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ABSTRACT Siamese trackers draw continuous attention in the object tracking community due to their
proper balance between performance and inference speed. Despite that, it remains unclear how to effectively
exploit the target appearance cues and motion cues involved in videos to improve trackers’ performance.
To address this problem, we develop a Siamese network with diverse prior information integrated, namely
DPINet, by extending two novel blocks to a powerful anchor-free Siamese network. First, we design a
channel- and space-aware feature enhancement (CSE) block to highlight target-specific feature weights
in two aspects (channel and spatial dimensions). It is devoted to making full use of the target cues in
the initial frame by considering them as guidances, in which way target-related representation in feature
maps can be improved. It also facilitates the interplay between two input branches. Second, we advance a
cross-correlation blockwithmulti-dimensional information fusion (MDI-XCorr). In this block, target motion
cues within adjacent frames can bemined and treated as supervisions to refine the responsemap in the current
frame during inference. Hence, both tracking quality and stabilization can be enhanced. Evaluations on four
popular benchmarks are conducted, showing that DPINet achieves 0.702 (AUC), 0.474 (EAO), 0.336 (EAO),
0.613 (AO), and 0.527 (AUC) on OTB100, VOT2018, VOT2019, GOT-10k, and LaSOT, respectively.

INDEX TERMS Visual object tracking, Siamese network, deep learning, information fusion, motion cue.

I. INTRODUCTION
Single object tracking is one of the fundamental tasks in
the computer vision field. Given a target in an initial video
frame, a tracker serves to search for and locate the tar-
get in the follow-up frames. Trackers can be deployed to
embedded devices for a series of real-life applications, such
as traffic flow monitoring [1], autonomous driving [2], and
human-computer interaction [3]. Despite efforts made previ-
ously, tracking remains challenging due to several adverse
factors in practice, e.g., low resolution, fast motion, and
illumination variation.

Deep trackers can be divided into two categories. One
is the discriminative correlation filter (DCF) group [4], [5],
[6], [7], the other is the Siamese family [8], [9], [10], [11],
[12]. A DCF tracker is considered as a discriminative model.
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It treats object tracking as a classification task to distinguish
between foreground and background by learning an adaptive
discriminative filter and conducting cross-correlation with
the filter as a kernel on the video frames. One of the distinctive
characteristics of DCF trackers is the adoption of online
update strategies [5], [13]. More specifically, the filter can
be constantly fine-tuned during inference, which facilitates
to learn target-specific representation. Different from that,
Siamese trackers are part of the generative model. They
construct a Y-shape network with a template branch and a
search branch to learn a feature embedding, in which a simi-
larity comparison (implemented by a cross-correlation oper-
ation [8]) between a template image and candidate patches in
a large search region is performed. Object tracking is thereby
converted into a local matching problem. Siamese trackers
learn feature representation by training convolutional neural
networks (CNN) with numerous offline training samples.
In this way, no extra computational consumption for kernel
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updating is required, and thus, Siamese trackers received a
great deal of attention due to the proper trade-off between
tracking accuracy and inference speed.

Siamese networks have been improved substantially in
recent years, including the employment of deep back-
bones [10], [14], the upgrading of the cross-correlation mod-
ule [10], [15], [16], the exploration of new sampling strategies
for training [17], and the utilization of advanced predic-
tion heads [11], [18], [19]. Despite all of those significant
improvements, there is still an intrinsic limitation in Siamese
networks—Siamese trackers treat visual object tracking as
a local one-shot detection task, ignoring the distinctions
between the two tasks. First, the detection task requires a
detector to run in a class-aware manner, whereas the tracking
task requires a tracker to locate a certain target regardless of
its category. Particularly, target cues provided in the initial
frame are interpreted as prior knowledge in tracking, which
is absent in detection. Nevertheless, when designing Siamese
trackers, the annotation (usually a bounding box) specify-
ing a target-related area in the initial frame receives little
attention—Siamese trackers just extract general features from
the annotated frame as a template for subsequent similarity
comparison, without further exploitation of the target cues.
Second, temporal information can be involved usually in the
tracking tasks, but barely in the detection tasks [20], [21].
Therefore, considering the temporal information (especially
object motion cues) as prior information embedded in videos,
an excellent tracker should be capable of leveraging it to han-
dle the tracking tasks. However, standard Siamese trackers
perform similarity calculations on each video frame with-
out mining the time-dimensional information in consecutive
frames. Although several works attempt to attack this prob-
lem by replacing the template during tracking [22] or updat-
ing target features [23], these methods remain indirect since
the change in target appearance is not exactly time-dependent.

With careful analyses above, we propose two novel
blocks to make full use of diverse prior information. First,
we develop a channel- and space-aware feature enhancement
(CSE) block. It endeavors to capture target-related cues in the
channel and spatial domains from the given template image
and the annotation in the initial frame. In addition, we identify
that the consistency of target representations in the template
branch and search branch is much significant for similarity
calculation. Therefore, the CSE block is developed based on
the recently popular attention mechanism [24] to improve
the communication between the two input branches. Second,
we design a cross-correlation block with multi-dimensional
information fusion (MDI-XCorr) to exploit temporal cues
in the video data. We argue that the target motion cues
play a key role in discriminating the target from distrac-
tors. Hence, we propose to capture long-range dependency
between response maps in adjacent frames to model target
movement via the well-designed MDI-XCorr block. In this
way, potential temporal cues are treated as supervisions,
serving to modify the representation of raw feature weights
induced by the cross-correlation operation.

Equipping a prevalent anchor-free Siamese tracker with the
designed blocks, we propose a new tracker named DPINet.
In contrast to the DCF trackers, our method requires no
online updating, thereby working more efficiently. Besides,
most general training strategies for Siamese trackers can
be applied to DPINet without excessive adjustments, which
indicates that it can benefit from numerous offline training
data. We conduct extensive experiments on four popular
benchmarks. Comparative results with other state-of-the-art
(SOTA) CNN-based trackers show that our method achieves
favorable performance on OTB100 [25], VOT2018 [26],
VOT2019 [27], GOT-10k [28] test set and LaSOT [29] test
set while running at a real-time speed.

Our contribution can be summarized as follows.
• We develop a channel- and space-aware feature
enhancement (CSE) block. By interpreting target cues
together with the annotation in the initial frame as
inherent prior information in object tracking, the block
merges them into the data flow of the network as guid-
ances to advance target-related deep representation.

• We develop a cross-correlation block with multi-
dimensional information fusion (MDI-XCorr) to address
the problem of poor utilization of the temporal cues in
Siamese networks. Unlike previous works that aim at
adjusting or replacing template features, this block is
assigned to capture target movement cues from response
maps in adjacent frames.

• By extending the two blocks to an anchor-free Siamese
network, we propose a new tracker with Diverse Prior
Information exploited (DPINet). Its network can benefit
from general training strategies developed for standard
Siamese networks with only a few modifications and be
trained end-to-end.

