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ABSTRACT Route planning has always been an essential issue in navigation research and an important
manifestation of ship intelligence. In order to get the shortest route that meets the actual navigation
requirements, this paper proposes a shortest path planning method based on Automatic Identification System
(AIS) data, which establishes a high-precision environmentmodel and combines ant colony algorithm (ACA)
and A∗ search algorithm.We extract the key points from the initial route obtained by the A∗ search algorithm
and then introduce the Bézier curve method to smooth the route to obtain the planned route. This strategy
assures that the planned route satisfies the global optimal and actual navigation needs. A bulk carrier is
selected for experimental validation, and the experimental results verify the effectiveness of the method
proposed in this paper. Compared with the other algorithm, the algorithm proposed in this paper can obtain
shorter paths faster and more efficiently when performed.

INDEX TERMS AIS data, ant colony algorithm, A∗ search algorithm, route planning, Bézier curve.

I. INTRODUCTION
Maritime transport is responsible for 90 percent of worldwide
cargo transportation and plays a vital role in global economic
development. Before setting sail, navigators must prepare
a sensible route based on the ship’s cargo capacity, speed,
departure time, topographical data, and weather data, as the
route directly affects the ship’s safety and economy [1]. With
the continual advancement of ship intelligence levels and
unmanned ship, automatic route planning has become a fun-
damental technology for autonomous ship navigation, with
the level of route planning determining the intelligence level
of the ship [1], [2], [3], [4]. Artificial intelligence technol-
ogy, big data mining technology, and electronic information
technology enable the gradual replacement of human route
drawing with the utilization of existing route resources to
produce more appropriate route proposals.

In recent years, numerous academics have presented a vari-
ety of route planning algorithms that considerably enhance
the performance of route planning algorithms and make the
automatically generated routes superior, more cost-effective,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

and dependable, with a more significant practical application
value [5], [6].

Some academics rasterize electronic navigational charts
(ENC) and construct grid environment models using obstacle
extraction or obstacle grid setup.Wang et al. [7] developed the
binary trees method based on the ENC, while Lyu et al. [8]
proposed the stack method to bypass the barriers on the
way back. Wang [9] incorporated the route’s width into the
algorithm so that the ship could avoid obstructions more
practically and achieve automatic route planning. Guo [10]
used the grid method to process the marine environment in
the ENC into a two-dimensional simulation of the marine
environment and used a deep Q network (DQN) based opti-
mization algorithm to plan the coastal route automatically.

In addition, Automatic Identification System (AIS) data-
based automatic route planning is a popular study area. Many
researchers have used route planning algorithms such as
the Dijkstra algorithm [11], [12], dynamic planning algo-
rithm [13], [14], ant colony algorithm (ACA) [15], and its
optimization algorithm to generate optimal routes based on
the navigable points or trajectory points in the AIS data [16].

Numerous researchers have also incorporated other algo-
rithms to improve the route planning approach. Andersson
and Ivehammar [17] devised a dynamic route planning
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algorithm to compute the maximum benefit of a route; their
method can assist ship owners in reducing fuel consumption
expenses and CO2 emissions. Their proposed strategy can
assist ship owners in reducing fuel expenses and carbon
dioxide emissions. Dong et al. [18] modified the conventional
ant colony algorithm and suggested a double ant colony
algorithm to create an energy-efficient route planning system.
Li et al. clustered the trajectory lines of AIS, with their
suggested clustering technique employing the merge distance
theory, and the improved DBSCAN algorithm able to deter-
mine the trajectory’s direction [19]. The strategy suggested by
Peng begins by performing noise-based density-based spatial
clustering on a large number of vessel trajectories to construct
distinct clusters of trajectory vectors. Then, calculate their
centerlines iteratively in the clusters of trajectory vectors
and design a canal network based on the node-arc topology
link between these centerlines [20]. Zhang [21] accurately
determined many turning sites by evaluating a significant
amount of AIS trajectory data and then planned routes using
an ant colony method. Both Liu [22] and Song [23] optimized
the traditional A∗ algorithm in the process of route planning
for unmanned vessels and gridded the map to obtain routes in
complex obstacle environments finally.

