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ABSTRACT Ultra-reliable low-latency communication (URLLC) has been introduced in the 5th Generation
(5G) radios for mission-critical applications that demand strict reliability and latency traffic to guarantee the
rapid delivery of short packets (up to 1 ms) with a success probability rate of 99.999%. The challenging
reliability and latency requirements of URLLC have significant impact on the air-interface design, especially
on the Hybrid Automatic Repeat reQuest (HARQ) mechanism. This study focuses on satisfying link
latency requirements by reducing the delay that arises in the presence of the HARQ operation. To this
end, we propose a Swift HARQ protocol empowered by machine learning techniques to estimate the
decodability of a packet early enough within its maximum number of allowable retransmission attempts.
This can allow the transmitter to react faster by dropping the non-decodable packets, or activating the
repetition mode where parts of the HARQ feedback can be omitted. As shown through system-level
simulations, the proposed model achieves a delay reduction of more than 50% compared to the traditional
HARQ, and increases the system throughput by up to 40% when multiple HARQ retransmissions are
required.

INDEX TERMS 5G, 6G, artificial intelligence, HARQ, latency, machine learning, URLLC.

I. INTRODUCTION
specified, with the aim to support the slot extension more
broadly in the frequency domain, while the slot duration is
up a new horizon for new interactive and mission-critical
communication links such as Factory Automation (FA),
autonomous driving, remote surgery, intelligent grid automa-
tion, and Unmanned Aerial Vehicles (UAVs). To this end,
5G wireless networks are envisaged to support a new class
of traffic named URLLC that aims at delivering short
packet within up to 1 ms at a success rate of at least
99.999% [1]. The 3GPP standards committee has recog-
nized the need for a new Orthogonal Frequency-Division
Multiplexing (OFDM) based frame structure to satisfy such
challenging requirements. Accordingly, the 5G numerology
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concept was introduced in Rel. 15, allowing the frame struc-
ture to be flexible in order support a variety of use cases
based on the Quality of Service (QoS) demands of the users.
In particular, in order to meet the stringent URLLC latency
demands, a mini-slot frame structure and a wider subcarrier
space concept are that need to be resolved to fully achieve
the target latency requirements of URLLC applications. For
instance, the HARQ processes over the air interface are
not yet standardized. More specifically, the required time
to successfully deliver a packet, including all its possible
retransmission rounds in case of transmission failure, has to
be minimized to meet the 1 ms latency target [2]. Otherwise,
the contribution of traditional HARQ to URLLC would be
doubtful.

The HARQ process can be seen as a combination
of forward error correction (FEC) and error detection.
Both are performed at the receiver, in order to release a
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negativeacknowledgement message (NACK) when a decod-
ing failure due to poor channel conditions is experienced,
or acknowledgement message (ACK) in the case of a success-
ful reception. Despite the network reliability goal that can be
URING the recent decades, the tremendous developshortened
in the time domain (i.e., the slot duration can be ment in
wireless communication applications opened as short as to
0.25 ms). However, there are still open issues achieved with
HARQ, it can cause increase the latency cost due to delay
arising from the round-trip time (RTT) to process the multi-
ple retransmissions and multiple signal decoding operations.
Therefore, the delay associated with HARQ can create a
bottleneck, compromising the achievement of the challenging
URLLC latency requirement. The above challenges moti-
vated our work, in which we designed a Swift HARQmecha-
nism based on machine learning (ML), capable of estimating
the decodability of a packet ahead of reaching its maximum
number of allowable retransmission attempts. This can allow
the transmitter to react by dropping the non-decodable pack-
ets at an earlier basis or activating the repetition mode, where
parts of the HARQ feedback can be eliminated.

A. RELATED WORKS
Questions surrounding URLLC have recently attracted the
attention of academia and industry stakeholders. Refer-
ence [3] surveyed various techniques and methodologies
pertaining to the requirements of URLLC. Reference [4]
discussed information-theoretic aspects of short-packet com-
munications. Reference [5] highlighted the impact of wave-
form numerology, FEC and signalling channel placement
on achievable communication latency. A comparison study
was carried out in [6] to find suitable coding techniques that
can meet the URLLC requirements. Reference [7] aimed to
maximize the URLLC link throughput by jointly optimize
the block length and pilot length. Reference [8] provide an
overview of 3GPP Releases 15, 16, and 17 from a Physical
Layer Design perspective. The optimization of the HARQ
mechanism has been addressed in the literature from diverse
aspects. The performance of HARQ protocols in the presence
of short packets has been studied in [9] and [10]. In [11]
and [12] different adaptive power and rate allocation mech-
anisms are proposed to enhance the retransmission attempts
to improve the overall system performance. Reference [13]
proposed to couple the HARQ feedback with information
about the decoder status. This information can allow the
transmitter to dynamically adapt to the channel conditions
during the retransmissions throughout setting new parameters
to meet the target block error rate. Reference [14] studied a
fixed-point equation capable of locating the optimal number
of retransmissions as a function of the maximum allowable
energy consumption for Chase combiningHARQ (CC). Ref-
erence [15] proposed an approach that can estimate which
retransmission round has a high successful decoding proba-
bility. Based on this, the receiver can stop performing some

decoding activities during the retransmission until reaching
the estimated round.

In line with this study, the concept of Early HARQ
(EHARQ) feedback has previously been discussed, in [16],
[17], [18], and [19]. Reference [16] proposed an E-HARQ
approach, utilizing the loglikelihood ratio (LLR) to estimate
feedback following partial signal decoding. Reference [17]
aimed to further expedite early feedback release by making
estimation decisions based on only a part of the codeword.
This approach utilizes Low-Density Parity-Check (LDPC)
that offers excellent opportunities to exploit substructures,
and therefore using the ready decoded part of the codeword
during the decoding procedure. Reference [18] employedML
techniques to enhance feedback prediction throughout train-
ing an ML model to classify the decodability status, rather
than utilizing the traditional method (i.e., hard threshold-
based). Reference [19] further proposed an E-HARQ esti-
mator, based on ML, capable of speeding up the feedback
releasing by decoupling the feedback estimation from the
signal decoding. The proposed mechanism shows better esti-
mation performance, especially after introducing the feature
inspired by the channel state information.