II. RELATED WORK
A. SIAMESE TRACKERS BASED ON DEEP
REPRESENTATION
Recently, deep convolutional neural networks have made a
great breakthrough [30], [31], [32], [33], [34], [35], which
significantly promotes a series of fundamental tasks in com-
puter vision, including image recognition [30], [36], object
detection [37], [38], semantic segmentation [39], [40], etc.
In object tracking community, two sorts of trackers substan-
tially benefit from the improvement of convolutional neural
networks. One of them is the Siamese group. Its pioneering
work SiamFC [8] constructed a Y-shape fully-convolutional
network by deploying a shared backbone in two input
branches and a simple cross-correlation layer for feature
combination (similarity calculation). It considered tracking
as detection in image patches, which remarkably improved
the inference speed of deep trackers. SiamRPN [9] advanced
scale estimation in SiamFC by introducing Region Proposal
Network (RPN) into the Siamese framework. It combined
Siamese networks with an X-shape architecture and pre-
dicted target bounding boxes more accurately. DaSiam [17],
belonging to the SiamRPN family, proposed a sampling
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strategy for Siamese trackers so that their discrimination
and robustness can be substantially improved with extra net-
work training on object detection datasets. SiamDW [14] and
SiamRPN++ [10] enabled Siamese networks to be compat-
ible with a ResNet [32] backbone by adjusting the convolu-
tional blocks and training strategies, respectively. Inspired by
the achievement of anchor-free task heads in the object detec-
tion community [41], [42], [43], several works migrated the
design paradigm to Siamese networks, significantly reducing
the number of parameters and computational consumption of
the trackers [11], [18], [19].

B. FEATURE ENHANCEMENT
Feature enhancement involves the modification of visual fea-
tures to achieve a specific representation. Attention mecha-
nism is a sound candidate, which has achieved great suc-
cess in many vision tasks [44], [45], [46]. To name a
few, SENet [47] introduced S-and-E blocks, endeavoring to
extract channel-wise representation and to adjust channel
activation distribution of visual features. CBAM [48] pro-
posed spatial attention and channel attention to emphasize
feature representation in multiple domains. Different from
those modules based on feature extraction, Non-Local [24]
attention aimed at capturing and modeling long-range depen-
dency of feature vectors in the spatial dimension, providing
global receptive fields that facilitate the mining of poten-
tial relationships between candidate windows on the orig-
inal image. Based on that, background distractors can be
suppressed and target-related representation is allowed to be
advanced.

Many Siamese trackers equip themselves with atten-
tion modules to promote target-specific representation for
high-quality object tracking. RAR [49] emphasized specific
visual patterns and leveraged both inter- and intra-frame
attention by incorporating a hierarchical attentional module
into a Siamese tracker. SATIN [50] introduced a novel cross-
attentional module, in which way both channel-wise and
spatial intermediate attentional information can be leveraged
to improve contextual representations. RASNet [51] pro-
posed two attention blocks, general attention and residual
attention, to learn the general characteristics and distinctions
of different targets in videos, respectively. SiamAttn [52]
introduced self-attention and cross-attention implemented by
Non-Local modules, which improved representation quality
in a self-attentive manner. Nocal-Siam [53] learned to asso-
ciate multiple response maps via attention modules, in which
location cues are used to prevent response maps from diverse
sharp peaks. STMTrack [54] leveraged Non-Local attention
to retrieve diverse target cues in a video sequence and fuse
them into the template feature map during inference. As a
result, the representation of template features is advanced
and the tracking performance gets more robust. HSSNet [55]
proposed an attention-based spatial-aware network, aiming
to make Siamese trackers more robust to spatial rotation,
scaling, and translation in thermal infrared object tracking.

Following that, MLSSNet [56] combined a multi-level
similarity network with a Siamese framework, which
demonstrated the ability of attention for modeling seman-
tic and structural similarities. MMNet [57] constructed a
fine-grained aware module, devoted to learning intra-class
representation of objects via a Non-Local network.

Inspired by the notable achievements mentioned above,
we develop a channel- and space-aware feature enhancement
block (CSE) to make full use of the target-specific informa-
tion via attention. It is combined with both self-attention and
cross-attention. A recent work whose implementation seems
like that of our method is SiamAttn. In fact, there are clear dif-
ferences between the two networks. We emphasize that prior
cues of the target in the initial frame are of great significance
in object tracking. Contrastingly, SiamAttn pays little atten-
tion to the given cues when enhancing feature representation
in the network. Besides, our proposed CSE block interprets
the target cues and the initial annotation as guidances and
incorporates them into the data flow of feature processing.
Nevertheless, SiamAttn runs in a completely self-attentive
fashion—without any guidances in feature processing.

C. EXPLOITATION OF TEMPORAL INFORMATION
Most existing Siamese trackers that integrate temporal infor-
mation into its feature processing adopt strategies of tem-
plate replacement or residual feature updating. For instance,
DROL [22] incorporated a plug-and-play component
into Siamese trackers, which collects potential template
images according to historical tracking results and replaces
the template feature map once meeting the conditions.
STMTrack [54] dynamically integrated diverse template fea-
ture maps into a single one during tracking, so that var-
ied target appearance information could be imposed into
the template map, which facilitates robust object tracking.
UpdateNet [23] was proposed aiming at online template
feature tuning, which is comprised of a base tracker and an
updater. The updater was devoted to learning target appear-
ance variation from adjacent frames and integrating it into
template features frame by frame. Nevertheless, it failed to
take the object detection datasets as its training sets, and
its training strategy requires tedious adaptions of video data
in advance compared to general Siamese strategies. Differ-
ent from that, Siam R-CNN [58] introduced a re-detection
scheme and a tracklet-based algorithm into Siamese trackers,
interpreting object tracking as local feature matching of
the Region of Interest (RoI) over video frames. Despite its
significant success in terms of high-quality performance,
it introduces heavy computation loads, which is uneconomi-
cal in practice.

Different from all the trackers mentioned above, our
method equippedwith the proposedMDI-XCorr block allows
better use of temporal cues involved in response maps gen-
erated by adjacent frames. MDI-XCorr enables Siamese
networks to capture and model target movement over the
time dimension. In addition, all of the above-mentioned
deep trackers require deliberate modification of their training
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FIGURE 1. The overall structure of DPINet. There are two parallel branches in Fusion of Multi-Dimensional Cues for different subtasks
(classification and regression) without sharing their parameters.

settings to accommodate the introduction of temporal infor-
mation. In contrast, Siamese trackers combined with the
MDI-XCorr block can fully utilize the general training set-
tings tailored for themselves [10], [11], [17], requiring only a
few adjustments to the training strategies.