However, relevant research and technology still need to
resolve issues. First, the automatic ocean route planning
algorithm based on electronic charts must rely on many
electronic chart data [7], [8], [9]. Wang and Lyu’s [7], [8]
paper also mentions that further improvements in accuracy
require access to more chart information, such as obsta-
cles. Therefore, the latest ENC data needs to be updated
in stages, and dynamically updating these electronic chart
data incurs higher economic and time costs than AIS data.
Secondly, whether based on ENC or AIS data, automatically
planning routes must consider the environmental model’s
accuracy [7], [16], and the increase in accuracy will increase
computational cost. However, if the precision of the environ-
ment model is lowered, the automatically generated path will
cross land, which is dangerous and unusable. Thirdly, ACA
and the Dijkstra algorithm can locate the globally best path,
but the calculation time is lengthy [15].

Therefore, in response to the gap proposed in the previous
paragraph, this paper proposes an automatic shortest-route
planning method based on AIS data. The proposed method
combines ACA with A∗ search algorithm to determine the
shortest path. First, ACA restricts the initial shortest route
region range, which can also reduce large calculation nodes.
Then, we take advantage of the fast search speed of the
A∗ algorithm to look for the shortest path within the initial
range constraints. Finally, we optimize the projected route
line by removing duplicate points, extracting key points, and
utilizing the Bézier curve method to smooth the route.

The remaining sections of this paper are as follows:
Section II introduces the process of constructing the environ-
ment model; Section III proposes the shortest path planning
method combining ACA and the A∗ search algorithm; in
Section IV, a bulk carrier is utilized as the target vessel to plan

a part of its route with the method provided in this paper and
compare it to the actual trajectory of the vessel to illustrate
the algorithm’s applicability. Section V provides a summary
of the entire paper.

II. ENVIRONMENT MODEL DEVELOPMENT
A. PRE-PROCESSING AIS DATA
Before developing the environment model, one of the most
crucial processes is pre-processing the vast quantity of AIS
data. The AIS data selected for this study are mainly from the
sea off China, totaling about 35,000 items. First, we cleaned
the abnormal AIS data. The principles of excluding abnormal
data are as follows:

• The longitude < −180◦ or > 180◦;
• The latitude < −90◦ or > 90◦;
• The sailing speed < 0 or > 50 knots;
• The depth < 0 meters;
• The heading < 0◦ or > 360◦;

After the first step of processing, about 34,000 items of
data can be used for the subsequent study.

Second, the parameters, including latitude, longitude,
speed, and draft data from the AIS data, were kept for the
developing environment model. Filtering ship speed ensures
that the environmental model is constructed to meet the
speed requirements of the ship and that no obstacle areas
are included in the environmental model. The filtering of
the ship’s draught ensures that the environmental model is
constructed to meet the draught requirements of the ship and
that the route is planned within the allowable water depth
for the target ship. Finally, it is necessary to filter the AIS
data ranges based on the target vessel’s speed and actual draft
further.

B. ENVIRONMENT MODEL DEVELOPMENT
This section employs the grid mapping approach to con-
struct the environment model using the AIS data filtered in
Section II-A. A ship’s route in a particular navigation area
may be simplified to the path of a ship between two locations
on a plane. The grid mapping method breaks the supplied
navigation area map into some grids and assigns the specified
unit length to each grid’s edge length. The free attribute grids
designated with white color and the obstacle grids marked
with black color are then decided based on the navigability
of a single grid in the navigation area map. Using the grid
mapping method, the route planning issue in a complex spa-
tial navigation environment is converted into searching the
path between two grid centroids in a two-dimensional grid
that satisfies certain constraints.