The works in [15], [18], [19], and [20] are most closely
related to ours, as the early HARQ feedback estimation
in [15] utilizes only one feature that can be concluded from
the sum channel gain. As an alternative, our mechanism is
relied on ML to estimate the decodability outcome based
on two high-dimensional features, independently extracted
for each packet. On the other side, the early HARQ feed-
back mechanism in [18], [19], and [20] still relies on the
handshaking mechanism to release feedback following each
retransmission round, which is considered a source of delay,
especially when the link requires multiple HARQ retrans-
missions. Our proposal adopts a repetition strategy, in which
some handshaking signalling can be eliminated, hence effec-
tively minimizing the link delay. Finally, our proposed early
HARQ strategy differs fundamentally fromwhat is suggested
in the literature in terms of the mechanism’s ability to exploit
the estimated feedback to adapt the remaining scheduled re-
attempts, i.e., multiple HARQ feedback, with the channel
conditions, and that is through allocating varying power lev-
els for each round. The system performance is also evaluated
using Clustered Delay Line (CDL) fading conditions under
different levels of Channel State Information (CSI) levels at
the receiver.

B. CONTRIBUTIONS
This paper aims to reduce the link latency arising from the
presence of the HARQ mechanism. Mainly, we develop a
Swift HARQ to early estimate the probability of correctly
decoding the received packet within the maximum permitted
retransmission attempts; based on this protocol, the paper
achieves the following key contributions:

• Latency reduction: The proposed mechanism utilizes
the repetition mode when there is a high likelihood to
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decode the signal. Hence the receiver can reduce the
transmission delay by omitting the unnecessary NACK
feedback during the retransmission until successfully
decoding the signal.

• Throughput improvements: Excluding the nondecod-
able signal at an early stage can efficiently contribute
to improving the channel utilization. Simulation results
revealed approximately 40% improvement in the sys-
tem throughput at low SNR regions. The proposed
scheme also achieve the exact reliability require-
ments at SNR values below 1 dB, compared to
traditional HARQ.

• Link reliability: The early HARQ feedback estimates
the required number of retransmissions to successfully
decode the signal. This information can allow the adap-
tion of the remaining scheduled attempts at the appro-
priate power level, thereby increasing the probability of
decoding the packet earlier than the classical approach.
To precisely evaluate the performance of Swift HARQ in
a realistic environment, we train and validate the model
with a standardized waveform compliant with 3GPP 5G
NR Release 15 [21].

• System evaluations: We present an extended theo-
retical discussion, including analyzing the transmis-
sion scenario of a packet in a probabilistic model
that incorporates the impact of imperfect early feed-
back estimation. As short-sized packets characterize
URLLC, we modified some of the waveform parame-
ters to align with potential URLLC waveform aspects
by utilizing the mini-slot and wider subcarrier spac-
ing concept. Accordingly, the link level performance
is evaluated, from the waveform designer’s point of
view, under different system constraints such as input
features, classification algorithms, and specific channel
conditions.

The paper is structured as follows: Section II describes the
Swift HARQ concept. Section III presents the system model.
Section IV presents the performance evaluation, including the
classification evaluation as well as the data link performance,
and finally, Section V provides concluding remarks and out-
lines for future work.

II. SWIFT HARQ CONCEPT
The proposed Swift HARQ mechanism is depicted in Fig.1.
Let us consider a transmitter-receiver pair that communicates
under fading channel conditions in the downlink direction;
i.e., from the Base Station (BS) to the User Equipment (UE).
When the first payload arrives from the core network, the
transmitter will process each packet by encoding the payload
into a parent codeword containing N codewords, each with
a length dedicated to Tn channel use. These codewords share
identical information, but are encoded with different parity
bits. Hence, the URLLC packet is defined as the transmission
of the first codeword, alongside all possible other codewords
in case the involved parties required extra HARQ attempts to

TABLE 1. The definition of parameters.

(N − 1). Based on this definition, the packet has a length of
Ttotal =

∑N
n=1 Tn channel use, where Tn is the channel use of

codeword n, n in (1 . . .N ).
On the receiver end, the UE in the traditional HARQ

will receive the codeword and perform baseband process-
ing. If the receiver succeeds in decoding the first codeword,
it responds with an ACK; otherwise, it stores the received
signal, responds with a NACK, and seeks another code-
word. These transmission activities are known as handshak-
ing processes, and continue until the packet is successfully
decoded or the maximum permitted number of retransmis-
sion rounds is achieved. Unlike traditional HARQ, when the
codeword decoding fails following the first attempt, the pro-
posed Swift HARQ will couple the NACK message with an
estimation concerning the number of retransmission rounds
required to successfully decode the packet. Based on this
useful feedback, the transmitter reacts early by dropping the
nondecodable packet, or enters repetition mode in which
the codewords will continuously retransmit. The receiver,
meanwhile, will stop releasing the NACK message until the
codeword is successfully decoded. At this point, it is essential
to discuss the motivation behind estimating the decodability
of the received codeword within the maximum number of
allowable retransmissions. Firstly, the non-decodability deci-
sion permits the transmitter to drop the non-decodable packet
at an early stage; hence exploiting the available resources
for another transmission, leading to both enhanced through-
put and reduced latency on the link. Secondly, the decod-
ability decision, which also includes an estimation of the
required number of retransmissions, can enhance the sys-
tem’s reliability by allowing the transmitter to schedule the
remaining retransmission rounds with suitable power level
parameters that can be adjusted according to the channel’s
conditions.
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FIGURE 1. Packet travel scenario in the downlink, assuming the packet is
decodable within three re-transmitting rounds.

A. PROBABILISTIC MODEL FOR SWIFT HARQ
Estimating the decodability of a packet at an early stage is a
challenging task, since the estimation mechanism is heavily
dependent on the characteristics of instantaneous channel
conditions in the first round, whereas channel conditions can
experience random fluctuations during the reception of the
other retransmission attempts. This can result in estimation
mismatching and two error types. The first one occurs when
the packet is estimated to be decodable, but it then appears
that it was not, i.e., after the Cyclic Redundancy Checking
(CRC) task, resulting in a false-positive decision. The second
type refers to the case when a packet is predicted to be
non-decodable but can be successfully decoded, resulting in
a false-negative decision. Nevertheless, obtaining a reliable
estimator can effectively mitigate the occurrence of these
types of errors. To evaluate the impact of imperfect estima-
tion, the transmission scenario for a packet is analysed in a
simple probabilistic model, as shown in Fig.2. The goal is
to determine which type of error can negatively affect the
system performance, and then calculate the probability of this
effective error.