III. PROPOSED METHOD
A. FRAMEWORK OF DPINet
As presented in Fig. 1, the proposed DPINet contains four
core components: Feature Extraction, Feature Enhance-
ment, Fusion of Multi-dimensional Cues, and Anchor-
free Prediction. Feature Extraction takes triplet images
as inputs, i.e., the template image Z and two search region
images X t and X t−1 in adjacent frames. It serves to map the
images to an embedding space, from which visual features
in the template and search branches can be derived. Subse-
quently, the obtained feature maps (Zf , X tf , and X t−1

f ) are
enhanced in Feature Enhancement. The CSE block in this
stage tends to highlight target-specific cues in the channel and
spatial dimensions with the guidance of the ground truth b.
The resulting feature weights (Zen, X ten, and X

t−1
en ) are then

delivered to the MDI-XCorr block for the Fusion of Multi-
dimensional Cues as well as temporal information mining.
It should be noted that there are two parallel MDI-XCorr
blocks in this component, one for the classification branch
and the other for the regression branch. The fused response
maps, involving multi-dimensional cues, are finally fed to
Anchor-free Prediction heads [11]. To be specific, a classi-
fication map (CM) and a regression map (RM) are induced
via prediction heads that consist of stacked convolutional
layers, and both of them have the same spatial dimensions.
For each location (lx , ly) on the responsemaps, RM provides a
proposal bounding box and CM estimates the confidence that
the area within the bounding box belongs to the foreground.
The proposal bounding box with the highest confidence score

is considered as the final output of the tracker to locate the
target in the current video frame. More details of the anchor-
free heads are referred to [11].

1) MOTIVATION
As discussed previously, existing Siamese trackers treat the
tracking task as a detection problem based on matching
between a template and candidate windows in frames. How-
ever, there are limitations to the tracking-by-detection style.
First, in terms of utilization of the initial target image,
the original Siamese tracker delivers feature weights of the
template image directly to the similarity estimation (cross-
correlation) module without target-oriented modification.
Although recent works [52], [53] address this problem by
enhancing feature representation, they mostly neglect the
prior information of targets, i.e., the given annotation in the
initial frame. It remains unclear how to effectively make use
of this kind of prior cues in the tracking task. Second, the
cross-correlation module in a Siamese network involves no
temporal information—the target motion cues embedded in
video data cannot be captured and utilized. Despite a series
of improvements to the cross-correlation module [10], [15],
[16], to our best, there is no work managing to incorporate
temporal information into the cross-correlation module to
improve tracking quality. The proposed blocks, CSE and
MDI-XCorr, are just tailored to solve the problems.

B. REVIEWING SIAMESE NETWORK AND NON-LOCAL
ATTENTION
1) SIAMESE NETWORK
A Siamese network is comprised of two input branches,
namely the template branch and the search branch. Their cor-
responding input data are the template image Z (a small area
containing the tracked target) and the search region image X
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FIGURE 2. The original Non-Local attention module.

(a much larger one centered at the last estimated position of
the target), respectively. Feature weights are extracted from
the original image patches by a shared backbone, which is
crucial for generic similarity learning. Then similarity cal-
culation between the template and the search image is per-
formed. The Siamese paradigm can be formulated as follows:

sθ (Z ,X ) = fθ (Z ) ⋆ fθ (X ) + b · 1, (1)

where fθ denotes the feature embedding, ⋆ the naive cross-
correlation operation [8], sθ (·, ·) the response map, and b the
bias. The larger the value on the map is, the more probable
the target is located in the corresponding candidate region.

2) THE ORIGINAL NON-LOCAL ATTENTION
The original Non-Local attention is illustrated in Fig. 2, the
core mechanism of which is similar to that of a look-up-
table. Three convolutional layers with a kernel size of 1 × 1
(denoted by fQ, fK , and fV ) are employed for dimensionality
reduction in the channel domain (from c to c/n) and linear
projection of the input feature map X ∈ Rc×w×h (n is set
to 2 in this work). We let query, key, and value denote
the outputs of each convolutional layer. Subsequently, the
similarity between query and key is computed by matrix
multiplication. Each row of the resulting matrix represents
the similarity estimation between a specific feature vector on
query and all feature vectors on key. Afterwards, the matrix is
scaled and multiplied by value. The obtained visual features
then pass through an up-dimensional convolutional layer
(denoted by fO) to restore the channel dimensionality from

c/n to c. The final output Y ∈ Rc×w×h of the Non-Local
module is derived by residual learning.

The Non-Local attention can be formulated as:

Y =
1

C(X )
g(X ,X )h(X ) + X , (2)

where the function h(X ) = fV (X ) is used to calculate value in
each position of X , g is a similarity calculator, and C(·) is the
scale factor. In this work, we adopt the Embedded Gaussian
function [24] to model the similarity between vectors:

g(X ,X ) = efQ(X )
′T fK (X )′ , (3)

where fj(X )′ ∈ Rc×(wh), j ∈ {Q,K } denotes the reshaped
query or key fj(X ) . In this way, the similarity calculation
together with the scaling transformation is equivalent to a
softmax operation on fQ(X )′

T fK (X )′.
We define:

Atten(X1,X2) = softmax(fQ(X1)′
T fK (X2)′)fV (X2)′. (4)

In this way, Non-Local attention can be written as follows:

Y = NonLocalself(X )

= fO(Atten(X ,X )) + X , (5)

where NonLocalself represents the so-called self-attention.
Moreover, a Non-Local module can also take different feature
maps as inputs:

Y = NonLocalcross(X1,X2)

= fO(Atten(X1,X2)) + X1, (6)

where X1 ∈ Rc×w1×h1 , X2 ∈ Rc×w2×h2 , and Y ∈ Rc×w1×h1 .
NonLocalcross is interpreted as a cross-attention operation.

C. CHANNEL- AND SPACE-AWARE FEATURE
ENHANCEMENT
An essential requirement of object tracking is that a tracker
should have the ability to locate an agnostic object, including
that in categories not covered in its training sets. In practice,
when objects of the same category appear at the same time,
it is still challenging for the tracker to continuously identify
and locate one of the objects. Clearly, target-specific features
are substantially crucial for the tracker to discriminate the tar-
get from distractors. Nevertheless, how to obtain high-quality
representation for a specific target remains to be explored.

To attack this issue, we design a channel- and space-aware
feature enhancement (CSE) block. This block is devoted to
exploiting prior information in the initial frame and merging
the information into the data flow of Siamese networks.
The block is comprised of three submodules, i.e., Spatial
Attention, Foreground-Background Attention, and Channel
Attention, which are illustrated in Fig. 3. It should be noted
that, since the procedure of feature enhancement for X t and
X t−1 are exactly identical (the two search branches share their
parameters in CSE), the one forX t−1 is not displayed in Fig. 3
for simplicity and clarity.
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FIGURE 3. The architecture of CSE.

FIGURE 4. Visualization of (a) template image Z , (b) attention map
derived from the Non-Local module in the template branch, (c) binary
foreground mask Mfg, and (d) map of foreground-background cues
Mcues. Three video sequences, ants1, crabs1, and bolt1, are derived from
VOT2019 [27] dataset.