Assuming that the length of the working environment map
is L, the breadth is N , each square grid has a height and width
of l, the environment may be partitioned into an information
map of nn∗mm cell grids, satisfying the Equation (1).

l = L/nn = B/mm (1)
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In route planning, AIS point data in a grid is used to
determine a free attribute grid; if there is no AIS data, the
grid is an obstacle grid.
Chart represents the whole environment, gridi,j represents

all the information of a grid unit, i denotes horizontal, i.e.,
east-west direction, and j denotes vertical, i.e., north-south
direction, all grids are placed in the set P, n and m are the
maximum values of i and j in the environment space, and the
expression is shown in Equation (2)

P = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m}

Chart = {grid i,j|grid i,j = 0 or 1, (i, j) ∈ P} (2)

III. METHODOLOGY
The proposed method consists of three steps. In the first step,
the estimated grid range of the shortest path is determined.
Utilize ACA to calculate the range through which the shortest
path goes on the low precision environment model. Sec-
ond, locating the shortest route in an improved environment
model. This step will rebuild a high-precision environment
model based on the first step’s approximate grid range and
calculate the shortest route using the A∗ search duplicate
points, extract critical points, and then smooth the path
using the Bézier curve method. The flow chart is depicted
in Figure 1. Thirdly, optimize routes, so the planned path
corresponds to the actual route.

FIGURE 1. The flow chart of route planning model.

A. DETERMINE THE GRID RANGE WITH THE LEAST
DISTANCE USING ACA
This section’s primary purpose is to determine the grid range
of the shortest route. First, the low-precision environment
model is generated, the grid width is set to 0.5◦, and ACA is
used to determine the shortest route under the low-precision

environment model. The free attribute grids in eight direc-
tions of each node along the route are then included in the
grid range, while the free attribute grids and obstacle grids in
other places are classified as obstacle grids.

1) CONSTRUCTING THE ADJACENCY MATRIX
An environmental model-compliant adjacency matrix is uti-
lized to record the distance between adjacent navigable grids,
as shown in Figure 2. As depicted in Figure 2, gridi−1,j+1 and
gridi,j−1 are obstacle, thus, ant in gridi,j can travel to other six
free attribute grids, the distance between two free attribute
grid is given by Equation (3), and the distance between free
attribute grid and obstacle grid is infinity.

d = arccos(sin(lat i,j) ∗ sin(lat i,j+1) + cos(lat i,j)

∗ cos(lat i,j+1) ∗ cos(loni,j+1 − loni,j)) (3)

FIGURE 2. Neighborhood grid schematic.

where lati,j denotes the latitude of gridi,j; loni,j denotes the
longitude of gridi,j; lati,j+1 denotes the latitude of gridi,j+1;
loni,j+1 denotes the longitude of gridi,j+1.

2) ANT COLONY ALGORITHM (ACA)
ACA is an intelligent evolutionary algorithm based on param-
eterized probability distribution, where the model param-
eters are the pheromones generated by the individual ant
colony; hence, ACA is, in essence, an intelligent pheromone-
based optimization method. The core of ACA for ship route
planning is the update of state transfer probability and
pheromone [15]. Assume that the total number of ants is m.
The transfer probability (pkij) from route node i to route node j
at time t for the kth ant is given by Equation (4).

pkij =


τα
ij (t)η

β
ij (t)∑

j∈allowedk τα
ij (t)η

β
ij (t)

, j ∈ allowedk

0, j /∈ allowedk

(4)

ηij(t) = 1/d ij (5)
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where the parameter α is information heuristic factor, indicat-
ing the importance of pheromone concentration. The parame-
ter β is expectation heuristic factor, indicating the importance
of the distance between the route nodes. The symbol τij(t) is
the pheromone concentration between the route nodes i and j
at time t . The symbol ηij(t) is the heuristic function, which
represents the expectation of an ant individual from the route
node i to j, takes the value 1/d ij, as Equation (5) shown, dij is
the distance between the current node i and the next node j.

If the value of the distance dij between the current node and
the next node is larger, the value of the heuristic function ηij(t)
will be smaller; consequently, the probability of ants choosing
this node will be smaller, as will the transfer probability;
conversely, if the value of the distance dij between the current
node and the next node is smaller, the value of the heuristic
function ηij(t) will be larger. Therefore, the distance between
the present node and the next node influences, to some extent,
the probability that this ant will choose that node. In order to
prevent the ants from selecting the same nodesmultiple times,
a taboo table is created and updated whenever the ants reach a
new node. The symbol allowedk is the turn point of the path
that the kth ant can pick during the search process, and the
transfer probability takes the value 0 if it is not within this
range. This assures that the ants will not continually pass a
node and form a loop. Consequently, the ants select numerous
possible paths based on the pheromone and the length of the
path.