Let us assume a packet C can have up to N allowable
transmission attempts, as indexed by i = 1, 2, . . . ,N , where
i corresponds to the number of transmission attempts. The
packet can be decodable when 1 ≤ i ≤ N at outcome M = i,
otherwise the decodability outcome is unsuccessful at M =

0. However, predicting one of these possible outcomes at an
early stage can fall into one of theN+1 possible states. Let us
denote each state as SM ,k , where k is an integer ranging from
[0, . . . ,N ]. The first possible outcome isM = 0, representing
a non-decodable outcome for a packet after consuming all
the retransmission attempts. The probability of this is P0 ≡

P(M = 0). In this case, themaximumbenefit when employing
Swift HARQ can be gained when the estimated state SM ,k
matches the actual outcome at M = k = 0. This estimation
refers to a true negative decision, and also has a probability:

PTN ≡ P(S0,0 = 0|M = 0). (1)

Otherwise, estimation of the other states (S0,1, . . . , S0,N ) will
lead to a false positive decision with probability:

PFP ≡ P((S0,1) ∨ . . . .. ∨ (S0,N )|M = 0). (2)

The occurrence of this false feedback will result in unneces-
sary retransmissions and miss the opportunity to obtain the
maximum benefit of delay saving. However, since dropping
the non-decodable packet at an early stage can be considered
a credit for Swift HARQ, failing to estimate the correct
decision will not add any overhead to the system compared to
traditional HARQ; hence, the negative effect of this error on
the system is negligible. Additional possible outcomes arise
when i> 0. These outcomes represent decodable packets with
a different number of transmission attempts in the range of
[1, . . . ,N ] with probability Pi ≡ p(M = i). Estimating one
of these outcomes can lead to two possible decisions:

Firstly, a true positive decision occurs when the feed-
back estimation lies along one of these decodability states
S1,k , . . . . . . , SM ,N , at k: 1, . . . ,N , and the true positive prob-
ability can be expressed as:

PTP ≡ P((SM ,k = k)∨, . . . ..,∨(SM ,N = N )|M = i) (3)

Notably, we consider all decodability states as correct deci-
sions, although the estimated state can be mismatched with
the actual outcome atM = k , because this inaccurate estima-
tion will not negatively impact link latency. This means BS
will repeatedly retransmit until acknowledgment is attained,
or the maximum allowable transmission is reached, regard-
less of the estimated required number of retransmission
rounds. An accurately matched estimation will be consid-
ered as a credit to enhance the link reliability by adjusting
retransmitting codewords with the suitable power level (i.e.,
adjusting the transmission power of the remaining attempts).

Secondly, a false negative decision is obtained, when the
estimated value lies on the non-decodable state (SM ,k ) at k =

0 andM > 1. This false prediction negatively affects the sys-
tem’s reliability, as the decodable block will be erroneously
dropped at an early stage. The probability of this type of error
can be determined as follows:

PFN ≡ P(SM ,k = 0|M = i). (4)

Accordingly, the cumulative probability for link packet error
rate can be found:

PBLER = PPE .PFN , (5)

where PPE represents the packet error detectable empirically
by the simulated model, and PFN can be determined from
the confusion matrix. This simple argument indicates the
importance of adjusting the classifier’s threshold to miti-
gate false-negative decisions (i.e., considering an effective-
block error). This can be realized by designing a classifier
with bias towards a false-positive decision to counterbal-
ance a falsenegative decision. However, this strategy slightly
reduces the efficiency of the proposed swift HARQ, but still
can be considered due to the low probability of this error,
as will be shown in Section IV.
Assumption 1 (Perfect Feedback Delivering): we assume

that the ACK/NACK message can be successfully delivered
on the uplink channel.
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FIGURE 2. Probabilistic model for packet estimation scenario (the red
arrows represent the effective block error).

Assumption 2 (Unlimited Resources): we assume infinite
resources are available for retransmitting under a limited
maximum number of attempts (N ). Hence, there is no inter-
ruption in resources resulting from the upper layers or
scheduling procedure.

B. LATENCY ANALYSIS
To evaluate the anticipated benefits of Swift HARQ, we need
to carefully analyse the user plane latency. The chief com-
ponents that comprise the user plane latency are the modem
processing times, radio Transmission Time Interval (TTI),
and the contribution of the HARQ retransmissions. Let us
assume that f represents the delay of HARQ feedback on
the backward direction (in channel uses), and �(L) denotes
the delay to the transmission of the packet in the forward
direction, including the delays that are caused by sending and
decoding the codeword that has L channel use length. This
delay critically depends on the coding scheme, which is not
yet defined for URLLC. In traditional HARQ, the intended
receiver sends acknowledgement feedback after every trans-
mission to the BS, indicating the success/failure of the packet
decoding process. If the attempt fails, the HARQ process
will be performed repeatedly until the packet is successfully
decoded at re-attempt j without exceeding the maximum
allowable retransmission N − 1. The total latency can be
expressed as:

δtr = (j+ 1)(L + � + f ). (6)

On the other hand, when Swift HARQ is enabled, the
intended receiver may react faster, falling under one of the
following scenarios.

In the first case, a NACK is received that prompts the
sender to drop the non-decodable packet before the remaining
attempts are anticipated. The latency in this case can be
formulated as follows:

δSwift = L + � + f (7)

The second case occurs when Swift HARQ predicts the
decodability of the packet at attempt j, where j ∈ 2, . . . ,N .
The latency can then be formulated as follows:

δSwift =

{
(2(L + � + f ) if j = 2
(j+ 1)(L + �) + 2f otherwise.

(8)

In this case, the delay reduction is based on the receiver omit-
ting (j−1) feedback message(s) as a result of activating repe-
tition mode. However, the maximum gain from our proposed
scheme becomes significant at low/moderate SNRs, in which
the high probability of required retransmissions is observed.
Meanwhile, the probability of decoding the message in the
first round increases at high SNRs, potentiallyminimizing the
performance gains from employing Swift HARQ.

C. POWER ALLOCATION POLICY
In this section, we conduct an initial discussion on a vari-
able power allocation strategy. Traditionally when feedback
information besides the ACK/ NACK is limited, the only
option is to allocate a fixed power level for each round.
On the other hand, the proposed Swift HARQ mechanism
can proactively estimate the required number of re-attempts
to decode the signal successfully. This information can be
exploited to adapt the remaining scheduled re-attempts with
the channel conditions, and that is through allocating varying
power levels for each round. To gain deep insight, let us define
N , as the maximum number of transmission attempts, 8n,
as the probability that the packet is not correctly decoded
until the nth transmission attempt, Pn, as the transmission
power employed in the n− th retransmission round, and
Pbudget as the consumed energy to transmit the whole packet,
respectively. In the case of a fixed power allocation strategy,
the transmit power in the nth round would be Pn =

Pbudget
N ,

and the maximum power budget of a packet transmission can
be found as follows:

Pbudget =

N∑
n=1

Pn8n− 1. (9)