1) SPATIAL ATTENTION
A template feature map Zf , which is extracted from the first
frame in a video sequence, is usually fixed and stored in
a cache pool during inference. Thus, the quality of feature
representation of the tracked target is crucial for similar-
ity calculation in subsequent frames. However, as exhib-
ited in Fig. 4(a), background areas or distractors may be
involved in the template image patches, which lead to inac-
curate feature representation and weaken the reliability of
the response maps obtained via cross-correlation calcula-
tion. Thanks to the notable ability of Non-Local attention in
modeling long-range dependency, a self-attention module is
employed to emphasize the target-related visual features and

to suppress unnecessary representation. The enhanced feature
map can be calculated by:

Z ′
f = NonLocalself(Af ). (7)

In our empirical studies, a Siamese network can learn
target-aware feature weights to some extent when employ-
ing a Non-Local attention module in the template branch.
We visualize the attention heatmap1 in the Non-Local mod-
ule, and the results are shown in Fig. 4(b).We observe that the
tracker equipped with Spatial Attention in the network tries
to see the center area of the target rather than the background
areas, which demonstrates the efficacy of Spatial Attention.

2) FOREGROUND-BACKGROUND ATTENTION
Previous Siamese networks pay little attention to the exploita-
tion of prior information, e.g., the given annotation of the
target in the initial image. We argue that target-specific
cues provided during tracking should be fully utilized to
meet the requirement of category-independent tracking.
Thus, we develop a Foreground-Background (FG-BG) Atten-
tion to focus on the utilization of the prior information
and the enhancement of target-aware representations in the
search branch. Since the Siamese architecture developed for
category-independent tracking is based on local matching, the
consistency of target representations in templates and search
regions is much significant for similarity calculation. With
this in mind, FG-BG attention focuses on better utilization
of target appearance cues in templates and improvement

1For the method of visualization, please refer to https://colab.research.
google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_
attention.ipynb
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FIGURE 5. The architecture of CD.

of consistency between the search branch and the template
branch for specific representations. The basic idea behind it
is that the annotation bounding box can be interpreted as a
spatial guidance for search region features—it marks out an
area containing as many target cues and as little background
information as possible.

Fig. 3 details the proposed FG-BG Attention. The binary
foreground mask Mfg and background mask Mbg have the
same spatial size as the template feature map Zf . Both
masks are derived from the annotation bounding box in
the initial frame. They are firstly concatenated along chan-
nel dimension (Concate) and fed to an hourglass network
δ, which is comprised of two stacked convolutional layers
and two up-sample layers. The hourglass network can learn
a spatial distribution of target-related regions on the tem-
plate feature map, which is represented by a single-channel
mapMcues:

Mcues = δ(Concate(Mfg,Mbg)), (8)

where δ is the hourglass network as shown in Fig. 3. The map
Mcues is a soft mask that contains foreground-background
cues and is merged into the data flow of the search branch
as a guidance signal. The rest of FG-BG Attention is
considered as a cross-attention operation, which can be
formulated by:

X ′
f = softmax

(
ϕ(Xf )′

T
θ (Zf )′

)
Mcues ⊕ Xf , (9)

where ⊕ denotes broadcast addition, and ϕ and θ are the
feature embeddings. Herein, ϕ(Xf ), θ (Zf ), and Mcues play
the same roles as query, key, and value in a standard cross-
attention module, respectively. According to the properties
of Non-Local attention, elements of value greater than and
less than zero can be used to enhance the response on the
similar elements of query and key and suppress the others
via matrix multiplications as well as additions, respectively.
Based on that, in FG-BG attention, target feature represen-
tations in the search branch can be enhanced by specifying
positive and negative activation values on value (i.e., Mcues)
to distinguish between targets and distractors. In this regard,
the hourglass network plays a key role. It learns from Mfg
and Mbg and automatically marks target-related and non-
target areas on Mcues using positive and negative response

values respectively. More discussions of Mcues are presented
in Section IV-C2.

3) CHANNEL ATTENTION
Since the input branches share their backbone, feature maps
derived from the branches tend to show the same activation
pattern in the channel domain when representing the same
object. We expect Siamese networks to learn the pattern
respecting the channel distribution automatically.

For this purpose, we impose Channel Attention into the
CSE block. The diagram of the submodule is shown in Fig. 3.
This submodule is tailored to exploit target-specific repre-
sentation over feature channels of Zf and to reinforce the
consistency between Zf and Xf . It leverages a Precise RoI
Pooling [59] (PrPool) layer to extract RoI feature weights
Zroi from the template feature map Zf , which is supervised
by the given annotation bounding box b, and then captures
channel cues over Zroi via three different units, i.e., GAP,
GMP, and CD.

The units GAP and GMP perform global average pooling
and global max pooling over the spatial domain on feature
map Zroi, respectively. CD is another core unit of the Channel
Attention submodule, details of which are presented in Fig. 5.
It serves to find a convolutional embedding, in which channel
dependency within the input feature map can be captured by
matrix multiplication. The resulting matrix is interpreted as
a new feature map, adjusted via a group convolutional layer
(Group Conv), and mapped linearly to the original feature
space through a convolutional layer with a kernel size of
1 × 1 (1 × 1 Conv). In general, GAP provides generic
representation of the target in feature channels, GMP gathers
channel-wise target-distinctive cues [60], and CD identifies
the inter-channel dependency. Thus, the three units in Chan-
nel Attention are complementary to each other.

Channel cues derived from the units are represented by
three feature vectors with the same size of c× 1 × 1 , which
serve as supervisions for target-oriented feature enhance-
ment. To be integrated into the raw visual features, they
are concatenated along the spatial dimension and fed to a
kernel-asymmetric convolutional layer η (with a kernel size
of 3 × 1) for information integration. In this way, the final
feature vector with the size of c×1×1 can be simply merged
into the data flow of both the template branch and search
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FIGURE 6. The overall structure of MDI-XCorr. Branches for classification and regression are with the same architecture, and only the
classification one is displayed for simplicity.

branch by channel-wise broadcast multiplication. Channel
Attention Catt can be formulated as:

Catt = η(Concate(GAP,GMP,CD)), (10)

where Zroi = PrPool(Zf , b). In this way, the enhanced feature
maps can be written as:

Zen = Z ′
f ⊛ Catt ,

Xen = X ′
f ⊛ Catt , (11)

where ⊛ denotes channel-wise broadcast multiplication.

D. FUSION OF MULTI-DIMENSIONAL CUES
The seminal Siamese network is not concerned with the
temporal cues involved in the video data. Most recent works
on the utilization of temporal cues focused on improving the
template branch, e.g., replacement [22] or adjustment [23]
of the template features. Nevertheless, they failed to make
use of the relative position change of the tracked object w.r.t.
the background or distractors for accurate target positioning.
Different objects tend to have different movement patterns
that can be utilized as a criterion to distinguish between the
target and others. We expect Siamese trackers to learn to
analyze and capture the movement of objects by considering
such the property as prior knowledge in videos.