According to the idea of ACA, the algorithm achieves
optimal path solution by constantly passing ants via a shorter
path over time, while leaving pheromones on this road to
attract more ants. Due to the existence of this positive feed-
back mechanism, if the pheromone on this shorter path is too
strong, the heuristic information of the ant colony will lose
its effectiveness and the ants will not explore other solutions
in the space, causing the ant colony algorithm to reach a
local maximum. To remedy this issue, a volatile mechanism
must be added to the ant colony algorithm to update the
pheromone, and the pheromone is updated after each iteration
based on this volatile mechanism. Therefore, the pheromone
on the path at the moment (t + 1) is updated in the manner
shown in Equation (6) and (7).

τij(t + 1) = (1 − ρ)τij(t) + 1τij(t) (6)

1τij(t) =

m∑
k=1

1τ kij (t) (7)

We chose Ant-Cycle model to update the pheromone.
Equation (8) represents the update of pheromone using global
information, i.e., when the ant reaches the end point, the
algorithm updates the pheromone on the whole path searched
out this time.

1τ kij (t) =
Q
Lk

, if the k th ant reaches node j from

node i in this iteration.

1τ kij (t) = 0, if the k th ant does not reach node j from
node i in this iteration. (8)

where the symbol τij(t + 1) is the pheromone of the route
node i to node j at time t + 1. The symbol 1τ kij (t) is the
increment of pheromone released by the k th ant on the path
at time point t , and the initial value is 0. The parameter ρ is
The pheromone volatility factor, taking values between [0, 1]
and 1−ρ is the pheromone residual factor. The parametersQ
is the pheromone intensity. The parameter Lk is the length of
the route traversed by the k th ant in this iteration.

As shown in the Equation (7) and (8), the heuristic func-
tion, the pheromone, and the collaboration among ants all
have a significant impact on the convergence of the algorithm;
in this case, the pheromone correlation factor α, (1−ρ), β, the
number of antsm, the pheromone strengthQ, and the iteration
number in the model are also crucial factors that affect the
algorithm’s performance and efficiency [25].

3) DETERMINE THE GRID RANGE WITH THE LEAST
DISTANCE
We apply ACA algorithm to determine the shortest path given
the present environment model, with the primary procedure
being as follows.

1) Convert the specified starting point A and ending
point B to their respective grid positions in the grid
map, starting grid A and ending grid B;

2) Initialize and set the parameters for each ant
population;

3) Select the next neighboring free attribute grid using
the roulette wheel approach. The adjacent free attribute
grid and its distance are determined based on the find-
ings of the free attribute grids partitioning model;

4) Each ant follows the pheromone’s trail until it reaches
ending point B;

5) Document the passable path and total distance traveled
by each grid;

6) Update the pheromone;
7) Determine if the population has reached its maximum

iteration;
8) Return the shortest route;
Figure 3 is the flow chart of finding the shortest path based

on ACA.
Second, the free attribute grid range is further reduced

according to the calculated shortest path. The five grid nodes
through which the shortest route travels, as depicted in Fig-
ure 4.a, the free attribute grid adjacent to each node is within
the range determined by the shortest path. As shown in
Figure 4.b, the blue grid is the range of grids chosen by
the shortest route, while grids outside of this range become
obstacle grids.

Finally, we employ ACA to determine the shortest path’s
grid range under low-precision environment model.

B. SHORTEST ROUTE PLANNING MODEL BASED ON A∗

SEARCH ALGORITHM
This section employs the A∗ search algorithm to compute
the shortest route in the exact environment based on the grid
range involved in the shortest path found in section III-A
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FIGURE 3. The flow chart of finding the shortest path based on ACA.

FIGURE 4. Schematic diagram of the grid range of the shortest route:
(a) Original route; (b) Grid range map.

to assure the route’s safety. In the first step, the high-precision
environment model is produced under the grid range ini-
tially defined in Section III A. In the second step, the
A∗ search algorithm is applied to find the shortest path in the
high-precision environment model.