In [22], a power allocation algorithm is investigated to min-
imize Pbudget in the finite block-length regime by utilizing
Karush-Kuhn-Tucker (KKT) conditions. The authors in [23]
optimized the allocated power for each round Pn in order to
minimize the outage probability under the maximum power
budget constraint. In this work, the aim is to decrease the
number of scheduled retransmission rounds, which can min-
imize the round trip time and reduce the outage probabil-
ity. To this end, we proposed a decremental power alloca-
tion approach based on early HARQ feedback, according
to which the power allocation values begin with a high
weight, which then gradually decreases based on the channel
conditions, while respecting the maximum power budget.
We experimentally found that the following expression of the
power allocation strategy for the remaining retransmission
attempts results in improved performance in reducing the
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link block error rate:

Pj =

Pt
√(

J
2j

)
1 < j < J

Pt
√

J
2J−1 j = J

(10)

where J is the maximum number of retransmission attempts,
Pj is the allocated power for the jth retransmission attempt,
and Pt is the allocated power in the traditional method.
We also assume that the allocated power level at the high-
est weight will not exceed the maximum allowable power
transmission. Accordingly, the total consumed energy for the
whole packet can be found:

Pbudget = Pt +

J−1∑
j=1

Pt

√(
J
2j

)
+ Pt

√
J

2J−1

)
. (11)

III. SYSTEM MODEL
In order to derive the necessary tools for the evaluation of the
performance of the proposed protocol, we study a sophisti-
cated system that is inspired by the structure of 3GPP 5G NR
Release 15. Let us define the single URLLC packet as the
transmission of a codeword alongside all possible HARQ-
based retransmission rounds. The packet travels on the
downlink shared channel (DSCH) throughout a point-topoint
multiple-inputmultiple-output (MIMO) system,which hasNt
transmitter and Nr receiver antennas, respectively. Each user
is allocated with L orthogonal groups of assigned Resource
Blocks (RBs). Each RB spans orthogonality for Sf sub-
carriers over the frequency domain and St consecutive OFDM
symbols over the time domain. Unlike the legacy LTE, this
duration is varying and depends on subcarrier spacing types
(i.e., 15, 30, 60, and 120 kHz), offering a higher degree of
flexibility to satisfy the diverse requirements of 5G use cases.
Hence, each packet contains a total of P = L× Sf × St sym-
bols and has a time duration referred to as TTI. The number of
bits inside eachURLLCpacket will be encoded to a codeword
via an LDPC encoder. Each coded bit on the codeword is
mapped to a symbol using an appropriate modulation scheme
(i.e., QPSK, 16-QAM). Then, the reference symbols will be
inserted to the modulated codeword S while processing the
other transmitter functions, such as MIMO precoding and
resource mapping.

In this way, the channel input-output can be expressed as
follows:

Y = SH +W , (12)

where S ∈ CSfStNt and Y ∈ CSfStNr are the transmitted and
received signals, respectively;W ∈ CSfStNr denotes the addi-
tive white Gaussian noise (AWGN), which has independent
W ∼ CN (0, 1). Finally, H ∈ CNtNr is the fading matrix that
is assumed to support clustered delay line (CDL) profiles,
as it is envisioned by 3GPP for 5G communication systems
in frequencies from 0.5 to 100 GHz [24].

A. DATA COLLECTION AND PREPROCESSING
The proposed Swift HARQmechanism relies on a supervised
learning principle to estimate the decodability outcomes; The
idea is to train a learningmodel to find a hypothesisF that can
separate the decodability labels to their potential classes using
pre-collected samples. Each sample represents the observa-
tion of each codeword alongside all possible HARQbased
retransmission rounds. Since URLLC standardization activi-
ties are still in progress, no suitable public dataset is available
for our research. Therefore, we used MATLAB to obtain the
training and test dataset from the described above data trans-
mission model. The link-level parameters are summarized in
Table 2. It is essential to utilize practical features that con-
tain highly correlated information to the decodability status.
In this study, we extract two key features that can infer useful
information about the channel conditions. The first feature is
BERL , which is based on determining the probability of error
estimating the log-likelihood ratio for the received-coded
signal ahead of the decoding process. The extraction strategy
starts by finding the log-likelihood ratio of the k th received
bit bk is either 1 or 0, as expressed below:

Lo (bk) = log
P (bk = 1 | y)
P (bk = 0 | y)

(13)

Following that, the probability of each bit being incorrectly
estimated is calculated as follows [25]:

Pw (bk) =
1

1 + |Lo (bk)|
(14)

Finally, the feature can be extracted by finding the average
error rate for each codeword as follows:

BERL =
1
L

∑ 1
1 + Pw

. (15)

The second feature (CSI) is derived by the channel state esti-
mation. When the UE receives the transmitted signal affected
by complex channel gain and noise, the known pilot symbols
at both parties can be utilized to estimate the channel condi-
tions and then equalize the channel’s effects on the received
signal. The instantaneous channel estimation for a subset of
Resource Elements (REs) within a subframe can be computed
using the least-squares estimate [26] as follows:

Hp(k) =
Yp(k)
Xp(k)

(16)

whereHp(k) represents the channel response for the RE occu-
pied by the pilot symbol, Yp(k) is the received pilot symbol,
and Xp(k) represents the known transmitted pilot symbol,
the proposed feature is after that extracted by computing the
average of estimated pilots within a codeword. Finally, The
dataset labels (i.e., the decodability outcomes) are collected
after the completion of all receiving tasks, including the
process of checking the integrity of the decoded bits. It is
essential to mention that estimating the early feedback will
not overwhelm the receiver with significant processing, as the
estimating relies on features that are already processed as part
of the reception functions in the traditional link.
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B. CLASSIFICATION ALGORITHMS
The Support Vector Machines (SVM) classifier was selected
to solve the classification problem in this study, since it
shows excellent generalization performance in processing
high-dimensional data with the presence of irrelevant features
that share overlapped classes [27]. This section explains the
basic theory of SVM and its relevance to implementation
and refers to [28], [29], and [30] for more detailed theories
and complete formulation. Consider the following training
samples: {x1, y1}, . . . , {xV , yV }, where xi ∈ Rm is an m-
dimensional feature vector representing the ith training sam-
ple, and yi is the corresponding class label. Equation wT xi+
b = 0 describes a hyperplane in the feature space, where
w ∈ Rm is a weight vector and b is a threshold. The SVM
is trained to construct an optimal hyperplane that acts as a
class descriptor between two different classes. The final goal
is to accurately represent decision boundaries that clearly
separate the training data without under-fitting or over-fitting.
However, the problem in this study can be seen as a non-linear
case, as the training samples cannot be linearly separable.
For such a case, the method of ‘‘kernel trick’’ is employed
to map the samples into a much higher dimensional space
where the optimal hyperplane can be determined. In other
words, the Kernel function allows the mapping of vectors
from input space to feature space and computes the inner
product between two vectors [30]. The present study uses the
SVM polynomial kernel, which has d degree polynomials,
as shown below:

