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ABSTRACT Cerebellar ataxia is the poorly coordinated movement that results from injury or disease
affecting the cerebellum. The diagnosis and assessment of ataxia are significantly challenging due to
dependency on clinicians’ experience and the attendant subjectivity of such a process. In recent years,
neuroimaging and sensor-based approaches, supported by effective machine learning techniques have made
advances in the pursuit of addressing these clinical challenges. In this work, we present an outline of
approaches to applying machine learning to this clinical challenge. We first provide a fundamental clinical
overview with practical problems and then from a machine learning perspective, outline possible approaches
with which to address these clinical challenges. Also discussed are the limitations in existing methods, the
provision of cross disciplinary approaches and the current state-of-the-art as a potential basis for future

research.

INDEX TERMS Cerebellar Ataxia, machine learning, medical applications, signal processing, diagnoses,

severity estimation, assistive devices.

I. INTRODUCTION

The Cerebellum is an important brain region that regulates
almost all aspects of movement. Although less well under-
stood, it also influences cognition through influences on
frontal lobe function [1]. Many medical conditions result
in impaired cerebellar function, which results in impaired
co-ordination of movement known as cerebellar ataxia
(CA) [2]. CA is common yet it is still recognised and assessed
by an expert clinician interpreting the characteristic uncoordi-
nated movements, often by asking the subject to perform spe-
cific tasks that accentuate the incoordination. This is known
as the ““cerebellar examination” and was first described over
100 years ago [3]. There are several reasons why recognition
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and assessment of ataxia require objective measurements.
First, detection of disease progression or the effect of
treatment on that progression is difficult without accurate
measurement [4], [5]. Second, the development of new ther-
apies depends on measurements that show their efficacy or
superiority over existing treatments (where available). Oth-
erwise, there is a very real risk of overlooking genuinely
effective treatments or having unnecessarily large, protracted
and therefore costly clinical trials to overcome the noise of
less sensitive or inconsistent measurements [4], [6]. Third,
some ataxias (e.g., those associated with multiple sclerosis)
already have treatment but their efficacy in certain individu-
als is difficult to assess without accurate measurement [7].
In other ataxias there is active research with the prospect
of new and emerging therapies whose success may depend
critically on accurate measurement to identify any beneficial
effect.
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It, therefore, presents an opportunity for an engineering
approach to build a system that recognises the presence and
severity of ataxia. In the interest of reducing the gap between
clinical need and engineering endeavor, research groups have
been using machine learning (ML) technology to advance
the development of clinically useful objective measures of
CA [8], [9], [10], [11]. The main aims of this paper to this
end are:

1) providing experience in approaching clinical problems
in cerebellar medicine which may benefit from engineer-
ing solutions using ML techniques;

2) reviewing progress in applying ML in the identification
and assessment of CA;

3) proposing a practical approach with which to treat CA
related time series data in addition to the introduc-
tion of a novel methodology for the severity estimation
problem.

This paper is structured as follows: Section II outlines an
overview of ataxia with clinical problems and related back-
ground. Section III discusses variants of ML targets with pos-
sible ML-based solutions. This section also reviews statistical
tools and ML platforms that have been used in CA research.
In Section IV, applications of ML in assessing CA from
neuroimaging are described. Likewise, Section V discusses
applications of ML in assessing CA via voluntary move-
ments. This section categorises movement patterns across
sub-domains of speech, axial and appendicular. Section VI
presents the challenges and future of ML approaches in CA
and finally concluding remarks are delivered in Section VII.

Il. CLINICAL OVERVIEW

A. THE TERM ATAXIA

To someone first entering neurological literature, the term
‘““ataxia” is quite nuanced as it has several different meanings
depending on the context in which it is used. The literal
translation of ‘“‘ataxia” means uncoordinated movement and
was introduced by 19" century neurologists to describe cases
where the patterns of disorganized movement appeared sim-
ilar [12]. Initially these were thought to be specific disease
processes and as was the custom of the time they were given
eponymous names, some of which, such as Friedreich’s ataxia
(FRDA), survive to this time. An important contribution of
the early neurologists was to formulate the proposition that
specific neurological signs' (such as ataxia) arose from dys-
function of particular brain regions. It thus becomes appar-
ent that these different eponymously named diseases that
featured ataxia also affected similar brain regions even if
through different pathological processes. These specific brain
regions that resulted in ataxia were identified and described
by using the brain region as an adjective: Cerebellar ataxia,
vestibular (inner ear balance mechanism) ataxia, propriocep-
tive (sensory) ataxia. Another important concept is that the

1Signs are objective findings based on a clinician’s bedside examination
(e.g., a tremor) whilst symptoms are subjective complaints reported by the
patient (e.g., pain).
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presence of other signs (e.g., spasticity or hearing loss) point
to involvement of other neural regions, which in conjunction
with the tempo of onset progression can help point to cause
of dysfunction (pathology).