The grid range provided by ACA is a somewhat coarse
model, and we must still improve the grid to provide a more
precise environment model. The width of the unit grid is
lowered to 0.0625◦ to generate a more accurate environ-
ment model based on the navigable range determined in
Section III-A. The grid width of this environmentmodel is 1/8
of the grid width of the section III-A environment model.
The A∗ search algorithm chooses the route that minimizes

Equation (9), a heuristic function of the A∗ search method.

F(n) = G(n) + H (n) (9)

where G(n) is the true cost of moving between the starting
nodes of the current grid, as demonstrated by Equation (10),
while d(n, n− 1) is given by Equation (3). And H (n) rep-
resents the predicted movement cost between the current
and end grid. The A∗ search algorithm and Dijkstra algo-
rithm are identical if H (n) = 0 [26]. The current grid’s
distance function to the ending grid is substituted for H (n)
in Equation (3).

G(n) = d(n, n− 1) + G(n− 1) (n > 1) (10)

A∗ search algorithm uses the open list to hold nodes wait-
ing to be examined and the close list to store nodes that have
been previously explored. The A∗ search algorithm follows
these steps:

Step 1: Insert the starting point S into the open list;
Step 2: If the endpoint E is present in the open list, the

path search is complete. If no open list exists, the path does
not exist;

Step 3: Choose the node u in the open list with the most
minor estimated value F as the active node and add it to the
close list;

Step 4: Obtain all of the directly accessible nodes, and then
update the open list. if v is in the close list, do not process;
if v is not in the open list, add v to the open list, and its
associated F = G(u) + distance(u, v) + H (v); if v is in the
open list, check for a smaller F value for v and update the F
value of v if there is a smaller F value.

Repeat Step 2 to 4 until the process is complete.
Finally, the each node of shortest route is output.

C. ROUTE OPTIMIZATION BASED ON BÉZIER CURVE
METHOD
The A∗ search algorithm’s suggested path includes numerous
redundant steering points and sharp turning points signif-
icantly different from the actual route. To ensure that the
designed route meets the exact turning radius of the ship,
we introduce the bezier method of smooth route planning
so that the vessel does not change direction sharply at a
specific turning point and affect the standard navigation of
the ship. For this issue, we presented a Bézier curve-based
path optimization approach. The main steps are as follows.

Firstly, eliminate redundant points and extract key points.
Suppose the current path node is on the same line as the pre-
ceding and subsequent nodes. In that case, the current node is
deleted, the path is updated, the subsequent nodes are found to
be on the same line, and the last remaining node is the critical
point. Furthermore, extract key points and ensure that the
reconnected line segment does not cross the obstacle grid. For
instance, after the first step, the key points (M1,M2, . . . ,Mk )
are gathered, andM1 andM3 are linked to generate the line l
(The line function: Ax+By+C = 0). Determine whether the
connected M1 and M3 will pass through the obstacle grid N
((x, y), (x, −y), (−x, −y), (−x, y) for the four vertices of the
obstacle grid N ) using the Equation (11). If it does not pass
through the obstacle grid N , point P2 can be deleted, the path
can be updated, and subsequent Mk and M1 can be joined in
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succession until the new line segment goes through the obsta-
cle grid N . The final processed route {Pi|i = 1, 2, 3, . . . , n}
is obtained.

(A(−x) + By+ C)(Ax + B(−y) + C) > 0

(A(−x) + B(−y) + C)(Ax + By+ C) > 0 (11)

Secondly, the processed route is smoothed using the third-
order Bézier curve method, as shown in Equation (12). Given
the coordinates of control points Pi to Pi+3, the first point
Pi = {xi, yi}, the second point Pi+1 = {xi+1, yi+1}, and so
on. The parameter t moves from 0 to 1, the step is 0.05, and
the loop goes over 0, 0.05, 0.1, 0.15, . . . , 0.95, 1.