K (xi, xj) = (xTi xj + 1)d . (17)

Following the representation of the samples in highdimen-
sional space, the decision boundary for SVM can be con-
structed using the following discriminant function:

f (x) =

∑V

i=1
αiyiK (xi, xj) + b (18)

To find the parameter pair (αi, b) corresponding to the optimal
hyperplane that can maximize the margin between the closed
samples and the hyperplane, the following optimization prob-
lem shall be solved as:

min : L (w, ξi) =
1
2
∥w∥

2
+ C

V∑
i=1

ξi

S.t.: yi
(
αiyik

(
xi, xj

)
+b

)
≥1 − ξi, ξi ≥ 0, i = 1, . . .V ,

(19)

where C is a regularization parameter for the trade-off
between model complexity and training error, and ξi is a
slack variables that is related to the soft margin [31]. The
above discussion comprises the fundamentals of binary SVM.
However, our classification problem is considered as a multi-
class problem, where the decodability outcomes can lie on
one of M classes, where the label yi ∈ 0, . . . ,N . Several
methods have been proposed to extend binary SVMs to solve
multi-classification problems. The one-Against-All method
is considered as the earliest extension of binary SVM. The key

concept is to constructM binary SVM classifiers. Each SVM
model is constructed to discriminate the jth class against the
other M − 1 classes, where all the samples in the jth class
are indexed with positive labels and all other samples with a
negative label. The desired class ys for each training sample
xi is defined as follows [32]:

ys =

{
+1 if yj = j
−1 if yj ̸= j

(20)

Afterwards, all SVMs shall solve the optimization problem x
that yields the ith decision function fi(x) = wT x + b. Finally
at the classification phase, the ‘‘winner-takes-all’’ decision
strategy is used, where sample x is classified as in class i∗

for which fi achieves the largest value as follows [33]:

i∗ = argmax
i=1,...,M

fi(x) = argmax
i=1,...,M

(wTi x + bi). (21)

Notably, this study has elaborated on the discussion of SVM,
which offers superior performance compared to the logistic
regression and decision trees. Details on theses classifiers are
given in Appendix-A.

IV. PERFORMANCE ANALYSIS WITH MULTIPLE
TRANSMISSION
In this section we evaluate the behavior of the proposed
Swift HARQ mechanism when applying different ML clas-
sifiers. Moreover, we show the potential of the proposed
mechanism compared to traditional HARQ. For this, we per-
formed linklevel simulations using the simulation parameters
that are summarized in Table 2. We applied 3 MM trans-
missions with independent channel realizations. As external
parameters, we varied the SNR values under low/moderate
channel quality conditions for two reasons. Firstly, erroneous
reception is most likely to occur at low SNR; thus, early
feedback will inevitably be more effective. Secondly, we can
obtain a balanced dataset in this region, characterized by fair
equality between decodability outcomes, i.e., the number of
observations inside each decodable class being similar to the
number of corrupted packets. This strategy aims to prevent
the classifier from failing to manage an imbalanced training
dataset and evaluating the classifier in a critical operational
region. Meanwhile, we extend the evaluation of the proposed
classification algorithms for Swift HARQ by finding the Area
Under Curve (AUC) curves, which summarize the trade-off
between the true-positive and false-positive rates for pre-
dictive models under different probability thresholds. These
curves can help determine the suitable classifier with a desir-
able balance between the false positives and false negatives,
hence, mitigating the costly false-positive predictions, which
were explained previously in section III-A. It is essential to
mention that no specific theoretical criteria exist to deter-
mine the optimal classifier for such a problem, therefore the
classifier’s determination takes place empirically based on
observation of the models’ response during the training and
testing processes.
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TABLE 2. System-level evaluation parameters.

TABLE 3. Classification comparison between different ML algorithms.

A. CLASSIFICATION PERFORMANCE
The classification strategy for the proposed model relies on
two key features: (1) Log-likelihood ratios (BERL) and (2)
Channel State Information (CSI). Fig.3(a) represents the dis-
tribution of these features with respect to the correspond-
ing decodability outcomes. To obtain a reliable classifier to
classify these features into their potential classes, we train
the ML model using different classifiers, including Decision
Trees (DT), Logistic Regression (LR), and Support Vector
Machines (SVM). The trained models’ accuracy is initially
validated by finding the ratio for the number of correct pre-
dictions to the total number of input samples.

This ratio characterizes the overall discriminatory power
of the algorithm, which is typically close to 1 in the case of
a perfectly discriminative classifier. As seen in Table.1, the
accuracy of the classifiers examined across different SNR-
values reveals the superiority of SVM, closely followed by
DT. In addition, we extend observations of such behavior by
varying the channel coding rate (CR) to 5/6. It appears in
Table. 2 that the classifiers’ performance is effective, and that
SVM still maintains a lead.

It should be noted here that accuracy evaluation metrics
can only reflect mismatched predicted outcomes with actual
outcomes, which can produce false-negative or false-positive
decisions. However, as Swift HARQ is more sensitive
to false-negative decisions, we specifically need to deter-
mine the appropriate classifier that combines mitigating
the falsenegative decisions and enhancing the classification

TABLE 4. Area under the curve (AUC) metric for different classifiers.

accuracy. To this end, we evaluated the behavior of the clas-
sifiers using the Receiver Operating Characteristic (ROC)
curve, as shown in Fig.4. The Y-axis represents TPR,
which contains falsenegative decisions in its denominators,
as follows:

TPR =
TruePositive

TruePositive+ FalseNegative
. (22)

Hence, the main goal is to maximize the TPR so that
it is close to one, by minimizing the false-negative scores.
Notably, SVM rapidly approached one at low FPR. Mean-
while, logistic regression generally produces good overall
performance, but is considerably weaker than other classifiers
in terms of the TPR.

We also evaluate the AUC scores to summarize the ROC
curve. The scores lie between 0.5 (for random prediction) to
1.0 (for a perfect score). As illustrated in Table. 3, the AUC
is scored highly for all classifiers, and the SVM is the best of
the three.

