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ABSTRACT The truss structure optimization problem is of substantial importance in diverse civil
engineering applications. The ultimate goal is to determine the optimal cross-section (bar) areas of elements
used in construction systems by minimizing structure weights. Such structure optimization problems can
be categorized into three folds: sizing, shaping, and topology optimization. A number of optimization
algorithms have recently been introduced to address truss structure with sizing constraints, including
evolutionary algorithms, swarm-based algorithms, and trajectory-based algorithms. Here, the problem of
size optimization in truss structures is solved using a modified Grey Wolf Optimizer (GWOM) using
three different mutation operators. The Grey Wolf Optimizer, a swarm-based algorithm, was recently
introduced to mitigate the wolves’ natural behavior in encircling prey and in the hunting process. It has
been successfully used to solve a number of optimization problems in both discrete and continuous spaces.
Similarly to other optimization algorithms, the main challenge of the GWO is combinatorial and premature
convergence. This is due to its navigating behavior over the search space, which is too greedy. One approach
to handle greediness and proper balance between exploration and exploitation during the search is controlling
mutation operators using appropriate rates. Here, this is achieved using two types of mutation approaches:
1) uniform mutation, and 2) nonuniform mutation. The proposed GWOM versions are evaluated using
several benchmark examples of truss structures at 10-bars, 25-bars, 72-bars, and 200-bars. The results are
compared with several state-of-the-art methods. The results show that the proposed Optimizer outperforms
the comparative methods and fits well with the problem of optimization in truss structures.

INDEX TERMS Exploitation, exploration, grey wolf optimization, mutation, structural optimization, truss
structure.

I. INTRODUCTION
In modern structural design practice, construction engineers
are frequently faced with structural construction problems.
They usually attempt to find an optimal structure design
with minimum cost while keeping the highest performance
characteristics, including joints displacement, stress on
members, or bulking loads, within allowable limits [1].
Research regarding structural engineering and its optimiza-
tion attracts the interest of both construction engineers and

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

researchers [2]. Structural optimization problems are very
challenging and difficult to implement in practice due to
many constraints and design variables, non-linearity of the
objective function(s) and constraints, and the volatile feasible
region [3].

The demand for reliable, computationally inexpensive
optimum structural design tools has motivated researchers
to develop optimization methods to solve structural design
problems more efficiently.

Conventionally, truss structure problems are classified
into three interrelated categories: sizing optimization, shape
optimization, and topology optimization [4]. The sizing
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optimization problems are typically tackled by seeking
optimal cross-section areas for the truss elements. So that the
truss weight is minimized subject to inequality constraints
related to stresses in the members, joint displacements, and
buckling loads [5]. On the other hand, shape optimization is
tackled by finding the optimal coordination among the joints
in the design. Lastly, topology optimization is needed to find
the optimal connectivity amongst joints [6].

Previously, gradient or calculus-based optimization algo-
rithms showed excellent performance in tackling small-sized
truss structure problems. However, due to the combinatorial
nature and to non-linearity, the truss structural optimization
problem cannot easily be solved using traditional gradient-
based algorithms [7], and cellular automata [8]. Therefore,
non-gradient optimization algorithms such as metaheuristic-
based approaches emerged as more efficient techniques.

Metaheuristic-based (MH) approaches are general opti-
mization techniques that are used to solve a wide range
of optimization problems, including structural optimizations
by means of exploiting the problem-specific knowledge
represented using a given objective function and a solution
formulation [9].MH approaches to navigate the search spaces
using intelligent operators. MH approaches make use of
the accumulative knowledge together with proper learning
mechanisms controlled by carefully selected parameters
to ensure the right balance between the exploration and
exploitation processes, thus accelerating convergence toward
the optimal solution. They are generally classified into three
categories: i) evolutionary algorithms, ii) trajectory-based
algorithms, and iii) swarm-based intelligence [10].

Evolutionary algorithms (EA) are initiated with several
individuals form a population. Generation after generation,
a new population evolves using three types of operators:
recombination, mutation, and selection. EA normally stops
when the search converges [11]. Although they are very
powerful in scanning many regions of the search space at
the same time, they cannot go deeply into each direction and
may fall into local optima [10]. Several EA algorithms have
been successfully used for the truss structure optimization
problem, including genetic algorithms [12], harmony search
algorithms [13], Immune algorithms [14], and Differential
Evolution algorithms [15], [16], [17], all with different
degrees of success. Not limited to the truss problem, the
following paper conducts a review of the antenna design
problem for three EAs; Grey Wolf Optimizer (GWO), the
Whale Optimization Algorithm (WOA), and the Salp Swarm
Algorithm (SSA) [18].

The second category ofMH algorithms includes trajectory-
based techniques which start initially with a temporary
solution. Iteration after iteration, this solution is improved
using neighborhood search until a locally optimal solution
in the same area is reached [10]. This type of algorithm is
very efficient in exploiting the search area of the solution
in which it converges. However, these types of approaches
cannot explore several search space areas simultaneously.
The most successful trajectory-based algorithms used for

truss structure optimization include simulated annealing [19],
and Tabu search [20].