The process of describing ataxia by both the location
affected (e.g., CA) or by the disease process has persisted but
the understanding and classification of disease mechanisms
is now more sophisticated. The common features of all of the
disorders listed in Fig. 1 is that their pathology affects the
cerebellum as well as many other parts of the nervous system
(e.g., multiple sclerosis) or affect the cerebellum exclusively
(e.g., post-infectious cerebellitis). Some of the many patho-
logical processes can cause dysfunction of the cerebellum
and/or its input pathways (afferents). Dysfunction may be
temporary and without associated neuronal loss: for example,
short term alcohol use or post-infectious cerebellitis. Broadly
CA is caused by many pathological processes including tox-
ins (e.g., long term alcohol use), infections, autoimmune
disorders (e.g., multiple sclerosis or post-infectious), trauma
and stroke [13], [14]. These are known as acquired CA to
separate them from neurodegenerative CA which are consid-
ered to be linked to intrinsic processes, principally inherited
factors. Much of the literature around measurement of CA
is biased toward neurodegenerative disorders. As this study
is directed at measuring CA, it will be focus on CA as
a neurodegenerative disorder. A more detailed description
of neurodegenerative ataxia is provided in subsection II-D
below.

The key point for this discussion is that CA is the sign
that results from dysfunction of the cerebellum and/or its
neural afferents, and it may be caused by many pathological
processes and in conjunction with a range of other signs.

B. WHAT ARE THE SIGNS OF CA?

CA results in potential dysfunction of every voluntary move-
ment and so affects eye movement, speech, axial movement
(balance and gait), and appendicular movement (upper and
lower limbs) [14]. Cognition, especially executive function,
may also be affected. Although experienced clinicians have a
rapid almost subconscious pattern recognition of ataxia, the
examination of some of the tasks used to accentuate ataxia
have been codified and standardised in an effort to facilitate
rating ataxia severity [2]. Some of these rating scales are (e.g.,
Scale for the Assessment and Rating of Ataxia [SARA] [15],
International Cooperative Ataxia Rating Scale (ICARS) [16]
and the Brief Ataxia Rating Scale (BARS) [17]). Some
rating scales have been developed to service specific CA
(e.g., Neurological Examination Score for Spinocerebellar
Ataxia [NESSCA] [18], the Friedreich Ataxia Rating Scale
[FARS] [19] and the modified FARS [20]). These scores
provide an ordinal score (usually 5 points with “0” rated
as normal) for each domain. The scores for each domain are
summed to provide a total score, a lower score indicating less
clinical severity. By calculating discriminant validity, inter-
observer, and intra-observer agreement (interclass correlation
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coefficient [ICC]), works by Brandsma and Saute et al. have
proved the ICARS, SARA, and BARS were among the most
reliable of the general clinical scales for CA [21].

These clinical rating scales are invaluable for ML
approaches as they provided a quantified version of the
“ground truth” by providing not only an indication of the
presence of CA but also its severity. It is important to
acknowledge that the clinical examination for ataxia is used
in two quite different settings. One setting is in the diagnosis
of CA (Section III-B, ii). This is the initial recognition that
cerebellar dysfunction is present and usually leads to fur-
ther investigations that aid in establishing which particular
pathological process is the cause of the CA. Usually (but
not always), this occurs relatively early in the course of the
disease when signs of CA are relatively mild. There is a
case to be made that objective measurement of CA using ML
approaches would be helpful, because a person with CA’s first
contact is often with clinicians who are not experienced with
CA and so may overlook these early signs, where an objective
measurement might aid in its early detection. However, the
second setting, which is the measurement of the severity
of established CA (Section III-B, iii) and its progression,
has received the most interest because objective measures
would be helpful in clinical trials. It is important for ML
approaches to distinguish between these settings because
the feature sets that establish the presence of CA may dif-
fer from those features that change with increasing disease
severity [22].

C. THE CLINICAL EXAMINATION VERSUS PHENOTYPING
A key concept behind the clinical examination in neurol-
ogy is that particular “‘signs” are sought because they are
signs of dysfunction of specific brain regions, for example,
CA: cerebellum, spasticity: the long tracts, monocular blind-
ness: optic nerve or retina. Originally this was an empirical
observation that specific brain regions subserved specific
functions. With increasing knowledge that particular disease
processes tend to affect particular brain regions a knowledge
of functional neuroanatomy allowed a clinician to deduce the
site of dysfunction in the nervous system and the probable
pathology. The advent of modern brain and spine imaging
has helped in this localization of pathology and deduction of
pathology.

However, genetics has provided an added perspective. The
full set of genes in neurones is the same as every other cell in
the body. However cerebellar neurons have a different appear-
ance and connectivity to, for example, motor cortex neurones
and the reason for these differences is the subset of genes they
express. Two cells that have the same set of genes (e.g., one
individual’s cardiac muscle cell and a cerebellar Purkinje cell)

2Gene expression means that a particular gene is being allowed to make
protein (or signal). Each cell only expresses a subset of the full set of genes
and it is this subset that endows the cell with specific characteristics, for
example, a Purkinje cell of the cerebellum or pyramidal neurone of the
cortex.
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yet differing morphology, function and connections due to
expression of different subsets of these genes are said to have
a different phenotype. Thus, in effect, detecting CA caused
by, for instance, alcohol, is detecting impairment of neurones
with a specific phenotype. Nevertheless, phenotyping is not
commonly used in this context but more commonly held for
the specific case where gene function (due to, for example,
a mutation) in cerebellar neurones causes those neurones to
have impaired function or even degenerate.