With the motivation of that, we improve the cross-
correlation module in Siamese networks and propose a cross-
correlation block with multi-dimensional information fusion
(MDI-XCorr) to utilize temporal information in videos. It is
arranged to aggregate feature weights from the template and
search region over the spatial and channel domains and to
mine motion cues of objects in response maps of adjacent
frames. Compared with previous methods, our method aims
to explore target motion on response maps rather than tem-
plate features. This is because the response maps embrace
diverse visual features derived from both the template and
search region images, the consistency of which is boosted in
CSE in advance. Meanwhile, not only the tracked target but
also distractors are involved in a response map. This makes it

feasible for Siamese networks to learn to capture and model
the relative motion of the target w.r.t. distractors when the
CSE block and the MDI-XCorr block are both employed in
networks.

The MDI-XCorr block is comprised of two compo-
nents, Feature Fusion over Channel and Spatial Dimen-
sions and Combination with Temporal Cues. Fig. 6 details
the architecture of the MDI-XCorr block, where Zen, X ten,
and X t−1

en are the feature maps that have been enhanced
in the CSE block. Triplet feature maps are taken as inputs
of MDI-XCorr, in which two depth-wise cross-correlations
are firstly performed, and the response maps Rt ,Rt−1

∈

Rc×(WX−WZ+1)×(HX−HZ+1) on adjacent frames X t and X t−1,
respectively, are induced. Rt and Rt−1 embrace information
about channel-wise and position-wise correlation. Since the
response maps at different time points (t and t − 1) are in the
same embedding space, it is feasible for them to be explicitly
fused. Thus, we employ a pixel-wise cross-correlation [61]
(PW-XCorr) layer to explore the motion cues of objects on
Rt and Rt−1.

PW-XCorr is a variant of naive cross-correlation. Given a
template feature map T ∈ Rc×w0×h0 and a search region fea-
ture map S ∈ Rc×w1×h1 , the PW-XCorr operation generates
a feature map F ∈ R(w0h0)×w1×h1 . It can be formulated as:

F = {Fn |Fn = Tn ⋆ S}n∈{0,1,...,w0×h0−1}, (12)

where ⋆ represents the naive cross-correlation. To be specific,
when performing PW-XCorr, we consider the feature vector
Tn at each spatial position on the template feature map T
as a kernel for naive cross-correlation calculation. The basic
idea behind the adoption of PW-XCorr is that PW-XCorr
intrinsically models the pair-wise relationship of vectors (cor-
responding to small candidate windows in the raw images)
on two feature maps, which allows searching for the same
object on both maps and capturing information about the
relative position to the others. Besides, since both the naive
cross-correlation and the depth-wise one [10] consider the
whole template features as a correlation kernel, the integrity
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of spatial information of the response map can be virtually
broken. Differently, PW-XCorr maintains spatial information
in detail, meanwhile keeping the size (width and height) of
the output feature map consistent with that of the inputs.

In fact, PW-XCorr transfers spatially relevant information
about the objects into the channels of the response map.
In order to recover the information back to the spatial domain,
the resulting response map is delivered to successive stacks
of convolutional layers (Channel Adaption) as shown in
Fig. 6. It should also be noted that PW-XCorr can only detect
the movement of each object but cannot find the target in
the response maps according to the characteristics of the
PW-XCorr operation. Hence, a vanilla Non-Local module
is employed in MDI-XCorr to recognize the most salient
target signal that has been highlighted in CSE. The output
of Non-Local is merged into the response map Rt of the
current frame via a residual connection, and the final feature
map Rf embracing multi-dimensional (channel, spatial, and
temporal) cues is fed to a classification head and a regression
head for further target state estimation.

E. TRAINING AND INFERENCE
1) TRAINING STRATEGIES
Previous Siamese trackers that aim at taking advantage of
temporal information in videos have certain requirements for
training strategies, including removing image datasets [58]
and sampling training data continuously [23] (from the initial
frame to the last one in a video sequence). We expect our pro-
posed network to benefit from general training settings and
sampling strategies designed for Siamese trackers, especially
the data augmentation methods that improve the discrimina-
tive ability of the tracker by learning from semantic negative
pairs in object detection datasets [17].

To this end, we make a few modifications to conventional
training strategies tailored for Siamese trackers. In adaption
to the triplet input of DPINet, from video datasets, we take
triplet images in the same sequence as a positive sample,
while the template and search region images from different
sequences are considered as a negative sample. It is worth
noting that X t and X t−1 are always sampled from adjacent
frames. To take advantage of multi-category annotation in
object detection datasets, we treat both template and search
region images containing the same instance as a positive
sample and those involving different instances as a negative
sample. X t and X t−1 are always the same image patch in case
of being generated from image datasets.

Moreover, previous Siamese networks take double images
as inputs. In this case, the back-propagation gradients in
the template branch and the search branch are symmetric.
Nevertheless, the search branch in DPINet receives double
images in training, resulting in the propagation of a double
gradient when parameter optimization of the search branch
is performed. Such an asymmetric learning pace may lead to
poor convergence of the network. To address this problem,
we detach the gradient flow respecting X t−1 in training to

maintain the consistency of parameter optimization in the
input branches.

By simply adjusting training strategies with the approaches
mentioned above, our proposed Siamese network can make
full use of numerous offline training samples and be trained
end-to-end.

2) LOSS FUNCTION
Following [11], we employ the center-based anchor-free
heads, including a classification head and a regression head,
for target state estimation. We adopt cross-entropy loss LCE
and IoU (Intersection over Union) loss LIoU as their loss
function, respectively. The final training objective is defined
as follows:

loss = λ1LCE + λ2LIoU, (13)

where λ1 and λ2 are set to 1 in network training. More details
about center-based anchor-free settings are referred to [11].

3) INFERENCE
The proposed tracker is initialized using the initial frame, and
the template features are cached and not released until the end
of inference on a video. For subsequent detection on video
frames, the tracker receives a single image continuously, pre-
dicts the target state using the cached response features corre-
sponding to the previous frame as specified in Section III-A
(the MDI-XCorr block does not utilize motion cues when
t = 1), and caches the necessary data corresponding to the
current frame for tracking on the next frame. In this way,
despite only two adjacent frames taken for feature interaction
fusion, the features of the reference frame used for motion
detection are constantly updated to maintain the utilization
of motion cues.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
We apply general training settings for DPINet (except a
few adaptions discussed in section III-E1). To be specific,
we set the mini-batch size to 48 and the training epoch to 20.
A Stochastic Gradient Descent (SGD) optimizer is deployed
for network training, momentum and weight decay of which
are set to 0.9 and 0.0001, respectively. A warm-up learning
rate from 0.002 to 0.01 is adopted in the first 5 epochs.
During the rest of the training phase, the learning rate decays
exponentially from 0.01 to 0.0001. ResNet-50 [32] pretrained
on ImageNet dataset [62] is employed as the backbone of
DPINet, and we remove its layers after the fourth stage
for computational efficiency. All backbone parameters are
frozen in the first 10 epochs, and parameters of the third and
fourth stages in the last 10 epochs are unfrozen and fine-
tuned with a small learning rate of 0.1 times. Six datasets are
used for offline training, including GOT-10k [28], MS COCO
[21], LaSOT [29], ImageNet VID [62], ImageNet DET [62],
and Youtube-BB [63]. The size of template images is set to
127×127 and that of search images is set to 255×255. All of
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FIGURE 7. Success and Precision plots on OTB100 benchmark. AUC
scores and distance precision rates at the threshold of 20 are displayed
and ranked in the legends.

the images are sampled centering on the targets, with random
center shift, random blur, and random color enhancement
as data augmentation. This work is implemented in Python
using Pytorch on a PC with Nvidia RTX 2080ti. The code is
available at https://github.com/qq1018408006/DPINet.