Similar to other MH categories, swarm-based algorithms
are also initiated with a swarm of several solutions. These
solutions normally represent the positions or locations of
the swarm packs. The swarm members normally fly/swim
together in a collaborative manner, trying to hunt prey,
seeking food sources, and avoiding attackers. This coop-
eration process empowers their behavior in searching and
hunting. They are conventionally used as constructive-based
approaches that build up the swarm members at each
practice from scratch based on their accumulative historical
values [21]. There are several swarm intelligence methods
proposed for truss structure optimization problems such as
Artificial Bee Colony [22], Ant Colony Optimization [23],
Cuckoo search [5], Flower Pollination Algorithm [24],
Particle Swarm Optimization [1], Mine blast algorithm [25],
Red Deer Algorithm [26], etc.

Due to the complex nature of the truss structure search
space shape, the attention of researchers has turned towards
developing modified or hybridized versions of the MH
approaches. This is achieved by considering the spe-
cific problem-based knowledge in the optimization frame-
work [27]. Hence, several hybridized and modified versions
of the metaheuristic algorithms have been developed and
adapted to the different truss structure optimization prob-
lems. Kaveh and Talatahari [28] integrated Particle swarm
optimizer, ant colony strategy, and harmony search scheme
for optimum design of trusses. In another study, an improved
version of harmony search and the adaptive harmony search
algorithm was designed for sizing optimization of truss
structures [29]. Similarly, an enhanced version of particle
swarm optimizer for solving size, shape, and topology
optimization of truss structures [30].

The Grey wolf optimizer (GWO), which is the recently
introduced swarm intelligence method [31], imitates the
behavior of grey wolves packs in their hunting and encircling
processes. It is seen as an efficient optimization algorithm
for a number of reasons: no derivative values are required
in the initial search, and it is simple and adapts to a
wide range of optimization problems. Due to its excellent
characteristics, GWO has been successfully tailored for a
wide variety of optimization problems such as economic
load dispatch [32], [33], vehicle path planning [34], cervix
lesion classification [35], multilevel image thresholding [36],
template matching [37], Optimal scheduling workflows [38],
parameter estimation [39], unit commitment problem [40],
optimal power flow [41], dynamic scheduling in real-world
welding industry [42], flow shop scheduling [43], appliances
energy scheduling problem [44], and others are reported
in [45] and [46].

Moreover, since our focus in this paper toward truss engi-
neering optimization problem, following are some literature
use of enhanced GWO for various engineering problems.
For instance, the authors of [47], presented an enhanced
grey wolf optimization (EGWO) for solving the pressure
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vessel design problem. In addition, a tension/compression
spring design, welded beam design, and speed reducer
design classical engineering problems were solved in [48]
using the hybrid Grey Wolf Elephant Herding Optimization
algorithm (GWOEHO).

Consequently, and based on its success and powerful
outcomes in the previous implementations, this paper adopted
the GWO. However, as with other swarm intelligence
algorithms, the GWO has a chronic shortcoming related to
exploration and exploitation balance, as it is more biased
toward exploitation during the search process. The three best
solutions in the GWO usually attract the other solutions
in the hunting and encircling process, hence leading to a
greedy search. The reason being is that at each iteration,
the GWO depends on the best solutions and neglects
the others. This behavior can result in premature conver-
gence [49]. Hence, the GWO cannot ensure the best trade-
off between exploration and exploitation during the search.
A proposed solution to empower diversification is to utilize
the mutation operators which was borrowed from other EA
approaches [50], [51], [52].

In this paper, two types of mutation operators are combined
within the framework of the Grey Wolf Optimizer (GWOM)
to tackle truss structure optimization problems. The two
mutation operators are (i) Uniform mutation, and (ii)
Nonuniform mutation , which improves the diversity aspects
of the GWO. Three versions of GWOM are then proposed
which are GWOM1, GWOM2, and GWOM3. It should be
noted that the uniform mutation is combined with GWO
in GWOM1, while each version of nonuniform mutation
is integrated with GWO in GWOM2 and GWOM3. The
performance of GWOM versions is evaluated using a series
of well-known truss structures benchmark circulated in the
literature, including 10-bars, 25-bars, 72-bars, and 200-bars.
For comparative evaluation, several state-of-the-art methods
have been used to compare the results obtained by GWOM
versions against their results. Interestingly, the versions of
GWO reveals very successful results compared with well-
regard methods using the same truss structure benchmark
examples.

The remaining section of this paper is organized as follows:
Section II provides the formulation of the Truss Structure
Problem. Next, the fundamental concepts of GWO are
illustrated in Section III. After that, the GWO hybridized
version with mutation operators are established in Section
V. The results and discussion are analyzed in Section V.
Finally, the conclusion and possible future works are given
in Section VI.

II. TRUSS STRUCTURE PROBLEMS
A truss is defined as a geometrically stable structure of
assembled straight members (i.e., n bars) connected at pin
joints (i.e., m nodes), forming triangular units that create
a rigid structure [53]. While designing the trusses, it is
crucial to consider the distribution of weights to handle
changes in tension and compression on members, to avoid

the fragility of the structure. As mentioned earlier, the three
basic categories for structural optimization are cost (size),
shape, and topology. However, the combinations between
these categories are also addressed in the literature. For
instance, in [54], the size and shape of truss structures were
optimized using a modified simulated annealing algorithm.
In addition, the genetic algorithm (GA) was tackled for size
and topology optimization of structures [55]. Not limited to
the previously mentioned combinations, many others were
presented [56], [57], [58]. In this paper, the size structural
optimization problem is considered for designing the truss
structures.