We have focused so far on phenotyping by clinical exam-
ination. However, the changes on a Magnetic Resonance
Imaging (MRI) scan also reflect the effect of specific gene
dysfunction on particular neuronal subtypes as do the neu-
ropathological changes on histological examination. Thus,
phenotypical classification is based on all the genes that
express function in specific neuronal types. The reason for
explaining the origins of phenotyping is because it explains
why idiopathic non-hereditary CA (Fig. 1) and inherited atax-
ias are often discussed together (as will be the case in this
review) as neurodegeneration.

D. CA RESULTING FROM NEURODEGENERATION

The term “Neurodegenerative ataxias (NA)” has its roots
in the late 19" century, when features of ataxia were being
codified and various syndromes were described [12]. They
were progressively worsening ataxias, often with specific
patterns of neuropathology and where known acquired causes
of ataxia had been excluded. Many were recognised as being
inherited, even before modern genetics. However, in the
last forty years the genetics of many of these diseases has
been revealed and many cases of new inherited ataxias
have been described (hereditary ataxias Fig. 1) [12], [23].
However, where the genetics of NA remains unknown, these
are referred to as idiopathic (a term that dresses up ignorance
of the cause) although it is expected that genetic factors drive
many of these conditions, either as specific mutations or as
risk factors [24].

Prior to the availability of molecular genetic testing, spe-
cific hereditary ataxias (e.g., FRDA) were diagnosed on
the patient’s clinical phenotype (the constellation of clinical
features associated with a particular genetic inheritance,
as described above). It is now clear that while the clinical
phenotype is a reasonably accurate indicator of the under-
lying pathology, neither clinical nor pathological phenotype
is a completely reliable witness to the underlying genetic
mutation. For example, some conditions that have a genotype
for hereditary motor and sensory polyneuropathy (respec-
tively, impairment of the nerves carrying information to the
muscles and information on sensation from the periphery)
present with the phenotype of NA. It is also common to
divide the inherited NA according to their pattern of inher-
itance: autosomal dominant and recessive, X-linked and
mitochondrial. Dominance here refers to whether one of the
copies of genetic material dominates the expression with a
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FIGURE 1. Pathophysiological categorization of CA.
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FIGURE 2. Relationship of the key pure and combination phenotypes
discussed in this paper. CA = cerebellar ataxia; BV = bilateral
vestibulopathy; SS = somatosensory impairment.

special case for the sex-linked X chromosome. While this
classification of heritability is useful, it does not give full
recognition to the underlying complexity of the genetic
basis for these conditions. Rather than simple single point
mutations,

repeating nucleotide expansions [e.g., FRDA, Cerebellar
Ataxia with Neuronopathy and Vestibular Areflexia (CAN-
VAS) and certain spinocerebellar ataxias (SCAs)] are impor-
tant. Furthermore, polygenic expression may impart a risk for
neurodegeneration as they do in other forms of neurodegen-
erative disease [e.g., Parkinson’s Disease (PD)].

This highlights an unresolved problem that the genetics
revolution has presented to neurology: to classify accord-
ing to the phenotype or the genotype? This question is not
resolved and while genetics is allowing enormous strides in
understanding underlying molecular pathology and potential
therapeutic targets, ataxia (the phenotype) is the reason that
people consult clinicians and is one of the main ways these
diseases impact quality of life. Thus, for the clinician having
a phenotypic classification is important and being able to
accurately detect the presence and severity of ataxia, and the
extent to which it changes with disease progression or the
effect of therapy, will be a cornerstone in developing new
therapies and then deploying them effectively.
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1) PHENOTYPES
NA are classified into inherited and idiopathic ataxia:

Inherited Ataxias

Autosomal Dominant: There are now a very large number
of dominantly inherited CAs. The SCAs are inherited in an
autosomal dominant manner, SCAs 1, 2, 3 and 6 are the most
prevalent [25]. Their occurrence is low and in part depends
on geography, with some forms being especially common
in specific localities. The episodic ataxias (EAs) are another
group of autosomal dominantly inherited CAs which are
characterized by episodes of (rather than constant) ataxia.

Autosomal Recessive: FRDA has been the most prevalent
autosomal recessive CA but CANVAS (Cerebellar ataxia,
neuropathy, and vestibular areflexia syndrome), a recently
described condition, lead to the discovery of the RFC1 gene,
which appears to be relatively common [26], [27]. FRDA
typically has its onset in late childhood (although variants
occur with an onset after 25 years or later) whereas CANVAS
is mid to late adult onset. There are a very small number of
X-linked and mitochondrial CAs.