B. COMPARISON WITH SOTA CNN-BASED TRACKERS
In this section, we compare our proposed tracker DPINet with
other SOTA CNN-based methods on four prevalent bench-
marks, i.e., OTB100 [25], VOT2018 [26], VOT2019 [27],
GOT-10k [28] test set, and LaSOT [29] test set.

1) OTB100
OTB100 [25] is a classical benchmark in object tracking.
It contains 100 public video sequences with average frames
of 590. The videos are collected in many challenging sce-
narios, including background clutters, low resolution, defor-
mation, etc. We conform to the criteria in [25] and conduct
One-Pass-Evaluation (OPE) for our tracker with metrics of
Precision and Area Under Curve (AUC) of the Success plot.
The proposed DPINet is compared with SiamRPN++ [10],
ATOM [4], SiamFC++ [18], Ocean (offline) [64], Ocean
(online) [64], DiMP [5], SiamBAN [11], PrDiMP [6], and
KYS [7], evaluation curves of which are presented in Fig. 7.
Our proposed tracker achieves a leading performance on
AUC of 0.702, outperforming all of the other comparison
trackers, particularly the recent powerful DCFmethods KYS,
PrDiMP, and DiMP. Besides, DPINet ranks fourth on Preci-
sion evaluation, showing a favorable achievement as well.

We also analyze the performance of trackers under several
video attributes in Fig. 8. We can see that the proposed
method is effective in dealing with Out-of-Plane Rotation (c),
Low Resolution (e), and Illumination Variation (k), obtain-
ing the highest score on AUC of 0.691, 0.729, and 0.730,
respectively. This is mainly ascribed to the well-designed
CSE block, which facilitates to capture high-quality and
target-specific information from the initial frame despite the
aforementioned disadvantages. Besides, DPINet can handle
Fast Motion (j) well and achieves a top-ranked performance
(an AUC score of 0.704) in the challenging scenario. It indi-
cates that the tracker DPINet equipped with MDI-XCorr can

cope with fast-moving targets better than its counterparts,
demonstrating the advancement of our proposed MDI-XCorr
block. The proposed tracker does not perform well in Out-
of-View (b) and Occlusion (g), ranking fourth and fifth,
respectively. This is attributed to the inherent flaw of the
Siamese trackers. That is, when some portion of the target
leaves the view of search region or is blocked by distractors,
the responsemaps obtained from appearance-based similarity
calculation are hardly reliable. In these cases, a false pos-
itive is usually predicted by the tracker, causing the target
bounding box to drift. Moreover, despite the lack of online
adaptation of our tracker, DPINet still shows satisfactory
results in the remaining challenging scenarios compared to
the powerful DCF trackers or updating-based approaches
including DiMP, PrDiMP, KYS, and Ocean (online).

We additionally report the tracking results on several
sequences of OTB100. As shown in Fig. 9, our approach
is more responsive to challenges than other trackers. From
Fig. 9(a) and (b), more specifically, we can find that DPINet
is good at tracking fast-moving targets. In contrast, ATOM,
Ocean (online), and PrDiMP are prone to drift, leading to
inferior tracking quality. Fig. 9(c) and (d) illustrate trackers’
ability to deal with distractors. The proposed tracker can
handle the challenge factor well, endeavoring to infer a tightly
wrapped bounding box for the tracked object. ATOM and
SiamFC++, sensitive to distractors, can hardly identify targets
in these two videos. DPINet also performs well in open
outdoor scenes and indoor scenes, tracking results of which
are displayed in Fig. 9(e), (f) and Fig. 9(g), (h), respectively.
Particularly, performances of most DCF trackers, i.e., ATOM,
DiMP, and PrDiMP, are inferior to that of DPINet when the
illumination changes dramatically as Fig. 9(g) and (h) reveal.
It suggests that the online-updating strategy adopted by the
DCF family is barely effective in this case, and contrastingly,
the utilization of diverse prior information does enable a
favorable tracking performance for the Siamese trackers.

2) VOT2018 AND VOT2019
The VOT datasets embrace videos with more severe defor-
mation of objects than those in OTB100. Meanwhile, the
annotations for targets are not axis-aligned bounding boxes
but rotated ones, which is more challenging for high-quality
tracking. Both VOT2018 [26] and VOT2019 [27] con-
tain 60 video sequences. Three measures in this type of
benchmark are Expected Average Overlap (EAO), Accu-
racy, and Robustness. The higher the scores of Accuracy
and EAO are, the better the tracker performs, while the
opposite is true for Robustness. We compare DPINet with
SiamRPN++ [10], ATOM [4], SiamFC++ [18], DiMP [5],
SiamBAN [11], Ocean (offline) [64], Ocean (online) [64],
PrDiMP [6], STMTrack [54], and SiamRN [65] onVOT2018,
and with SiamRPN++ [10], SiamMask [66], SPM [67],
ATOM [4], Ocean (offline) [64], Ocean (online) [64], and
SiamRCR [68] on VOT2019. Comparative results on the two
benchmarks are detailed in Table 1 and Table 2, where the top
three results of each metric are boldfaced, underlined, and
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FIGURE 8. Success evaluation on OTB100 in terms of challenge attributes, including (a) Scale Variation, (b) Out-of-View,
(c) Out-of-Plane Rotation, (d) Deformation, (e) Low Resolution, (f) Motion Blur, (g) Occlusion, (h) Background Clutters, (i) In-Plane
Rotation, (j) Fast Motion, and (k) Illumination Variation. Trackers are ranked based on their AUC scores.
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FIGURE 9. Tracking results of the comparison trackers on 8 challenging video sequences of OTB100, including
(a) Basketball, (b) Bird1, (c) Board, (d) ClifBar, (e) Girl2, (f) Human4-2, (g) Skating1, and (h) Soccer.

italicized, respectively. As shown in Table 1, our proposed
method achieves an EAO score of 0.474 and an Accuracy
score of 0.609 on VOT2018, ranking second in terms of the
two metrics. It should be noticed that both the top-ranked
trackers in terms of EAO and Accuracy, Ocean (online) and
PrDiMP, employ an online updating module that introduces
heavy computation loads during inference (see the running

speeds provided in Table 3). Differently, the proposedDPINet
achieves a proper balance of EAO and Accuracy. It runs
in an updating-free manner, which is more computationally
efficient. In regard to the evaluation on VOT2019 (Table 2),
DPINet achieves the second best performance on EAO of
0.336, trailing the updating-based tracker Ocean (online) by a
margin of 0.014. Our tracker ranks first and second in terms of
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TABLE 1. Performance comparisons on VOT2018 in terms of EAO, Accuracy, and Robustness.