A. PROBLEM FORMULATION
The solution of the truss structure problem is represented as
a vector of cross-section variables X = [A1,A2, . . . ,An]
where the n cross-sectional areas (or members). The Ai is the
cross-section for the ith member, where Ai is assigned a value
from the list of available profiles found for the number of n
members in order to find the optimal design. Consequently,
in order to measure the quality of the problem solution, the
objective function is used as shown in Eq. (1).

minW(X ) = ψρ

n∑
i=1

AiLi (1)

where, W(X ) is the total structure weight, ρ is the material
density for each member, Li is the length of ith member, and
Ai is the ith member cross-sectional area. It should be noted
that the structure weights are multiplied by the total penalty
term (ψ), where ψ = (1 + φσ + φδ)ε, and ε is a positive
penalty exponent set to 2 as recommended in [59].

1) THE STRUCTURAL BEHAVIOUR CONSTRAINTS
Members stress and nodal displacements are the first group of
constraints where they are formulated in Eq. (2) and Eq. (4),
respectively. Note that the stresses on all members must be
within the allowable limits as shown in Eq. (2). Where σi
is the compressing or tensile stress on the ith element, σ l

i &
σ u
i are the lower and upper limits of allowable compressing

or tensile stress. If the stress constraint is satisfied, then no
penalty will be added. φiσ = 0 (φiσ is the stress penalty of
the ith element). On the other hand, if the constraint is not
satisfied, then φiσ is computed using Eq. (3).

σ l
i ≤ σi ≤ σ u

i i = 1, 2, . . . , n (2)

φiσ = |
σi − σl,u

σl,u
| (3)

The third one in the same group is the nodal displacement
constraint where the nodes’ displacement restrictions are
crucial in structural engineering. The structure is not allowed
to deflect more than allowable limits as shown in Eq. (4).
δl and δu are the lower and upper displacement limits,
respectively. In case the nodal displacement constraint is
satisfied, then the displacement penalty of the kth node will
be zero (φkδ =0), otherwise, a displacement penalty will be
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added based on Eq. (5).

δl ≤ δk ≤ δu k = 1, 2, . . . ,m (4)

φkδ = |
δk − δL,U

δL,U
| (5)

In summary, the total members stress penalty φσ and the total
nodal displacement penalty φδ are calculated using Eq. (6)
and Eq. (7), respectively.

φσ =

n∑
i=1

φiσ (6)

φδ =

m∑
k=1

φkδ (7)

2) THE DESIGN VARIABLES CONSTRAINTS
This is the second group of constraints that deals with the
design variables. In size optimization, two search spaces
can be used, namely discrete and continuous search spaces.
Starting with the discrete search space, the truss solution
A elements’ areas must only be from the available cross-
sectional area set (Aset). On the other hand, with the
continuous search space assumption, the algorithm constructs
a truss where the elements’ areas are selected within the
allowed limits of the cross-sectional areas (Al & Au).

3) OBJECTIVE FUNCTION
The objective function (see Eq. (1)) and the penalty terms
are merged together in a new objective function as shown in
Eq. (8). We note that the structure weights are multiplied by
the total penalty term (ψ), whereψ = (1+φσ +φδ)ε, and ε is
a positive penalty exponent set to 2 as recommended in [59].

minW(X ) = ψρ

n∑
i=1

AiLi (8)

III. THE GREY WOLF OPTIMIZER
The grey wolf optimizer (GWO) is a swarm intelligent
algorithm established in [31], based on the mathematical
modeling of the grey wolf leadership hierarchy and hunting
behavior of prey. Given the GWO simplicity, ease of
implementation, high search precision, and fast searching
speed, the GWO has been used to solve several types of
engineering problems. In brief, the GWO main steps are
illustrated in the Algorithm 1. while the flowchart of the
GWO is given in Fig. 1.
Referring to the GWO flowchart drawn in Fig 1, the

first step is to construct the initial population. In this step
and depending on the optimization problem at hand, the
population needs to be defined. In the case of the truss
size optimization problem, the population consists of N
individuals, where each individual is basically denoted by
the X⃗ vector with dimension n according to the truss
dimensionality (X⃗ = [A1,A2, . . . ,An]). Consequently,
the developed population is a matrix shown in Eq. (9).
Accordingly, the fitness value vector illustrated in Eq. (10) is

FIGURE 1. The flowchart of the grey wolf optimizer.

Algorithm 1 GWO Pseudo-Code
1: Initialize N & Max_it
2: Initialize GWO population Xi, ∀i = 1, 2, . . . ,N
3: Initialize GWO parameters a, A, C
4: Calculate the fitness value of each search agent in the

population
5: Select the best, second best and third best solutions (i.e.,
Xα , Xβ , and Xδ).

6: while (t ≤ Max_it) do
7: for each search agent do
8: Update the position of the current search agent by

Eq (15-21)
9: end for

10: Update a, A, and C by Eq(13, 14)
11: Calculate the fitness value of all search agents in

population
12: Update Xα , Xβ , Xδ
13: t = t + 1
14: end while
15: Return Xα

calculated for each population solution using Eq. (8). Where
W(X1) refers to the structure total weight or quality for the
first solution (Note that X⃗ subscript indicates the solution
index in the population).