Idiopathic Ataxias Most people diagnosed with idiopathic
ataxia fall into a large and somewhat heterogenous diagnostic
category, although there are a few such as Multiple System
Atrophy of the cerebellar type (MSAc) that are exceptions.
MSA constitutes 11% of sporadic ataxia [28]. Historically the
terms Idiopathic Late Onset Cerebellar Ataxia (ILOCA) [29]
or Sporadic Adult Onset Cerebellar Ataxia (SAOA)
[30], [31] has been used to describe idiopathic CAs where
a more specific diagnosis could not be reached. The homo-
geneity of these diagnostic entities has been questioned as
some consider them to be more akin to diagnoses of exclusion
rather than defined diseases [32]. Increasingly, idiopathic
ataxias are recognised as being (1) a pure cerebellar syndrome
(CA); (2) CA plus bilateral vestibular dysfunction CABV;
(3) CA plus/minus vestibulopathy or pathology of peripheral
proprioceptive input. Fig. 1 summarizes an overall schema of
CA phenotypes and Fig. 2 illustrates the relationship of the
key pure and combination phenotypes discussed in this paper.
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2) CLINICAL PROTOCOLS TO IDENTIFY PHENOTYPE

To date, clinicians use a variety of tests to identify pheno-
type based on the known characteristics of each phenotype.
Depending on the individual’s presentation, the identifica-
tion of phenotype may be central to reaching a diagnosis.
These tests are a mixture of strategies that comprise medical
profile, family history, and a comprehensive neurological
evaluation. Lesion-related ataxia caused by brain tumors,
abscesses, strokes, or multiple sclerosis rely on MRI brain
to aid in detecting a cause (i.e., the lesions) [14]. Acquired
ataxias, for example, infectious or gluten ataxia will require
the involvement of laboratory tests such as serum biomark-
ers, or serum antibody levels. Gene tests will be required
to diagnose a genetic cause. Deficits in the perception of
sensation may be present during the bedside clinical exam-
ination but are more robustly assessed by nerve conduction
studies (NCS) [33].

Ill. ENGINEERING OVERVIEW

A. IMPLICATIONS FOR THE ML ENGINEER

Due to its affection on movements, ML research in CA
can extract features from the movements of people with
CA and compared with individuals without ataxia. However,
as mentioned above (section II-D1), CA may have patholo-
gies involving the cerebellum alone or be accompanied by
pathology of the vestibular system and/or the proprioceptive
system (the component of the somatosensory system which
senses the position of a body part in space). While impair-
ments of each of these neural systems can produce ataxia,
clinically it is difficult to discern differences in the CA that
results from involvement of the cerebellum alone or when one
or both of the other systems are also present. However, an ML
modeler should be alert to the possibility that subsets of these
entities that constitute NA may actually provide slightly dif-
ferent feature sets. A further complexity is that some forms of
CA are also accompanied by other disturbances of movement
[e.g., spasticity in FRDA (prolonged contraction of muscle)
or bradykinesia (slowness of movement) in MSA] that may
be recognizable by distinct features allowing both the ataxia
and other characteristic movements to be recognised and
quantified.

B. MACHINE LEARNING

1) ML TARGETS

The first aim of ML is to categorically separate ataxic
from non-ataxic movements and then to grade its severity.
Secondary aims might include examining whether people
with CA can be sorted into those with and without afferent
(vestibular and proprioceptive) involvement from those with
other movement disorders (e.g., spasticity or bradykinesia).
It is important to realise that the process of diagnosis will
remain clinically based on the manifestation of disease, the
presence of relevant signs and symptoms, and relevant genetic
testing. Four main questions ranked according to their hierar-
chical level of difficulty for ML engineering are:

14010

(1) Univariate analysis: What features differentiate those
individuals with and without ataxia? The features may
be physically expressible (e.g., step length in gait) or
signal processing based (e.g., recurrence quantification
analysis [34]);

(ii) Differential diagnosis’: how to utilize a combination of
standalone features to classify people with ataxia from
those without ataxia;

(iii) Severity estimation: how to estimate the severity of
ataxia. This function plays an integral role in assessing
the rehabilitation process or response to drug treatment;

(iv) Phenotype identification: is it possible to determine the
phenotype of a person with ataxia using movement
data? The movement-based identification, when fully
developed, helps to optimize the effectiveness of the
treatment and result in reducing the cost of diagnos-
tic procedures which is currently based on expensive
genetic testing.

2) ML DATA RESOURCES

As outlined above, CA results from dysfunction in cerebellar
nerve cells (neurones) and those of its afferents. It can also be
added that when there is an underlying genetic cause, the neu-
ronal dysfunction results from altered gene expression (the
process by which the instructions in our DNA are converted
into a physical structure that may alter bodily functions)
in these brain locations. Thus, the presence and severity of
CA can be assessed by observing changes within cerebel-
lar neurones (and the afferent pathways) by looking at the
microscopic changes to these structures (histopathological
examination) or its proxy, structural change e.g., atrophy*
as seen on brain imaging in particular, MRI [35], [36], [37].
Histopathological examination is superior because not only
does it make an assessment of neuronal loss and disruption of
normal neuronal processes possible, but it can also identify
abnormal levels of molecules that are directly or indirectly
the result of specific gene action, that is, enable measurement
of disease-related substances. Histopathological examination
whilst an individual is alive is generally not performed in
the regions of the brain that we are concerned with as the
risk of significant brain ‘damage’ in harvesting the brain
tissue is too high. Recent advances in MRI techniques enable
the quantification of neuronal count (as a proxy of neuronal
loss), identification of neuroinflammation and assessment of
the integrity of afferent pathways possible. Thus, MRI is a
potential means of assessing the progression (severity) of the
process causing CA. The other and oldest means of assessing
cerebellar dysfunction is direct assessment of movement.
Implicitly, by naming it “ataxia”, clinicians have recognised