To explain the exceptional performance of SVM, we visu-
alized the dataset distributions after the classification in
Fig.3(b), and compared it with Fig.3(a). As demonstrated,
false-negative decisions can occur in the overlapped zone
between the red and blue classes, which represent misestima-
tions of decodable packets within three rounds (red class) to
create a non-decodable packet (blue class). However, SVM
overcomes this problem with a bias towards the blue class,
as shown from that decision boundary. This biasing intu-
itively comes at the expense of the false-positive decision.
However, unlike the false-negative decision, such false deci-
sions have no impact on the link BLER performance, as the
impact will be limited to generating unnecessary transmis-
sions. To summarize, the simulation results show that SVM,
DT, and LR have similar overall performance in terms of
classification accuracy, despite their fundamentally different
underlying principles. However, SVM maintains the lead
in terms of accuracy performance, thereby mitigating false-
positive decisions.

The next step is to attain deep insight into the URLLC
operation region at SNR = −6. We studied the behavior of
the dataset in order to mitigate false positive decisions and
overcome the imbalanced dataset behavior, thereby obtaining
the full benefit from employing the Swift HARQmechanism.
It is notable from Fig.3(a) that the samples have a heavily
imbalanced behavior, and this is evident in the left-most
cluster of collected samples in SNR= −6. There are only two
non-decodable samples belonging to class 5, and the SVM
failed to predict these outcomes, as seen in Fig.3(b).

To better understand this behavior, we calculated the con-
fusion matrix for SVM, as seen in Fig.5, which summarizes
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FIGURE 3. Visualization of the test dataset before and after classification using Support Vector Machine. QPSK, CR = 5/6, N = 4.

FIGURE 4. Selected example for classification performance based on AUC
in the CDL channel.

FIGURE 5. Confusion Matrix for Swift HARQ using SVM.

the classification results by showing the number of predic-
tions per class. The rows represent the true labels for the data
points, the columns represent the predicted labels, the diag-
onal cells (from top left to bottom right) represent accurate
predictions, and the all off-diagonal cells represent incorrect
classifications.

Let us examine, for example, the rows from three to five in
Fig.5. The majority of the samples in the third row belonging
to Class 2 (324 data points) were misclassified as Class 1, and
all data points in Class 3 were misclassified as either Class 1
(2 data points) or Class 2 (21 data points), and lastly, all the
data points in Class 4 were misclassified as Class 2.

TABLE 5. Distribution of samples by classes for SNR = −6.

The situation described above is an example of an extreme
class imbalance. Table. 4 depicts the distribution of all the
data points by class for the SNR = −6 dataset. Note that,
while classes 0 and 1 comprise over over 99% of the total
number samples, classes 2, 3, and 4 combined share (not
equally) the remaining number of samples, which is less than
1% of the total. Such extreme class imbalance, if left unad-
dressed, can result in the classifier having too few samples
from the minority classes to learn to predict them effectively.
Thus, the classifier will always have inferior performance
across the minority classes leading to more false-positive
decisions.

The two main approaches for addressing class imbalances
are under-sampling (of the majority classes) and oversam-
pling (of the minority). A popular technique used when
under-sampling the majority class involves randomly select-
ing data points to be excluded from the training set. On the
other hand, a popular technique for over-sampling the minor-
ity class is the Synthetic Minority Over-sampling Technique
(SMOTE), which generates synthetic data points to comple-
ment existing data points in a minority class. SMOTE works
by selecting a random data point from the minority class,
choosing k of the nearest data points to the selected data
point, and creating a new data point between the selected data
point and a random one of the k neighbors in feature space.
This process is repeated until a specified number of synthetic
samples have been created.

Given the extreme class imbalance presented in Table. 4,
over-sampling of the minority classes (Classes 2 and 3) using
SMOTEwas essential to improve classification performance.
Note that class 4 presents a problem for SMOTE, as relying
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FIGURE 6. Visualization of the test dataset after classification using data
augmentation.

FIGURE 7. Confusion matrix for Swift HARQ after data augmentation
using SVM.

on only two samples to generate more synthetic data will
not provide diversity in the synthesized samples. However,
this class can be neglected, as the probability of the packet
lying on this class is very small, i.e., every 100,000 packet
transmissions. Additionally, its occurrence will not impact
overall the BLER performance, as the impact will only be
limited to preventing the advantage of Swift HARQ.

Fig.6 visualizes the test dataset after classification using
data augmentation, as see more data points classified as
Class 3 (dark red points).

To clearly see the classification enhancement following
data augmentation, we present the confusion matrix in Fig.7.
As seen, the classification performance of Classes 2 and
3 improved compared to Fig.5, where the majority of the
data points of Class 2 (269 data points) have been correctly
classified, with 76 data points misclassified as Class 1, and
53 data points misclassified as Class 3. This is a significant
improvement compared to the only 74 Class 2 data points that
were correctly classified prior to data augmentation.

Looking at the samples under Class 3, 21 samples were
correctly classified, and only 2 data points were misclas-
sified as Class 2. Again, this is a substantial improvement
compared to the 0 Class 3 data points that were correctly
predicted before data augmentation. These results show that
data augmentation had a significant positive impact on the
classification accuracy of SVM. Note that no data samples
from classes 0 to 3 have been misclassified as Class 4, which

was demonstrated by locating all the zeroes in the right-hand
column.

The argument above shows the benefits of employing the
SMOTE technique to enhance the accuracy of Swift HARQ
by mitigating the false-positive decision, besides maintaining
the prevention of the false-negative decisions.

To summarize, it is difficult to obtain a classifier that has
an error-free performance, but we can balance these errors in
line with the target application’s requirements. To maintain
the target BLER requirements, we concentrated on prevent-
ing negative errors as a top priority in this study. We then
considered the possibility of mitigating positive-false errors
to take advantage of Swift HARQ in enhancing link latency
and throughput.

B. DATA LINK PERFORMANCE
Our next step was to evaluate the link performance under
the assumption of the urban macro-cell model with CDL.
Fig. 8(a) details the BLER as a function of the SNR for stan-
dard HARQ and Swift HARQ under different classification
algorithms. Notably, applying SVM to the proposed model
revealed a favorable performance comparative to standard
HARQ, despite the decodability of the packet having been
estimated ahead of completion of the HARQ processing. The
performance of LR and DT is lower than SVM. It should also
be noted that the performance regression started to expand
negatively at SNR values between -9 dB and -6 dB. This
behaviour can be attributed to the dataset collecting at critical
SNR regions, where the variance of the extracted features
becomes significantly close, despite the probability of their
outcomes belonging to different classes. This can explainwhy
LR and DT experience difficulties when handling overlapped
classes at the edge of the decision boundary. Conversely,
SVM has been more successful at dealing with an overlapped
dataset behavior due to having applied the hyperplane princi-
ple, as described in section IV-B.