Pop =


A1,1 A1,2 . . . A1,n
A2,1 A2,2 . . . A2,n
...

...
...

...

AN ,1 AN,2 . . . AN,n

 (9)

Fitness =


W(X1)
W(X2)
...

W(XN)

 (10)

In GWO, the individuals are prioritized in a hierarchical
manner based on their fitness values. Consequently, to model
the wolves’ leadership hierarchy, the wolves are categorized
into four types: alpha (α), beta (β), delta (δ), and omega
(ω). These represent the best individual, the second-best
individual, the third-best individual, and the rest of the
individuals, respectively. The GWO search process consists
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of three main stages, searching, encircling, and attacking the
prey.

During the search process, the three best wolves (α, β, and
δ) guide other wolves (ω) to the best areas in the search space.
Where the prey possible position is assessed by α, β, and δ.
Hencefore, others wolves locations are modified in order to
encircle the prey and eventually attack it.Mathematically, this
can be achieved using Eq (11) and Eq (12).

D⃗ =

∣∣∣C⃗ · X⃗p(t) − X⃗(t)
∣∣∣ (11)

X⃗(t + 1) = X⃗(t) − A⃗ · D⃗ (12)

where t represents the tth iteration, A⃗ and C⃗ are the coefficient
vectors, X⃗p(t) is the position vector of the prey, X⃗(t) represents
the wolf position. D⃗ is the distance between the wolf position
X⃗ and the prey position X⃗p(t) (best wolfs in the population).
Lastly, The vector A⃗ and C⃗ can be expressed by:

A⃗ = 2a⃗ · r⃗1 − a⃗ (13)

C⃗ = 2 · r⃗2 (14)

where, the coefficient a⃗ will linearly decrease from 2 to 0 with
the increasing number of iterations, and its dimension as the
solution dimension X⃗. Furthermore, r⃗1 and r⃗2 are randomly
generated within the range of [0, 1].

The mathematical formulas shown in Eq (15), Eq (16), and
Eq (17) provide more details about the expressions of Eq.11.
These are used to calculate the distances between the position
of the current individual and the best individuals represented
by α, β, and δ.

D⃗α =

∣∣∣C⃗1 · X⃗α − X⃗
∣∣∣ (15)

D⃗β =

∣∣∣C⃗2 · X⃗β − X⃗
∣∣∣ (16)

D⃗δ =

∣∣∣C⃗3 · X⃗δ − X⃗
∣∣∣ (17)

where X⃗ represents the position vector of current individual,
and C⃗1, C⃗2, C⃗3 are randomly generated vectors. X⃗α , X⃗β
and X⃗δ are the position vectors of α, β, and δ, respectively.
Consequently, utilizing the derived D⃗α , D⃗β , and D⃗δ the
final positions of the current individual is updated using the
following equations:

X⃗1 = X⃗α(t) − A⃗1 · D⃗α (18)

X⃗2 = X⃗β (t) − A⃗2 · D⃗β (19)

X⃗3 = X⃗δ(t) − A⃗3 · D⃗δ (20)

X⃗(t + 1) =
1
3
X⃗1 +

1
3
X⃗2 +

1
3
X⃗3 (21)

After updating the individuals positions, the fitness values
are recalculated. Subsequently, α, β and δ are reassigned.
These steps are iteratively repeated until a maximum number
of iterations (t) is reached Max_it. Once the termination
condition is satisfied, α individual decision variables are
considered to be the optimized cross-sectional area sizes for
the truss members and its fitness value is used as the best
achieved total structure weights.

FIGURE 2. The flowchart of the proposed GWOM.

IV. MODIFIED GWO WITH MUTATION OPERATORS FOR
TRUSS STRUCTURE
This section introduces a description of the proposed algo-
rithm, called GWOM, for solving the truss size optimization
problem. In GWOM, the mutation operators are integrated
within the framework of the GWO. The primary motivation
behind using themutation operators is that mutation operators
can help the GWO to diversify the search, hence enhancing
the balance between exploration and exploitation abilities,
as well as increasing the chance of reaching a good solution
in the population space. Figure 2 illustrates the procedural
steps of the proposed GWOM. Whereas noticed, it is the
same as the original GWO flowchart (Fig. 1). However, the
modification is basically with the newly green dashed box,
which refers to the injection of the mutation operators. The
proposed mutation operators will be invoked at the end of
each iteration and before the α, β, and δ are reassigned.

In this paper, three independent hybridized GWO versions
(GWOM1, GWOM2, GWOM3) are defined with three
different mutations. Fig.3 highlights the proposed modified
GWO versions based on the type of mutation used. Referring
to the figure, two main mutation types are employed, which
are (i) Uniform mutation, and (ii) Nonuniform mutation.

Note that the mutation process is conducted in a probabilis-
tic fashion. In for each decision variable, a random number
in the range [0,1] is generated and compared to a predefined
mutation rate (Rm). Only if it is greater than or equal to Rm,
then themutation process will take place. Further, themutated
individual (X′

= [A′

1,A
′

2, . . . ,A
′
n]) will replace the parent

individual (X = [A1,A2, . . . ,An]) only if its fitness value is
better than the fitness of its parent.