3In the clinical context, this is the process whereby a clinician, having
gathered a patient’s medical history (including symptoms), conducted a
physical examination (to demonstrate the presence or absence of any relevant
signs) and any medical test results (e.g., vestibular impairment) generates a
list potential diagnoses in an effort to reach a definitive diagnosis.

4The wasting away of body tissue, in particular as a result of cell degen-
eration or loss.
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a characteristic pattern of the movements associated with
cerebellar dysfunction. Thus, strictly ataxia can only be mea-
sured from the subject’s voluntary movements.

3) ML APPROACHES

With data sourced from neuroimaging and movement-based
logger devices, three fundamental ML approaches are pre-
vailingly applied to process the raw data as illustrated in
Fig. 3.

(1) Hand-crafted ML: Researchers can extract features
manually from raw data using signal processing tech-
niques and utilize them to train ML models. The clas-
sification or regression models then classify cohorts
and produce a severity score. This traditional approach
has been used widely in CA research. The advantage
of ML is its low demand in data points (less number
of participants) and engineer can interpret the relation-
ship between features vectors versus model outputs.
However, feature extraction is a time-consuming pro-
cess which requires statistical, signal processing, and
domain knowledge to be able to deliver a superior
model;

End-to-end ML: Researchers can utilise a neural net-
work (NN) or deep learning (DL) approach which is
more advantageous than hand-crafted ML by eliminat-
ing the feature extraction step. However, end-to-end ML
requires a large dataset and is less interpretable (as a
black box) because feature vectors are auto generated
and embedded in the model itself. In this approach,
transfer learning is usually employed to leverage the
pre-trained NN and helps to overcome the problem of
a small dataset [38]. Time series data can also be con-
verted into images and leverage the state-of-the-art NN.

(i)
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Transform techniques include Recurrence Plot [34],
Poincaré Plot [39], melspectrogram [40], multichannel
method [41], Iss2Image [42], and ConceFT plot (time-
frequency plot) [43].

4) ML PLATFORMS

Although many open-source tools are available with which
to work with ML algorithms, CA researchers have mainly
utilised TensorFlow, Keras, R, Pytorch, Matlab, and Scikit-
learn. Another less popular ML platform is the Waikato
Environment for Knowledge Analysis (WEKA) [44], which
has been used to segregate people with FRDA from those
without ataxia [45]. Tsfresh [46] is another supporting library
for feature extraction which is used with time series. This
python package automatically employs 63 time-series signal
processing techniques to calculate a total of 794 features.
In contrast to other neurological diseases such as Parkinson’s
disease (PD) or Alzheimer’s Disease (AD), the dataset for CA
is not publicly available.

Across all domains, researchers have engaged conven-
tional ML algorithms such as Random Forest, Linear dis-
criminant and regression analysis (LDRA) [47], [48], Support
Vector Machine (SVM), LASSO, Hidden Markov Model
[49], Decision Trees, K-Nearest Neighbor [50], Least-squares
support vector machine (LSSVM) [51], 3-nearest neigh-
bour (3-NN), and neural network (NN) [52]. DL limited
to the use of Deep Convolutional Neural Networks, Recur-
rent Neural Networks (RNNs), and Transfer Learning [53].
Model selection usually employs generic metrics including
accuracy, f-beta score, sensitivity, specificity, precision or
Akaike’s Information Criterion corrected for small sample
sizes (AICC) [54], [55].
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C. STATISTICAL TOOLS IN CA STUDIES

Statistical tests used in CA research have principally been
for univariate analysis, in order to evaluate the differ-
ence between control subjects and individuals with ataxia.
Data normality is usually verified using the Shapiro-Wilk,
Kolmogorov-Smirnov or Jarque—Bera tests [56]. If the dataset
is normally distributed, a one-way analysis of variance (one-
way ANOVA) or Student’s t-test can be employed to evalu-
ate the differences between the means of each cohort. The
Kruskal-Wallis or Mann Whitney U test are conducted if
case normality cannot be ensured. The Wilcoxon signed
rank test, Fisher discriminant ratio, Effect size (Cohen’s d or
Hedge’s G) are utilised to measure the significance of differ-
ences in the analyses [56]. Hedge’s G is equivalent to Cohen’s
d, but modifies for standard deviations and unbalanced sam-
ple sizes. The reading of Hedge’s G is comparable to that of
Cohen’s d, where 0.2 Cohen’s d is typically interpreted as
small, 0.5 as medium, and 0.8 as large. Correlation tests avail-
able include the Pearson Correlation Coefficient (PCC) and
Spearman rank order Correlation Coefficient (SCC) depend-
ing on normality of the data set. As a general alignment,
statistical results are significant if p values are less than 0.05.
Intraclass correlation coefficients (ICCs) may be computed
to ascertain repeatability of measures. In a longitudinal study,
such as one which examines the effect of rehabilitation, this
chosen metric must measure changes over time or in response
to a therapy [57]. Power analyses are statistical measurements
to be employed before a trial (prior-analysis) to determine
the smallest number of samples required to detect a differ-
ence, or after a trial (post-analysis) to justify the significance
of the research outcome. Available statistical programs to
calculate the power and other multivariate analyses include
G*Power3 [58], PASS 2020,> SPSS SamplePower, and SAS
(SAS Institute, Cary, NC). As a general consensus, 30 sam-
ples per group are necessary to obtain a significant level [59].