TABLE 2. Performance comparisons on VOT2019 in terms of EAO, Accuracy, and Robustness.

TABLE 3. Evaluations on GOT-10k test dataset in terms of Average Overlap (AO) and Success Rate (SR, the subscript 0.5 indicates the threshold of the
metric).

FIGURE 10. Success and Precision plots on LaSOT test set.

Accuracy and Robustness, respectively, outperforming most
of the comparison trackers. These results confirm the superi-
ority of the well-established Siamese tracker DPINet.

3) GOT-10k
GOT-10k [28] is a popular large-scale dataset derived from
the wild. Following protocols in [28], we retrain DPINet on
GOT-10k training set and evaluate our tracker on the test
set for a fair comparison. Two metrics of the benchmark are
Average Overlap (AO) and Success Rate (SR). Comparative
results of SiamRPN++ [10], ATOM [4], Ocean (offline)
[64], Ocean (online) [64], SiamFC++ [18], SiamCAR [19],
DiMP [5], PrDiMP [6], and DPINet are presented in Table 3,
where the top three results of each metric are boldfaced,
underlined, and italicized, respectively. Our method achieves
desirable performance, ranking second with an AO score of
0.613. The proposed tracker outperforms the online track-
ers, Ocean (online) and DiMP, by a margin of 0.2% on
AO (0.613 vs. 0.611). In addition, although surpassed by
Ocean (online) and PrDiMP in terms of SR0.5, our approach
runs more than twice as fast as them (71 FPS vs. 25 FPS
and 30 FPS). DPINet ranks second in terms of operation

speed, meeting the requirement of real-time operation and
achieving a better balance between the tracking quality and
the inference speed. Overall, DPINet shows comparable per-
formance against most SOTA DCF trackers and excellent
achievement among Siamese ones.

4) LaSOT
LaSOT is one of the recently released large-scale object
datasets. Its test subset offers 280 video sequences with
70 categories and more than 680k frames along with
high-quality annotations. We follow protocol II [29],
retrain DPANet on LaSOT training set, and evaluate the
tracker on the test set. The proposed tracker is com-
pared with SiamMask [66], DaSiamRPN [17], SiamRPN++

[10], ATOM [4], GlobalTrack [69], SiamCAR [19],
SiamBAN [11], and CGACD [70]. Since the precision metric
is sensitive to the target size and image resolution [29],
herein, we take AUC of the Success plot and Normalized
Precision as metrics for evaluations. As shown in Fig. 10, the
proposed approach achieves a leading AUC score of 0.527,
which is 0.009 higher than the second place. Besides, DPINet
ranks second in terms of Normalized Precision by a score
of 0.620, lagging behind the recently proposed two-stage
refinement tracker CGACD by only 0.006. Moreover, com-
pared with SiamBAN, which employs the same anchor-free
prediction heads, our DPINet improves the scores by 0.013
and 0.022 respectively in terms of the two metrics. All the
comparative results can demonstrate the favorable perfor-
mance of the well-established DPINet in large-scale object
tracking.

C. ABLATION STUDY
In this section, we conduct a component-by-component anal-
ysis, involving the proposed CSE and MDI-XCorr block.
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TABLE 4. Ablation study of different blocks and modules of DPINet on OTB100 and VOT2018.

FIGURE 11. Visualization of (a) search region patches and corresponding classification maps output by the classification head of
(b) tracker 1, (c) tracker 2, and (d) tracker 4 on four sequences of VOT2019.

All evaluations for variants of DPINet are conducted on
OTB100 and VOT2018. We prune each key block or module
of the original tracker separately and record whether there
is any degradation or improvement in tracking performance.
Table 4 shows the architecture as well as the performance
of each variant, where the equipping of each key module
is indicated by ✓and the removal of the module is indicated
by -. As shown in the table, the first group of trackers (from
tracker 1 to tracker 4) is evaluated to demonstrate the effi-
cacy of CSE and MDI-Xcorr as explained in Section IV-C1.
Moreover, the second group of experiments on variants (from
tracker 5 to tracker 10) is conducted to reveal the potential
of each key module within CSE and MDI-XCorr as men-
tioned in Section IV-C2 and Section IV-C3, and the additional
group of variants (tracker 11) is assessed to demonstrate
complementarity between CSE and PW-XCorr as discussed
in Section IV-C3.

1) DISCUSSION ON THE PROPOSED BLOCKS
We conduct experiments to evaluate the effects of the pro-
posed CSE and MDI-XCorr blocks. Experimental results
are shown in Table 4. Tracker 4 with both CSE and
MDI-XCorr employed represents the proposed DPINet, and
tracker 1 without any extra blocks is taken as the baseline.
When activating the CSE block, the baseline yields a sub-
stantial gain of 0.026 (0.700 vs. 0.674) and 0.065 (0.442 vs.
0.377) in terms of AUC (OTB100) and EAO (VOT2018),
respectively. The CSE block is actually a lightweight com-
ponent, which introduces few computational burdens into
tracker 2 during inference (a running speed reduction of
5 FPS compared to tracker 1). The tracking quality can be
further improved (a gain of 0.002 on AUC and 0.032 on
EAO) once another core component MDI-XCorr is prepared,
as the evaluations of tracker 4 and tracker 2 in Table 4
reveal. The combination of temporal information brings a
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FIGURE 12. Three-D visualization of (a) Mfg and (b) Mcues on ants1,
crabs1, and bolt1 of VOT2019.

deal of computational consumption, but the tracker can still
run at real time (71 FPS). Interestingly, the baseline’s perfor-
mance is degraded once equipped with only the MDI-XCorr
block—a performance drop of 0.001 on AUC and 0.007 on
EAO (tracker 3 vs. tracker 1). This is because, as men-
tioned in section III-D, the Non-Local module in MDI-XCorr
endeavors to capture the most salient cues in feature maps,
which relies on the enhancement of target-related features in
CSE. That is, the MDI-XCorr block can hardly discriminate
between the target and distractors by itself. The comparison
between tracker 4 and tracker 3 in Table 4 confirms the rela-
tionship between the two blocks—CSE makes MDI-XCorr
more effective, meanwhile delivering a performance gain of
0.029 on AUC and 0.104 on EAO.