P = Pi ∗ (1 − t)3 + 3Pi+1 ∗ t(1 − t)2

+ 3Pi+2 ∗ t2(1 − t) + Pi+3 ∗ t3 (12)

Figure 5 briefly illustrates the route after the two-step
process. Figure 5.a is the initial route generated by the
A∗ search algorithm, Figure 5.b shows the route after elim-
inating redundant points, Figure 5.c shows the route after
extracting key points, and Figure 5.d shows the route after
smoothing with the Bézier curve method.

FIGURE 5. Route optimization process diagram: (a) Initial route after A∗

search algorithm calculation; (b) The route after eliminating redundant
points; (c) The route after extracting key points; (d) The final route after
Bézier curve smoothing.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL DESIGN
This experiment’s target vessel is a bulk ship whose major
parameters are detailed in TABLE 1. The vessel sails from the
west coast of Africa via the Cape of Good Hope and the Strait
of Malacca to the Chinese city of Tianjin. A portion of the
ship’s itinerary was chosen as the subject of this investigation.
The ship set sail for the sea of Zhoushan Islands, China,

on June 4, 2022, at 13:00 (UTC), when the longitude was
123.981◦E, the latitude was 30.875◦N, and the port berth was
located at 118.485◦E and 38.826◦N. Accordingly, we con-
fined the search area to latitudes 30◦N to 41◦N and longitudes
117◦E to 125 E. In addition, we kept AIS data with a depth
of 10m or more and a speed of more than 5kn based on data
from TABLE 1 and principle in Section II-A.
The code used in this study both written in python, and the

program was run on a particular laptop with 4 Core i5 for
testing.

TABLE 1. The experimental ship’s detailed parameters.

B. EXPERIMENTS RESULTS AND ANALYSIS
Firstly, determining the shortest route’s grid range. Moreover,
the grid width is set to 0.5◦ in this step as mentioned in
Section III-A. As a result, the low-precision environment
model consists of 16∗22 grids, as depicted in Figure 6, where
white represents the free attribute grid and black represents
the obstacle grids. The inital values of ACA are given in
TABLE 2, which is referred from Wu et al. paper [1].

FIGURE 6. The low-precision environment model for the ACA.

Figure 7 depicts the shortest grid region calculated by
the ACA. The red line in the illustration represents the route
determined by the ACA. Compared with Figure 6, Figure 7
demonstrates that after the initial optimization search by
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TABLE 2. The main parameters of the ACA.

FIGURE 7. The route and grid range calculated by the ACA.

the ACA, the navigable area is reduced further. This step
restricts the initial shortest route region range and reduces
the number of search nodes, improving search efficiency and
saving search time for subsequent searches.

In this stage, the A∗ search algorithm was utilized to deter-
mine the shortest route based on the navigable grid range
determined in the previous step. As illustrated in Figure 8,
we began by refining the environment model by reducing the
grid width to 0.0625◦ to obtain a more precise environment
model. As a result, the high-precision environment model
consists of 128∗176 grids.

Based on the grid range obtained by the ACA, we recon-
structed the grid depicted in Figure 8 and use the A∗ search
algorithm to determine the shortest route to acquire the results
depicted in Figure 9; the red line represents the A∗ search
algorithm’s computed route. After the initial determination of
the shortest route range by the ACA algorithm, the number of
free attribute grids decreased from 3172 to 2108.More impor-
tantly, a comparison of Figure 8 and Figure 9 demonstrate that
the range of free attribute grids is significantly reduced, free
attribute grids that are not related to the route were excluded.

According to the method described in Section III-C, the
red path in Figure 9 was optimized, with a total of 176 turn-
ing points. Firstly, we obtain the processed route depicted
in Figure 10 by eliminating the unnecessary points and

FIGURE 8. The high-precision environment model for A∗ search algorithm.

FIGURE 9. The route calculated by A∗ search algorithm.