IV. ML IN ASSESSING ATAXIA VIA NEUROIMAGING
A range of quantitative measures relevant to CA can be
derived from brain and spinal MRI, indirectly measur-
ing pathological changes resulting from neuronal atrophy,
axonal damage, metabolic dysfunction, vascular abnormali-
ties, or glial changes. “Macrostructural” changes in regional
brain and spinal volume can be measured using stan-
dard T1- or T2-weighted MRI, reflecting neuronal atro-
phy, loss of neuropil, or developmental hypoplasia. Modern
MRI acquisitions at submillimeter resolutions using 3-Tesla
(or greater) field strengths allow for detection of increas-
ingly subtle and more localised anatomical changes in the
cerebellum and brainstem in people with CA, particularly
alongside the rapid development of automated image process-
ing approaches, including DL algorithms (e.g., ACAPULCO,
FastSurfer) [37].

“Microstructural” measures reflecting changes in tissue
organisation or cellular environment can also be acquired,

5 https://www.ncss.com
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typically using diffusion imaging approaches. These are most
commonly used to quantify white matter integrity (i.e. “‘frac-
tional anisotropy’’) or fluid accumulation (*“‘mean diffusiv-
ity””). More complex multicompartment biophysical mod-
elling approaches can also be applied to diffusion-weighted
imaging to delineate more specific biological features —
e.g, the “NODDI” model provides regional quantification
of neurite density, axonal dispersion, and extracellular fluid
[35], [60]. Tractography approaches can also be applied to
isolate particular white matter tracts of interest. In people
with CA, these approaches are most useful for interrogating
the integrity of the cerebellar peduncles (which carry afferent
signals into the cerebellum and efferent signals from the
cerebellum to other brain regions), and the ascending and
descending spinal tracts (carrying sensory and motor signals
from/to the rest of the body) [61], [62], [63].

Quantitative susceptibility mapping is another microstruc-
tural MRI technique which is sensitive to iron in grey matter
structures and has become increasingly influential in assess-
ing volumetric changes and iron-related pathology (likely
reflecting mitochondrial dysfunction) in the deep cerebellar
nuclei, such as the dentate nuclei, in CA [36]. Magnetic
resonance spectroscopy offers opportunities to dive even
deeper to quantify the molecular concentrations of particular
metabolites or proteins that are reflective of neuronal or glial
health and activity [64], [65]. Notably, although functional
imaging (e.g., fMRI) provides a more ‘living’ snapshot of
neuronal function, it is not generally considered to have ade-
quate reliability to meaningfully contribute to classification
or prediction [66].

Given the wealth of quantitative data that can be obtained
using MRI, the task for the ML engineer is to identify data
features that can categorise or sort NA from non-ataxic sub-
jects, assess the severity of NA and distinguish between CA
arising from involvement of the cerebellum only, from CA
due to involvement of the cerebellum plus its afferents. The
challenges here are the “gold standards’ for severity, which
inevitably fall to clinical assessment, with the previously
described attendant limitations, such as subjectivity. A second
factor is that clinical features (i.e., ataxia) will not be linearly
related to neuronal loss. Neuropathology generally precedes
clinical expression in CA. For example, significant thinning
of the spinal cord is already evident at the time of first
symptom expression in FRDA, and atrophy of the cerebellum
and brainstem can be observed in people with SCAs many
years prior to symptom onset [67]. It is therefore likely
that neuronal loss must reach a threshold, exhausting ‘neu-
ral reserve’ and/or overwhelming compensatory mechanisms
within the system before function is impacted. Additionally,
neurodegeneration with disease progression in CA is likely
nonlinear in both time and space. For example, in FRDA,
spinal cord shrinkage largely occurs due to developmental
hypoplasia, with only limited ongoing degeneration, dentate
nucleus atrophy is maximal early in the disease course before
approaching an asymptote, and cerebellar cortex is relatively
normal until late in the disease [68], [69], [70], [71]. As such,
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feature selection likely needs to be closely tailored to each
use case. It is likely that accurate and robust ML will be
best served by considering multiple imaging modalities and
features, and even 4D approaches where feasible [64].