We additionally report the classification maps output by
tracker 1, 2, and 4 in Fig. 11. The baseline (tracker 1) is
sensitive to all distractors around the tracked target and fails
to distinguish between the distractors and the target since
no target-specific prior information is used (row (b)). Once
equipped with the CSE block (tracker 2), the tracker is able
to take account of the target-specific cues and discriminate
objects with spatially distinctive characteristics from the tar-
get, such as the ant that is climbing in ants1 and the players
dressed differently in basketball (row (c)). In this case, nev-
ertheless, the tracker cannot deal with objects with a similar
appearance to the tracked target. Upon the MDI block being
prepared (tracker 4), objects with distinctly different move-
ment patterns can be detected by the tracker, and such object

FIGURE 13. Visualization of (a) image patches X , (b) corresponding
attention map within SXZ , and (c) residual attention Mres.

motion cues can be incorporated into feature processing as a
supervision to refine the response maps. In this way, objects
with similar appearance but different motion modes, e.g., the
runner in green near the tracked one in bolt1 and the stationary
crabs around the moving target in crabs1, can be identified
(row (d)). Sharp peaks generated by them on the classification
maps can be suppressed to some extent, which substantially
improves tracking quality and stability of the baseline.

2) DISCUSSION ON MODULES OF CSE
In this section, we discuss the impact of each submodule in
the CSE block on tracking accuracy. We conduct a group of
experiments with CSE by removing Spatial Attention (SA),
Foreground-Background Attention (FG-BG), and Channel
Attention (CA) separately, which corresponds to tracker 5,
6, and 7 in Table 4, respectively. Evaluations of the variants
of tracker 2 are reported in Table 4. It can be observed that
the performance of tracker 5, 6, and 7 is inferior to that of
tracker 2. This suggests that all three submodules are virtually
functional. Besides, tracker 6 and 7 show a more significant
degradation than tracker 5 compared with tracker 2 (e.g.,
a drop of 7.6% and 6.2% against that of 4.4% on EAO).
In other words, FG-BG and CA play a more crucial role than
SA to improve tracking quality. This supports the benefit of
using target-specific guidance (in both spatial and channel
domains) to advance the representation power of visual fea-
tures in Siamese networks.

For intuitive comprehension, foreground mask Mfg and
2-D visualization of Mcues in three videos are shown
in Fig. 4(c) and (d), respectively. It can be observed that
the hourglass network in FG-BG pays extra attention to
the background region comparing Mcues with Mfg. Three-D
visualization of Mcues and Mfg are additionally exhibited in
Fig. 12. Clearly, the activation values in background areas
of Mcues are smaller than 0. This is suitable to weaken the
negative effects of background areas due to the nature of
matrix multiplication in Non-Local attention.

Furthermore, the attention map in the similarity matrix
SXZ and residual map Mres in FG-BG Attention are dis-
played in Fig. 13(b) and (c), respectively. It indicates that the
Non-Local module preliminarily searches for the most poten-
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FIGURE 14. Visualization of image patches and corresponding feature maps. (a) Search
region X t−1 at time point t − 1. (b) Response map Rt−1 corresponding to (a). (c) Search
region X t at time point t . (d) Response map Rt corresponding to (c). (e) Response map Rf
refined and enhanced via MDI-XCorr.

tial areas of the target as shown in Fig. 13(b). After aggre-
gating guidances (Zf and Mcues) into search region features,
the block generates a residual mask Mres that visibly marks
out the most target-related regions as illustrated in Fig. 13(c).
The residual mask embraces barely distractors or background
areas and is used to assign spatial areas on the search region
feature map supposed to be directionally enhanced. These
attention maps show that the block manages to see the target
instead of the background areas or distractors, to which the
favorable performance of DPINet is partly attributed, and it
is also helpful forMDI-XCorr in capturing salient target cues.

3) DISCUSSION ON MODULES OF MDI-XCorr
Comprehensive experiments on MDI-XCorr are also con-
ducted, involving the PW-XCorr operation (tracker 8), Chan-
nel Adaption (tracker 9), and the Non-Local module (tracker
10). First, we directly concatenate Rt and Rt−1 along the
channel domain instead of performing PW-XCorr operation
in MDI-XCorr (tracker 8). As signified in Table 4, tracker
8 outperforms tracker 3 by a gain of 0.017 on AUC (OTB100)
and 0.040 on EAO (VOT2018). That is, without the high-
light of target-related cues in the upstream of network data
flow (i.e., the enhancement of CSE), simple concatenation of
response maps in adjacent search frames enables more accu-
rate tracking for Siamese tracker than performing PW-XCorr
calculation. However, the tracker combined with PW-XCorr
can handle tracking tasks better in tracking once the CSE
block in the network is prepared (tracker 4 against tracker 11):
a performance gain of 0.017 and 0.034 on AUC (OTB) and
EAO (VOT2018). In addition, the performances of tracker 9
on the two benchmarks are extremely poor, which suggests
that the tracker fails to recognize any objects. This is not
surprising at all since object motion cues in channels of the
response map are not transferred back into the spatial dimen-
sion (as specified in section III-D), and the loss of spatial cues
compromises the tracking performance. Additionally, the
comparison between tracker 10 and tracker 3 shows that the
Non-Local module in the MDI-XCorr block is indispensable
as well—the removal of Non-Local attention in MDI-XCorr

leads to a substantial performance drop of 0.004 on AUC and
0.032 on EAO.

We visualize search region patches and corresponding
response maps in adjacent frames in Fig. 14 to demonstrate
the efficacy of integrating temporal cues into visual features.
As in video crabs1, for instance, two response maps Rt and
Rt−1 corresponding to search images X t and X t−1 in adjacent
frames, respectively, show high-value activations in back-
ground regions. Thanks to the combination with motion cues,
the cluttered activations in background areas of the refined
response map Rf tend to be suppressed to some extent, and
distinctly sparse feature weights on the response map can be
induced (comparing subfigure (e) with subfigure (d)). This
reduces the sensitivity of the tracker to distractors, thereby
improving the stability and accuracy in tracking.

V. CONCLUSION
In this work, we enable Siamese trackers to focus on the uti-
lization of diverse prior information in single object tracking
tasks for accurate object tracking. The information includes
the target cues provided in the initial frame and motion
cues involved in video sequences. In order to merge the
prior knowledge into the data flow of Siamese networks,
we propose two novel blocks: CSE and MDI-XCorr. The
former considers target-specific representation as guidances
and manages to enhance target-related feature weights on
feature maps, and the latter endeavors to mine motion cues of
objects in response maps of adjacent search region images.
Extensive experiments are conducted to demonstrate the effi-
cacy and efficiency of CSE and MDI-XCorr. Evaluations on
four benchmarks suggest that our proposed tracker DPINet
equipped with the two complementary blocks surpasses most
CNN-based SOTA methods in terms of both accuracy and
stability, achieving favorable performances.
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