FIGURE 10. The route after removing unnecessary points and extracting
key points.

extracting the key points, five turning points remaining. Then,
we used the Bézier curve method to smooth the processed
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route depicted in Figure 10, resulting in the optimal route
depicted in Figure 11, and the final 45 points were generated.
We used Equation (11) to check the safety of the 45 points
shown in Figure 11. None of the 44 line segments made up
of the 45 points pass through the obstacle and can be sailed
safely. The total distance of the three routes is calculated
as indicated in TABLE 3. Following optimization, the total
distance of the routes is decreased by 12.8 nautical miles.
The difference between the distance of the route before and
after smoothing is around 0.05 nm. Selecting some of the
segments for evaluation, as shown in Figure 12, the original
route’s meandering route requires only two crucial locations
to reach the ending point. Therefore, this can further prevent
the rise in navigation miles produced by the A∗ algorithm’s
local optimum. As illustrated in Figure 13, we also employed
the Bézier curve method to smooth the route’s turning points,
making the planned route close to the real navigation.

FIGURE 11. The route after Bézier curve smoothing.

TABLE 3. The total distance for each route.

To verify the effectiveness the proposed algorithm,
we compared the planned route proposed by in this paper and
actual trajectory of the target ship, as depicted in Figure 14.
It can be observed that after passing through the Zhoushan
Islands, the target ship did not take a straight line to the north
but instead slightly changed its direction and sailed towards
the outer sea before heading north to the Bohai Sea. As a

FIGURE 12. The comparison of the original route and the processed route.

FIGURE 13. The comparison of the processed route and smoothed route.

FIGURE 14. The comparison of the planned route and the actual
trajectory.

result, the total distance of the actual trajectory is 662 nautical
miles. Compared to the planned route, the distance of the
actual trajectory is approximately 40 nautical miles longer
than the planned route. In addition, the route safety check
demonstrates that all planned routes meet navigational safety
requirements and allow transit through waterways safely. The
planned route in the figure also indicates that the planned path
safely traverses the Bohai Strait via the Old Tieshanwaterway
before arriving at its destination, which is identical to the
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actual route.Therefore, the planned routes obtained with the
algorithm proposed in this paper are able to meet the route
safety requirements.

To verify the advancement of proposed algorithm, we com-
pared it with A∗ algorithm. Figure 15 shows the result of A∗

search algorithm, and Table 4 shows the planned route length
and planning time. From Table 4, The algorithms proposed
in this paper all outperform the results calculated by the
comparison algorithms. Compared with the single A∗ search
algorithm results, the proposed algorithm’s planning time is
reduced by about 42%. The length of the planned route is
reduced by about 2.5%, and the number of turning points
is reduced by about 74.5%, so the proposed algorithm can
significantly improve the search efficiency and plan a shorter
route.

TABLE 4. Comparison of the proposed algorithm with the A∗ algorithm.

FIGURE 15. The result of the contrast algorithm.

V. CONCLUSION
This paper proposes an automatic planning algorithm that
combines the ACA and the A∗ search algorithm for the
shortest route. Firstly, a low-precision environment model
is constructed based on the AIS data, and the grid range of
the shortest route is determined using the ACA to ensure the
global optimum and reduce the calculation nodes. Secondly,
the A∗ search algorithm determines the shortest route under
a more refined environment model. Thirdly, the path’s key

points are extracted and optimized using the Bézier curve
method to obtain the shortest route that meets the actual
requirements.

The experiments show that the algorithm proposed in
this paper can reduce the computation nodes and obtain the
shortest route that meets the safety requirements. The pro-
posed algorithm has strong optimization capabilities and can
provide meaningful guidance for shortest-path planning for
intelligent ships or even unmanned ships in unknown obsta-
cle environments, promoting the intellectual development of
shipping.

This study proposes a method with some limitations, and
we can still enhance the planning performance by following
directions. Firstly, a high-precision environment model is
required to compute the shortest and safe route. Building
a high-precision environment model requires massive AIS
data to prevent blind zones. Secondly, additional information,
such as ENC data, needs to be introduced when building the
environmental model to determine navigable areas. Thirdly,
when the shortest distance is recalculated using the A∗ search
algorithm, the heuristic function must be re-optimized, and
the traditional 8-neighborhood A∗ search algorithm is used
in this study. For better accuracy, 16-neighborhood and even
32-neighborhood A∗ search algorithm should be introduced.
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