A. GWOM1: GWO WITH UNIFORM MUTATION
The first proposed version of the GWO is called GWOM1,
in which the mutation operator used is the uniform mutation.
The uniform mutation for Ai(i = 1, 2, . . . , n) depends on
the search space(i.e., continuous or discrete). In the case
of a continuous search space, Eq. (22) is used in which
the new gene A′

i is randomly set between the lower and
upper allowable cross-sectional areas [Al,Au]. In the case
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FIGURE 3. The modified GWO versions according to the mutation types.

of discrete search space, A′

i is chosen randomly to be one of
the pre-defined cross-sectional areas in ASet as illustrated in
Eq.(23).

A′

i ∈ [Al,Au] (22)

A′

i ∈ ASet (23)

B. NON-UNIFORM MUTATION
To keep things user-independent and accordingly reduce the
user-error possibility of choosing the wrong step size value,
the self-adaptive step size mutation will be utilized. Such
that the change amount can be adjusted according to the
convergence. The new gene (A′

i) is calculated based on the
old gene (Ai), and a step size σ as shown in Eq. (24) is
set for each individual. Where the step size (σ ), as well
as the solution gene both, will be updated. This is known
as a self-adaptive mutation, which is a type of nonuniform
mutation. The self-adaptive mutation can further be classified
into (i) Self-adaptive mutation with one step size (GWOM2),
and (ii) Self-adaptive mutation with n step sizes (GWOM3).

A′

i = Ai + σ (24)

1) GWOM2: GWO WITH NON-UNIFORM MUTATION
(SELF-ADAPTIVE MUTATION WITH ONE STEP SIZE)
In the second modified version of the GWO (GWOM2),
each solution is appended with one step size value σ .
Such that the original individuals are represented as X =

[A1,A2, . . . ,An, σ ]. In which to apply the mutation, first the
step size σ is updated before the new individual is generated.

Therefore, to update σ , Eq.(25) will be used (as stated
in [60]). Where e stands for the exponential value, τ is the
type of learning rate, and N(0, 1) is a normal distribution with
a mean of 0 and a standard deviation of 1.

σ ′
= σ + eτ ·N(0,1) (25)

Note that τ is a parameter that can be set by the user, or as a
convention, it is inversely proportional to the square root of
the number of decision variables (number of members in our
problem n) as shown in Eq.(26) [60]. Furthermore, since the

negative step size is unaccepted and no deviations in negative,
then the newly developed σ needs to be verified to be not less
than a pre-defined threshold ϵ. Otherwise, it will be set to the
threshold value as illustrated in Eq.(27).

τ ∝
1

√
n

(26)

σ ′ < ϵ → σ ′
= ϵ (27)

Subsequently, using the updated σ , the solution will be
updated where each decision variable is calculated using
Eq.(28), Where i = 1,2,. . . ,n. Finally, the new solution
becomes X ′

= [A′

1,A
′

2, . . . ,A
′
n, σ

′] where both the decision
variables and the step size are updated.

A′

i = Ai + σ ′
· N(0, 1) (28)

2) GWOM3: GWO WITH NON-UNIFORM MUTATION
(SELF-ADAPTIVE MUTATION WITH n STEP SIZE)
Next, the last modified version of GWO (GWOM3) is
proposed. In this version, the same steps and concepts of
GWOM2 are applied to GWOM3. However, instead of
having one step size for all decision variables, n step sizes are
generated for each variable. Since the population individuals
contain n cross-sectional area sizes, we used n step sizes
X = [A1,A2, . . . ,An, σ1, σ2, . . . , σn]. Where each decision
variable has its corresponding σ . This adaptation is used in
order to modify each decision variable differently since one
cross-sectional area may need to be adjusted with a bigger
step size than others and vice versa.

Proceeding to the steps of implementation. Similar to
GWOM2, initially, the step sizes will be updated using
Eq.(29), but this time two learning rates will be involved.
Which are (i) overall learning rate τ ′, and (ii) specific decision
learning rate τ .
This basically generalizes the learning. Moreover, the

relations between the learning rates and the number of
decision variables are demonstrated in Eq.(30). Next, the
generated σ ′s will be checked not to exceed the threshold
value Eq.(27).Note that σ will be more specific σi. Lastly, the
decision variable Ai will be updated utilizing Eq.(31), Where
i = 1,2,. . . ,n.

σ ′
= σ + eτ

′
·N(0,1)+τ ·Ni(0,1) (29)

τ ∝
1√
2
√
n

& τ ′
∝

1
√
2n

(30)

A′

i = Ai + σ ′

i · Ni(0, 1) (31)

V. EXPERIMENTS AND RESULTS
In order to evaluate the effectiveness and robustness of the
proposed GWOM versions for solving the truss problem,
four well-known truss optimization problems in discrete and
continuous search spaces are considered: three case studies
of 10-bars, four case studies of 25-bars, two case studies
of 72-bars, and one case study of 200-bars truss structures.
Moreover, the performance of the proposed GWOM versions
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is compared against the original version of GWO, as well as
the other comparative methods taken from the literature.