Importantly, MRI provides a static snapshot of the
brain at a point in time, providing information about the
structure, connectivity and metabolism, but not about the
behavioural/clinical implications of those biological changes.
MRI quantifies pathology but not the effects of pathology.
Indeed, the need exists to more clearly link the effects of
pathology to function by means of identifying the presence
and severity of ataxia.

A. ADVANCES IN ML TO IDENTIFY AN NA

USING NEUROIMAGING

DL frameworks with an end-to-end approach has been used
with MRI (T1-weighted Magnetization Prepared - RApid
Gradient Echo images) on a data set of 61 controls and
107 individuals with ataxia, to discriminate three CA phe-
notypes SCA2, SCA6, AT with error rate of 13.75% [72].
Here, the disease functional score estimation with stacked
autoencoder (SAE) reach up to 0.69 Pearson correlation. The
technique proposed to train weak classifiers first and then
combine to overcome the limited number of training samples,
which is one of the most common limitations in health-care
research to impede the use of DL approaches.

Applications of DL to diagnose neurodegenerative dis-
eases (AD and PD) used Deep Convolution Neural Net-
works, Recurrent Neural Networks (RNNs), and Transfer
Learning [53]. MRI provides hand-crafted measures of cere-
brospinal fluid (CSF), gray matter (GM), and white mat-
ter (WM) with a data set of mild cognitive impairment,
PD, and scans without evidence of dopaminergic deficit
[73], [74]. Other neuroimaging techniques that may provide
utility include Computed Tomography (CT), Single-Photon
Emission Computed Tomography (SPECT), and Positron
Emission Tomography (PET) [53], [75]. Conventional ML
and DL can further aid early diagnosis through interpreting
clinical scanning images as well as discovering new treat-
ment therapies [76]. Some supporting libraries for feature
extraction include Voxel-Based Morphometry toolbox [77]
with Statistical Para metric Mapping [78] that helps to pro-
duce WM, GM, and CSF brain images. Preprocessing steps
may include the use of software tools such as Freesurfer®
to generate a masked and intensity-normalized image which
contains labels for the cerebellum [72] and brainstem, and
the ACAPULCO CNN for segmentation of the cerebellar
lobules [79].

V. ML IN ASSESSING ATAXIC MOVEMENT

As previously stated, the uncoordinated movement result-
ing from CA affects eye movements, speech, axial function
(balance and gait), appendicular function (upper and lower
limbs), which are here referred as “domains”. Although the

6https:// surfer.nmr.mgh.harvard.edu/
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incoordination intrudes into everyday activities, there are
specific repertoire of movements used by clinicians during
the bedside examination to accentuate ataxia. The common
theme of these movements is to focus on timing and accuracy
using repetitive movements or tasks that require accuracy.
The ability to maintain a stable posture is also examined
directly (in the case of axial function) or indirectly (where
movements at more distal joints require a more proximal’
joints to provide a stable platform - e.g., accurate pointing
of the finger at a target requires coordinated contraction of
the muscles that stabilize the shoulder joint). The nervous
system is constantly correcting and adjusting posture, and
in CA errors in the timing and accuracy of these corrections
results in increased sway and irregular gait and balance.

Advances in ML to identify a person with NA by employ-
ing data gathered on ataxic movements can be categorized
based on research approaches of assessing ataxia through
routine movements (subsection V-A), beyond task modeling
(subsection V-A), or tasks emulating standard clinical tests
(subsection V-B).

A. ASSESSMENT VIA ROUTINE MOVEMENT AND

BEYOND TASK MODELING

In addition to body worn sensors [34], [47], we have devel-
oped hardware in the forms of a cup [22], [83] and a
spoon [80], [81], [82] to examine ataxia through routine daily
movements (as opposed to the specific movements which
are based on the cerebellar bedside examination). Inspired
by devices of daily use, the primary focus is the objective
assessment of CA while completing usual activities of daily
living. These devices have the potential for being used in
the home, an option that a clinic setup is unable to deliver.
Ecologically relevant activities such as using a spoon and cup
are functionally relevant and demonstrate high performance;
88% segregation rate between individuals with and without
ataxia, and 0.72 correlation with clinical scales [22], [80].
Nevertheless, this research may be viewed as limited, in that it
is still adhering to specific, pre-defined tasks such as feeding
and drinking.

In the context of assessment via task-free activities, Khan
et al., investigated the possibility of using a continuous logger
(a single wrist sensor worn) to estimate severity of chil-
dren with ataxia-telangiectasia, recording at home environ-
ment [10]. Table 1 lists research in assessing CA through
routine movement and beyond task-independent modeling.

B. ASSESSMENT VIA EMULATING STANDARD

CLINICAL TESTS

1) EYE MOVEMENTS

There are many clinical eye movement abnormalities in
cerebellar disease [87] which include incoordination of eye
movements (e.g., inaccurate eye tracking of a moving object,
or when moving between objects) or additional abnormal eye

TProximal refers to a body part that is situated nearer to the centre of the
body or structure of interest whilst distal refers to that which is further.
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TABLE 1. Select studies of developed instruments to assess ataxia in routine movement.

