‘✓’’ and
‘‘✗’’ in the ‘‘fs’’ column indicates that the module is operating
in streaming mode and offline mode, respectively. Note that
these Conformer models in Table 6 were trained with the
TSAD framework introduced in Section IV-B1, the same as
the evaluated systems in Table 5.

From the table, we observe that the offline TSE model
offers better results in terms of EERs than the streaming
TSE model. For TSE-based systems, TSAD is performed by
computing the cosine similarity between speaker embeddings
derived from the enrollment utterance and the extracted
speech signal. Thus, the EERs of TSE-based approaches
heavily depend on the quality of the extracted speech.
Consequently, EERs increase with lower input SNRs.

For TS-RNNT systems with TSAD, the EERs of the
streaming model are better than those of causal TSE-based
TSAD under all SNR conditions. Moreover, compared to the
causal TSE-based models, EERs of TS-RNNT with TSAD
degrade much less with lower SNRs. The EERs of streaming
TS-RNNT systems are better than those of offline systems.
The results are similar regardless of the type of encoder.
We argue that our proposal, i.e., streaming TS-RNNT with
TSAD, achieves competitive TSAD performance with those
of TSE while keeping the model size reasonable.

Fig. 4 (a)-(e) plot the detection error tradeoff (DET)
curves for streaming TSE-based TSAD system and TSAD
within streaming TS-RNNT models under each SNR
condition, and each plot ‘‘⋆’’ means corresponding EERs
in Table 6. We observe that all streaming TSAD within
TS-RNNT models exhibits very similar DET curves. The
tendency for TSE-based TSAD and TSAD within TS-RNNT
models is relatively different. Indeed, looking at the curves,
by modifying the operating point (threshold η for TSE-based
TSAD), we may achieve lower FPR (wrongly outputting
transcription for inactive speakers) with TSE-based TSAD.
In contrast, we may achieve lower FNR (or missed target
speaker when they are active) with TSAD in TS-RNNT
models. However, in all conditions, TSAD within TS-RNNT
models achieves lower EER than streaming cascade
approaches.

These results demonstrate the effectiveness of the TSAD
framework for streaming TS-RNNT, as it achieves superior
TSAD performance to streaming TSE while keeping the
TS-ASR performance. Moreover, as we can see in Algo-
rithm 1, our TSAD framework can keep the decoding speed of
default ALSD,with the difference being that the joint network
computation times are increased by T .
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VI. CONCLUSION
We have proposed an integrated modeling approach for
streaming TS-ASR, called TS-RNNT. It can recognize
the speech of the target speaker in a mixture by fusing
a target-speaker embedding derived from the enrollment
speech with the intermediate outputs of the RNNT encoder.
Our proposed system offers comparable performance to a
cascade TSE+RNNT system in the offline setting, with
significantly lower complexity. Indeed, our system retained
the low complexity of a basic RNNT.Moreover, it greatly out-
performs cascade systems in the streaming mode for LSTM-
and Conformer-based TS-RNNT model configurations. It is
the first work that proposes a streaming E2E TS-ASR system.

We discussed the importance of performing TSAD for
TS-ASR. We proposed a TSAD scheme that can be imple-
mented with an existing TS-RNNT, with a slight modification
of its training and decoding scheme. The proposed approach
can detect inactive speakers with an EERof about 13%,which
is competitive with cascade TSE-ASR models. The results of
this work confirm the potential of TS-RNNT with internal
TSAD to achieve robust streaming ASR against interfering
speakers.

Future works will include further improving the recog-
nition performance, particularly for larger SNR conditions
(e.g., SNR larger than 15 dB), where performance remains
slightly worse than that of a cascade system. Moreover,
we will investigate knowledge distillation [45] from a large
model to a small one to boost the performance of compact
models for on-device applications.
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