The other comparative algorithms are, the harmony
search algorithm (HS) [61], the weighted superposition
attraction algorithm (WSA) [62], the modified teaching–
learning-based optimization (TLBO) [59], the mine blast
algorithm (MBA) [63], the chaotic swarming of particles
(CSP) [64], the improved genetic algorithm (GA) [65], the
hybridized ant colony-harmony search genetic algorithm
(HACOHS-T) [66], the modified artificial bee colony
algorithm (MABC) [67], the discrete heuristic particle
swarm ant colony optimization (DHPSACO) [68], the ant
lion optimizer (ALO) [69], the adaptive real-coded genetic
algorithm (ARCGA) [70]. Furthermore, the particle swarm
optimizer (PSO) [71], [72] and symbiotic organisms search
algorithm (SOS) [73] along with their improved algorithms,
the heuristic particle swarm optimizer (HPSO) [72], the
particle swarm optimizer with passive congregation (PSOPC)
[71], and the modified symbiotic organisms search algorithm
(mSOS) [73].

It should be noted that the proposed GWOM versions and
the original GWO were implemented using Matlab 2021 on
a mid range PC Core-i7 with 16 GB RAM. Furthermore,
The proposed algorithms were run 30 independent times with
different initial populations and number of iterations. The
experimental results obtained are reported in terms of the best
optimal weight. Note that in the next sections the best result
achieved for each case study is highlighted using bold fonts.
In order to fine-tune the best parameter settings of the

proposed algorithms, we conducted a number of experimental
scenarios in implementing different settings for the popula-
tion size and the number of iterations. Three population sizes
were tested 30, 50, and 100. These values were suggested
randomly to study the influence of the population size
on the performance of the proposed algorithm using low,
mid, and high population dimensions. In addition, three
maximum numbers of iterations are tested 500, 1000, and
1200. As a result, five different scenarios were designed
as shown in table 1. That Sen#1 to Sen#3 were used to
choose the best population size. Where the population size
will vary and the number of iterations will be constant (set to
500). Subsequently, Sen#4 & Sen#5 uses the best-obtained
population and vary the number of iteration to select the
fittest number of iterations. The experimental scenario that
achieved the best results on each case study of the truss
problem is presented in table 2. The mean weight was utilized
in the case where all scenarios were able to achieve the same
best weight. The results of the best experimental scenarios
are demonstrated in the following sections. Moreover, for
mutation parameters, different values were tested. Eventually,
we concluded to set Pm to 0.07 and mu to 0.2.

A. CASE STUDY 1: 10-BARS PLANAR TRUSS STRUCTURE
The 10-Bars planar truss consists of 6 nodes (joints) and
11 bars (members). Figure 4 illustrates a 10-Bars planar. The
Young’s modulus of member material is E = 10Msi and

TABLE 1. Population and maximum number of iterations experimental
Scenarios.

TABLE 2. Best parameters’ sittings for each version of the proposed
GWOM algorithms according to truss Problem and problem space.

the material density of the members is ρ = 0.1lb/in.3. The
truss structure is subjected to two vertical loads conditions
of P = 100 kips acting on joints 2 and 4. All truss members
are subjected to symmetrical stress constraint, where tensile
stress is σ = +25ksi and compression stress is σ = −25ksi.
The displacement constraints of free joints are limited to±2in
in both directions (x and y). The cross-sectional areas of
each structure A1,A2, . . . , A10 are defined to be between
0.1 in2 and 35in2 for the continuous search space. On the
other hand, in discrete search space, two sets were tested.
Case 1 set is ASet = { 1.62, 1.8, 1.99, 2.13, 2.38, 2.62,
2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84,3.87, 3.88,
4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.94, 7.22, 7.97, 11.5,
13.50,13.90, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9,
28.5, 30.0, 33.5 }, and case 2 set is ASet = { 0.10, 0.50, 1, 1.50,
2, 2.50, 3, 3.50, 4, 4.50, 5, 5.50, 6, 6.50, 7, 7.50, 8, 8.50, 9,
9.50, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5,
16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22,
22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5,
29, 29.5, 30, 30.5, 31, 31.5 }in.2. Clearly, three versions of
the 10-Bars planar truss structure are studied in this research,
one continuous version, and two discrete versions.

Table 3 illustrates the best designs obtained by the
proposed GWOM versions in comparison with those of the
original GWO and other comparative algorithms for both
continuous and discrete cases of the 10-bar truss problem.
From Table 3, it can be seen that the performance of the
GWOM versions is similar to the GWO by obtaining almost
the same designs satisfying all constraints according to
allowable displacement and stress limits. However, GWOM1
outperforms the original GWO as well as the other two
versions of the proposed GWOM (GWOM2 & GWOM3).
The reason goes back to the high randomness nature that
allows it to escape from local optima. On the other hand, the
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FIGURE 4. Planar 10-bar truss structure.

results of GWO and GWOM versions are exactly the same
for the discrete cases.

Reading the results given in Table 3, once again, we also
note that the performance of the HS is better than all
algorithms in the case of continuous search space. However,
it is observable that GWO and GWOM versions’ results
that satisfy all constraints considered in this research are
somehow near the optimal result. Furthermore, in the case
of discrete search space. The achievements of GWO and
GWOM versions are the best with a weight of 5490.738 for
a 10-bar structure - case 1. This weight was reported as well
by other comparative algorithms, which are SOS and mSOS.
Moreover, in discrete-case 2, GWO and GWOM obtained the
second-best weight after the best weight reported by GA.