Meanwhile, the emerging gap in performance vanished for
all classifiers at both the low and high SNR regions. This
occurred because the majority of the decodability outcomes
in these SNR regions have a monopolistic majority over one
or two classes. In other words, the majority of the outcomes
affecting low SNR are non-decodable. In contrast, the packet
can be decodable within one or two attempts at high SNR.
This can then facilitate the classifiers’ task of distinguishing
the correct outcomes among fewer classes.

Next, we studied the robustness of Swift HARQ by varying
the channel coding rate to 5/6. We observed that while the
BLER performance of all schemes dropped compared to
the case of 2/5, the Swift HARQ performance for all the
classifiers converged at a standard HARQ. This indicates the
interaction of Swift HARQ with the varying coding rate, and
therefore this difference in performance must be taken into
account when choosing a robust classifier.

In Fig.8(b), we presented throughput performance ver-
sus SNR. Evidently, employing the Swift HARQ mecha-
nism can yield considerable gains, with the SVM achieving
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FIGURE 8. Exemplary system performance comparison for Standard HARQ and Swift HARQ under different classification
algorithms. 16 QAM, CR = 2/5, N = 4.

100% performance improvement of the throughput at a mod-
erate SNR (SNR = −12). The other classifiers also showed
highly comparable performance. However, this enhancement
depends substantially on the channel quality and becomes
significant under poor channel conditions, as the non-
decodable packet will be omitted early, increasing the avail-
ability of the channel use. However, the gain starts to decline
in the high SNR regions, where the packet can be decoded in
fewer attempts (i.e., before reaching the maximum allowable
number of retransmissions), leading Swift HARQ to be less
effective in saving resources.

Fig. 9(a) shows exemplary results detailing the expected
delay (in channel use) as a function of SNR under the
assumption of SubCarrier Spacing (SCS) = 60 kHz, QPSK,
L = 480 and C = 0.5. Apparently, the transmission delay
decreases for all techniques with the enhancement of the
SNR. It is also notable that the maximum benefits when
applying Swift HARQ can be observed with low/moderate
SNR values, where disregarding the non-decodable packet
or omitting the HARQ feedback early yields a significant
delay in savings. However, the gap between the performance
of Swift HARQ and traditional HARQ begins to converge
at high SNR, as the number of packets requiring multiple
HARQ retransmissions reduces when compared to the pack-
ets that can be decodable within 1 or 2 attempts. However, this
behaviour does not diminish the importance of using Swift
HARQ, as in the practical scenario, the UE may encounter
a deep fading channel at high SNR, necessitating multiple
retransmission rounds for the whole transmission session.

The effect of applying a variable power strategy is visible
in Fig.9(a) at high SNR, where sensing the decodability status
at an earlier stage enables the transmitter to detect the packet
that requires multiple retransmission, hence increasing the
power weight for the earliest rounds of retransmission. This
action facilitates the decoding of packets with fewer retrans-
mission rounds than traditional HARQ, thereby minimizing
packet transmission duration.

At low SNR, the variable power technique reveals a dif-
ferent behavior than classical Swift HARQ, where the trans-
mission delay increases at this region. This is because the
transmitter in classical Swift HARQ will drop nondecod-
able packets early. This led to delay reduction equivalent to
the N-1 rounds. On the other hand, employing the variable
power strategy can contribute to correcting some of the non-
decodable packets, and thus a delay occurs when processing
these packets at the expense of improving the system through-
put. This finding is evident in Fig9(b), where the system
throughput, at low SNR, is enhanced by 26% and 102%
compared to Swift HARQ and traditional HARQbaseline,
respectively.

Since the Swift HARQ estimation mechanism depends
on a feature that relies on the channel status information,
we extended the performance evaluation by taking the chan-
nel estimation error into consideration. As shown in Fig. 10,
the overall system performance shows a similar trend, with
an expected deterioration in BLER performance due to imper-
fect channel estimation. This indicated the feasibility of Swift
HARQ, even when errors were present in the channel state
estimation. It is notable also that Swift HARQ with the pro-
posed variable power policy performs better than traditional
HARQ. This is due to the ability of the new mechanism to
adapt the remaining scheduled re-attempts with the appro-
priate power level. This can contribute to correcting some of
the non-decodable packets, thereby enhancing the system’s
reliability.

We also evaluated the expected user-plane latency (in a
duration of time) for each packet transmission, by accumu-
lating the main components comprising the user plane delay.
The total latency in the case of traditional HARQ can be
written as:
T )tr = TAG + N (1FW + TTITx

+ 2ρ + φUE + TTIRx + 1BW ). (23)

It is assumed that the processing time of 5G UE (φUE ) is
compliant with the 3GPP standard, known as processing

113432 VOLUME 11, 2023



S. Almarshed et al.: Swift HARQ Based on Machine Learning for Latency Minimization in URLLC

FIGURE 9. Exemplary system performance comparison for Standard HARQ and Swift HARQ using varied power allocation strategy.
QPSK, CR = 5/6, N = 4.

capability 2 for low latency service [34], and the processing
delay at the BS (1BW , 1FW ) is equal to half of the processing
time at the UE, since the processing time of network elements
is still not yet defined [34]. However, the round trip latency
when the Swift HARQ successfully estimates the decodabil-
ity outcome can be formulated as:

TSwift = TAG + N (TTITx + φUE )

+ 2 ∗ (TTIRx + 1FW + 1BW ) + (N + 2)ρ. (24)

This expression is based on the fact that the receiver will omit
up to N-2 feedback message(s), and the assumption that the
transmitter can handle processing the retransmission rounds
in parallel. The comparison of the RTT for HARQ and Swift
HARQ is illustrated in Table 6, assuming the packet required
3 retransmission rounds. In Fig.11, the effect of widening
the subcarrier spacing is shown, where the RTT of packet
transmission (i.e., including the forward and the backward
directions) significantly decreases. This may lead to relaxing
the latency constraint for all mechanisms with superiority in
favor of Swift HARQ.

Next, we evaluated the round trip latency for different
HARQ mechanisms by changing the number of retransmis-
sion rounds and setting the subcarrier spacing to 60 kHz.
As seen from the bar chart in Fig.12, the variance in the
round trip duration becomes evident as the number of retrans-
missions increases; consequently, this will have a signifi-
cant impact on the link latency. It should be also noted that
when the network allows only one HARQ retransmission
at N = 2, E-HARQ [20] can meet the low latency require-
ment compared to Swift HARQ and traditional HARQ. This
is attributed to the capability of E-HARQ mechanism to
release the feedback ahead of the full signal decoding, which
leads to the mitigation of the processing delay in the first
round. We further notice an outstanding performance for
Swift HARQ at higher numbers of retransmissions rounds,
where omitting some handshaking processes plays a primary
role in minimizing the latency. In contrast to the other two

FIGURE 10. Block error rate versus SNR for Standard HARQ and Swift
HARQ under imperfect channel estimation assumption. QPSK, CR = 5/6,
N = 4.