B. CASE STUDY 2: 25-BAR TRUSS STRUCTURE
The planar 25-bar tower consists of 10 nodes and 25 bars. The
planar 25-bar tower is illustrated in Figure 5. The Young’s
modulus of member material is E = 10Msi and the density
of member material is ρ = 0.1lb/in.3. The 25 members are
divided into 8 groups, as follows: G1) A1; G2) A2–A5; G3)
A6–A9; G4) A10, A11; G5) A12, A13; G6) A14–A17; G7)
A18–A21; and G8) A22–A25. Such that all members of a
group have the same cross-sectional area size. Moreover, all
truss members are subject to symmetrical stress constraints,
where tensile stress is σ = +40ksi and compression stress
is σ = −40ksi, while displacement constraints of the free
nodes are limited to ±0.35in. in all directions.

Furthermore, there are two independent loading cases
that are implemented as shown in Table 4. It should be
noted that the Px, Py and Pz are the loads along x, y and
z axes, respectively. With respect to the members’ values,
the members can have a cross-sectional area size between
0.01in2 and 3.4in2 for the continuous search space. However,
with discrete search space, three cases were considered. For
Case 1 the following cross-section set are considered ASet =

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2,
3.4} (in.2), for Case 2, we used ASet = {0.01, 0.4, 0.8, 1.2,
1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0} (in.2).
Lastly, Case 3 set is in Table 5 using the American Institute

FIGURE 5. Planar 25-bar tower structure.

of Steel Construction (AISC) data. Clearly, four cases of the
25-Bars planar truss structure are studied in this research, one
continuous version, and three discrete versions.

The best designs are accomplished by the proposed
GWOM versions. The original GWO, and other comparative
algorithms on the different cases of the 25-bar structure are
recorded in Table 6. It can be seen that the performance of the
proposed GWOM algorithms is similar to the original version
of GWO in two cases of the 25-bar truss structure (discrete -
case 1 and discrete - case 2). Furthermore, the performance
of the original GWO, GWOM2, and GWOM3 are almost the
same by getting the same best results on case 3 of discrete
variables. The performance of original GWO performs better
than the proposed GWOM algorithms on the continuous case
of a 25-bar truss structure.

Reading the results recorded in Table 6, once more time,
it can be seen the proposed GWOM versions, as well as
the original GWO, are ranked first by achieving the best
results on the 25-bar truss structure for the first discrete case.
In addition, the GWO, GWOM2, and GWOM3 obtained the
first rank by achieving the best results on the 25-bar truss
structure on the third discrete case. The proposed GWOM
algorithms and the original GWO are ranked second on the
25-bar truss structure on the second discrete case, while
the first best algorithm was HPSACO for the same case
study. Finally, the performance of the proposed GWOM
algorithms is very competitive with the other competitors in
the continuous case of the 25-bar structure.

C. CASE STUDY 3: 72-BAR TRUSS STRUCTURE
This case study includes 72 bars with 20 nodes as shown in
Figure 6. The Young’s modulus of member material is E =

10Msi and the density of member material is ρ = 0.1lb/in.3.
The 72 truss members are divided into 16 groups, as listed in
Table 7. Moreover, all members are subjected to symmetrical
stress, where tensile stress is σ = +25ksi and compression
stress is σ = −25ksi, while the displacement constraints
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TABLE 3. Performance of the proposed GWOM algorithms compared to other comparative algorithms for the 10-bar truss structure.

TABLE 4. 25-bar truss loading cases.

of the free nodes are limited to ±0.25in in both x and y
directions.

Table 8 illustrates the two loading cases that are used to
solve this testing problem. The Px, Py and Pz are the loads
along x, y, and z axis, respectively. Furthermore, concerning
the problem search space, the cross-sectional size in the
continuous search space ranges between 0.1in2 and 3in2.
On the other hand, the members are chosen to be fromASet =

{0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1, 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,
2.7, 2.8, 2.9, 3, 3.1, 3.2 } in the case of discrete search space.

The best designs for the 72-bar truss structure obtained
using the proposed GWOM versions and other algorithms
are recorded in Table 9. It can be observed that the proposed
GWOM versions, original GWO,MHA, and DHPSACO per-
form better than the other comparative algorithms by finding
the best design with minimal weight on the discrete search

TABLE 5. The cross-section areas following the AISC norm.

space case of this case study. Studying the performance of
the competitors in the continuous search space case, it can
be seen that the HPSO is ranked first by finding the best
design with minimal weight. While the proposed GWOM2 is
ranked second by achieving the design with the second-best
weight. In addition, the GWOM3, GWOM1, and GWO got
the third, fourth, and fifth rankings, respectively. This proves
the efficiency of the proposed GWOM versions against the
original version of GWO and other comparative algorithms.
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TABLE 6. Performance of the proposed GWOM algorithms compared to other comparative algorithms for the 25-bar truss structure.

TABLE 7. 72-bar truss structure element grouping.

TABLE 8. 72-bar truss Load cases.

This success could not achieved without reaching a state of
balance between the exploration and exploitation during the
search process.

D. CASE STUDY 4: 200-BAR TRUSS STRUCTURE
The performance of the proposed GWOM versions were
further evaluated using large-scale truss problems with
200 bars and 77 nodes as shown in Figure 7. The same
material with E = 30Msi and ρ = 0.268lb/in3 is used for
all truss members. The 200 truss members are divided into
29 groups, as listed in Table 10. All truss members are subject
to symmetrical stress, where tensile stress is σ = +10ksi
and compression stress is σ = −10ksi, while there are no
displacement constraints on truss nodes.

For this case study, only the discrete search space was con-
sidered in this research, such that the values of the member
of this problem are selected from the set ASet ={0.10, 0.347,
0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142,
2.697, 2.80, 3.13 3.565, 3.813, 4.805, 5.952, 6.572, 7.192,
8.525, 9.30, 10.850, 13.330, 14.29, 17.17, 19.18, 23 28.08,
33.70} (in.2). The structure is subjected to the following
three independent loading conditions: i) 1.0 kip acting in the
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TABLE 9. Performance of the proposed GWOM algorithms compared to other comparative algorithms for the 72-bar truss structure.

FIGURE 6. 72-bar truss structure.

positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57,
62, and 71; ii) 10 kips acting in the negative y-direction at
nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22,
24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45,
46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68,

FIGURE 7. Planar 200-bar truss structure.

70, 71, 72, 73, 74, 75; and iii) the previous two loading are
acting together.

Table 11 illustrates the best designs obtained by the original
GWO and GWOM versions in comparison with those of
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TABLE 10. 200-bar truss structure element grouping.

TABLE 11. Performance of the proposed GWOM algorithms compared to other comparative algorithms for the 200-bar truss structure.

literature algorithms. Apparently, it can clearly be seen that
the performance of three GWOM versions performs better
than the GWO by finding the best design with a lower weight.

Reading the results recorded in Table 11, it can be seen
that the SO and mSOS are ranked first by obtaining the best
design with the minimum weights. The proposed GWOM1
got the second rank by obtaining the second-best design with

the second-minimumweights, while the other two versions of
the proposed algorithm GWOM3 and GWOM2 obtained the
sixth and seventh rankings, respectively. Lastly, the original
version of GWO is ranked last by getting the worst design
with the highest weight against the other competitors. This
proves the efficiency of the proposed GWOM by using the
mutation operators within the framework of the GWO to
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avoid trapping in local optima problems and thus enhance a
balance between the exploration and exploitation during the
search process.

E. RESULTS ANALYSIS
In summary, four truss structure problems were solved
(i) 10-bars problem with a continuous case and two discrete
cases, (ii) 25-bars problem with a continuous case and
three discrete cases, (iii) 72-bars problem with a continuous
case and a discrete case, and (iv) 200-bars problem with a
discrete case. Overall, comparing the problems’ findings of
the proposed GOWM versions against the original GWO,
the results are varying to be either the same or GWOM1
outperforms others. Where this achievement was due to the
high rate of randomness in GWOM1. On the other hand,
the results of GWO and GWOM versions were analyzed and
compared against others that exist in the literature. Eventually
conclude the following, GWOM versions were able to find
the best-published weight in (i) 10-bars problem discrete case
1, (ii) 25-bars problem discrete case 1 & case 3, and (iii) 72-
bars problem discrete case. In addition, the GWOM findings
were ranked as the second-best in the following problems
(i) 10-bars discrete case2, and (ii) 25-bars discrete case2.
Furthermore, in the 200-bar problem, the GWOMwas ranked
as the third-best algorithm according to its findings. Lastly,
the results of the remaining problems’ cases are acceptable
and near other algorithms’ results.

VI. CONCLUSION AND FUTURE WORK
This study presented a modified versions of the grey
wolf optimizer (GWO), called the GWOM, for the sizing
optimization of truss structures with discrete and continuous
design variables. This problem is complicated where multiple
constraints need to be satisfied. The main goal was to find
the best members’ sittings (cross-sectional area sizes), for
the truss structure, that minimize the total weight. In this
paper, three modified versions of the GWO are proposed
(i.e., GWOM1, GWOM2, and GWOM3). These versions
were obtained by modifying the original GWO algorithm by
integrating two types of mutation operators, namely Uniform
and Nonuniform mutations, in GWO optimization loop.

The performance of the proposed GWOM versions is
evaluated using four truss optimization problems with
different study cases including three cases of 10-bar, four
cases of 25-bar, two cases of 72-bar, and one discrete
case of 200-bar. We compared the best experimental results
obtained by the proposed GWOM versions with those of
the other competitors published in the literature to prove
the effectiveness and robustness of the proposed algorithm.
The experimental results demonstrated the effectiveness of
the proposed GWOM versions by finding the best design
with a minimum weight as similar to some of the other
competitors in one case study of 10-bar, two case studies of
25-bar, and one case study of 72-bar. In addition, the GWOM
versions achieved the second-best results for 200-bar, one
case study of 72-bar, and one case of 25-bar. However, the

performance of the proposed GWOM is very competitive
with the other competitors in the remaining three case studies.
In other perspectives, it can be seen that the performance of
the proposed GWOM versions is better than or similar to
the original GWO in almost all case studies. This proves the
effectiveness of integrating the mutation operators within the
framework of GWO in order to enhance the balance between
the exploration and exploitation abilities during the search
process and avoid trapping in local optima.

With the promising results we obtained in truss struc-
ture optimization, future research will focus on expanding
the proposed algorithm for other engineering optimization
problems with more complex search spaces. Furthermore,
the multi-objective GWO and GWOM will then be extended
to solve other truss structural optimization problems such
as shape and topology. In addition, embedding mutation
parameters to the GWO results in notable enhancements in
the performance. As a result, implementing the hybridized
GWOM versions for other optimization problems might
be beneficial in terms of exploration and exploitation
balancing.
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