FIGURE 11. Comparing the two-way latency with different subcarrier
spacing in the case of mini-slot transmission with UE capability 2.
Assuming the link requires four HARQ attempts.

mechanisms, Swift HARQ has a steady performance with the
increase of the number of retransmissions, as the handshaking
activities will be performed twice regardless of the required
number of retransmissions.

Summa summarum, the estimation of the packet decod-
ability on a proactive basis causes, in general, a slight dete-
rioration of the BLER performance. This is based on the
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TABLE 6. Two-way latency with different subcarrier spacing.

FIGURE 12. Comparing the two-way latency with different maximum
numbers of transmissions in the case of 60 kHz and mini-slot
transmission with UE capability 2.

fact that feedback is tightly dependent on the channel state
at the first round, while this channel state may differ, either
positively or negatively, from what was expected when all
the re-transmission attempts are acquired. However, the pro-
posed Swift HARQ mechanism demonstrates the capability
of achieving a very comparative outage probability to the
standard HARQ. This can be attributed to the advantage
of enabling the ML techniques that show a good ability
to be trained to remember and analyze the characteristics
of sophisticated wireless channels, then utilized on-board
to sense the decodability status proactively. The proposed
scheme also consistently outperforms the standard HARQ
in terms of throughput and expected delay. The maximum
benefit becomes evident at low/moderate SNRs, where it is
very common to decode the packet with multiple HARQ
processing or failure to decode the packet. It is noteworthy to
mention that the need for multiple HARQ processing is less
present at high SNRs due to the fact that the number of pack-
ets that can experience a deep fading is minor in the simulated
environment. However, the channel conditions in the real
field may differ from the simulated environment, especially
when the whole transmission session exposes to deep fading
conditions and therefore needs multiple retransmissions fre-
quently, which could lead to exceeding the required latency
in URLLC. This behavior triggers the vital need for early
feedback-based mechanisms at high SNR to counteract the

effects of deep fading distortion and maintain the URLLC
latency requirements. It is crucial to mention that employing
ML mechanisms can deliver outstanding accuracy but comes
at the expense of high computational complexity, demanding
a lengthy training period. However, in our application, the
complexity associated with the training task is less critical,
as Swift HARQ can be pre-trained offline to determine its
optimal ML network parameters. The trained model can be
employed on radio devices (i.e., on-board) without any train-
ing overhead during the signal detection. We also emphasize
the positive relation between the packet delivery duration and
channel coherence with the context of URLLC. The packet
delivery is target to achieve 1 ms; this duration, in most sce-
narios, is shorter than the duration of the channel coherence.
Thus, we believe that employing early HARQ techniques
aligns with this unique characteristic as the constancy of
channel coherence facilitates the ability to predict the channel
conditions on a proactive basis, and thus the rapid response
by sending all the required packets without waiting for more
exchange handshaking signaling.

V. CONCLUSION
This paper studied the performance of HARQ in multi-
ple retransmitting scenarios. We proposed the Swift HARQ
mechanism empowered by machine learning techniques to
estimate early feedback about the decodability of a packet.
This allows the transmitter to stop re-transmission activities
for the non-decodable packets or to activate the repetition
mode where some handshaking overhead can be eliminated.
The proposed model reveals a considerable latency reduc-
tion that reaches 60%, 90%, and 110%, compared to the
stateof-art HARQmechanismwith 3, 4, and 5 re-transmission
rounds, respectively. Moreover, the results show a significant
improvement in the link throughput, with the SVM achieving
double throughput at low channel conditions. In addition,
we coupled the feedback with an estimation of the required
number of attempts to decode the packet successfully, then
exploited this information to allocate the suitable power that
can reduce the processing latency and guarantee at least
the achievement of the target outage probability. Our future
plans include studying the capacity to re-tune the ML models
onboard, specifically when the trained model experiences
new channel conditions that do not match the channel models
considered during training, a situation referred to as model
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drift. In such cases, model estimations are no longer as accu-
rate as they were in test tests. There are open questions for
research in this area, including how the appropriate devia-
tion is determined in URLLC and how frequently the model
should be retrained. From the resource allocation perspec-
tive, this study has demonstrated the efficacy of using early
feedback mechanisms in terms of minimizing the transmis-
sion delay and increasing throughput. However, employing
these techniques may result in some minor changes regarding
traffic scheduling and resource allocation. There is a paucity
of studies in the literature addressing the impact of these
modifications on the network performance, especially in the
context of multiplexing the URLLC with eMBB.

APPENDIX
A. DECISION TREES
Decision trees are a type of tree-based learning algorithm that
make decisions by partitioning the instance space into a set
of regions determined by the feature values of the training
dataset. In general, given a data of N observations, where each
observation consists of a m dimensional input vector and a
response label (xi, yi) for i = 1, 2, . . . ,V and yiϵ1, 2, . . . ,V ,
a tree inducer needs to decide on a splitting feature and split-
ting point at each node. These are determined based on some
cost metric based on the proportion of classes at the node.
For a node m representing a region Rm with Nm observations.
These are determined based on some cost metric based on the
proportion of classes at the node. Examples of common cost
measures for a node include:

Gini index :

K∑
k=1

Ptmk (1 − Ptmk ) (25)

Cross entropy :

K∑
K=1

Ptmk log(Ptmk ), (26)

where Ptmk is the proportion of training set observations of
class k in region Rm, and is calculated using the following
equation:

Ptmk =
1
Nm

K∑
xi∈Rm

I (yi = k) . (27)

The classification for the instances in any regionRm is defined
as the class with the majority proportion in Rm given by the
equation:

k(m) = argmaxk Ptmk . (28)

B. LOGISTIC REGRESSION
Logistic regression is inherently a binary classification algo-
rithm. However, a general multinomial expression of Logistic
regression that extends to K classes is also available. For a
total of K classes, the multinomial logistic regression model
is expressed in terms of K − 1 log-odds transformations,
which satisfy the constraint that the probabilities for all

classes sum up to 1. The multinomial expression is provided
in following two equations [35].

p(k) =
e−(ak+βkx)

1 +
∑K−1

l=0 e−(al+βlx)
(29)

where p(k) is the probability of y = k, kϵ(1, 2, . . . ,K ).
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