ROUTINE MOVEMENT
Device lllustration Description Feature
Instrumented An instrumented spoon to  Yaw, Pitch and Roll angu-
spoon  (2020) measure hand movement lar range of motion, tangen-
[80]-[82] to classify and assess the tial velocity, zero crossings,
P severity of people with feeding rate, the trajectory
/ FRDA. of the rotation, duration to
complete a task, range of
motion and movement vari-
ability.
Instrumented A cup engaging with the Frequency domain features

cup (2021) [22],
[83], [84]

task of drinking to sense
kinematic parameters sep-
arating and correlating with
the clinical scales.

such as frequency band
and magnitude in anterior-
posterior, superior-inferior,
medial-lateral, and roll,
pitch and yaw angles.

BEYOND TASK MODELING

Clinical Implication

Differential diagnosis: Accu-
racy of 96% in differenti-
ation subjects of the two
groups.

Severity estimation: Higher
correlation of 0.72 from
Random Forest regression
model.

Differential diagnosis:
88% separation accuracy
acquired with k-nearest
neighbors algorithm.
Severity estimation: a trained
regression model yielded
the highest 0.9 Pearson
correlation with  clinical
scores.

Device lllustration Description

Supportive A supportive system em-
mouse (2013) Actuators ploys a 2-D haptic re-
[85] Capstan sponse device to minimize

Mouse interface

the effects of the patho-
logical absence of motor
control for individuals with

Feature
Not applicable

Clinical Implication
Not applicable

ataxia.
Internet-based

An internet-based assess-

Movement time, execution  Differential diagnosis:

Mouse (2020) ,«- \ ment to use a computer time, mouse speed, jerk Obtained high accuracy
[86] ) ?, jInternet mouse to assess CA sever- index, deviation from of 90% to differentiate the
N task axis, movement  ataxic from controls.

ity both scalable and flexi-
e A

Il B —
) ) P

L T
Mouse Mouse Mouse

Mouse

movements (e.g., nystagmus, a range of involuntary repeti-
tive eye movements). Most abnormal cerebellar related eye
movements are able to be readily captured using portable
infra-red goggles (video-oculography) [88]. Recently, a high
speed smartphone camera was used to capture eye movement
with a diagnostic sensitivity of 0.84, specificity of 0.77,
and a correlation value of 0.63 with the BARS oculomotor
subscore [89]. This involved recording two minutes of slow-
motion video of the face, capturing the centre point of the
iris whilst the subject tracked a moving dot on a screen.
Facial landmarks were detected and the relative position of
the centre point of the iris to fixed facial landmarks was
recorded. Feature extraction was a combination of the total
power and variance of frequencies embedded within the iris
movement. TABLE 2 presents the research and correspond-
ing features implemented within the eye movement domain
analyses.

14014

variability, error, offset, task
axis crossing, target re-
entry, movement direction
change, click duration,
click slip, number of pause
and duration of the most
prolonged pause.

Severity estimation:
Obtained an instrumented
score correlated 0.83 with
clinical BARS score.

2) ATAXIC SPEECH (DYSARTHRIA)

People with ataxia often exhibit disordered speech referred
to as ataxic speech or cerebellar dysarthria. This dysarthria
is generally recognized by specialist clinicians as contain-
ing a combination of a reduced rate of speech, uncoor-
dinated production of speech sounds and volume [107],
[108], [109]. Functionally, this combines to affect speech
intelligibility [91], [110]. Clinical assessment tasks often
require a subject to repeat a certain vowel or word [111].
By observing factors such as the rhythmicity of the task,
the clinician or sensory system can endeavour to capture
any dysarthria. At the bedside vocal tasks such as the
utterance of the phrase “British Constitution” [90] or /ta/-
/ta/-/ta/ [112] are undertaken, SARA (sub-item four), SCA
Functional Index (SCAFI - PATA rate) [113], ICARS (sub-
items 15 and 16), Rapid Verbal Retrieve [114], the Controlled
Oral Word Association Test, the Animal Test, Action Fluency
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TABLE 2. Developed instruments in Eye, Speech, and Lower Limbs domain.

EYE MOVEMENT

Device lllustration Description

Smart  Phone - Facial landmark-based Using a slow-motion smart-

(2020) [89] Iriss position phone camera oriented to-
ward subject’s face to cap-

. Moving
. object

’ Slow-motion
camera

ture iris’s movements iden-
tifying ataxic abnormalities.

Feature

The total power and vari-
ance of frequencies em-
bedded within the iris cen-
tre movement have been
used to train ML models.

CEREBELLAR DYSARTHRIA

Clinical Implication

Differential diagnosis:
Sensitivity = 0.84,
specificity = 0.77.

Severity estimation:

Obtained an instrumented
score correlated 0.63 with
the BARS  oculomotor
score.

Device lllustration Description
Microphone, Micronh Researchers identify ataxic
smart  phone R il features of speech pro-

(2021) [90]-[94]

duction such as impaired
rhythmicity repetitive tasks
such as pronouncing /ta/-
Jta/-/tal.

Feature

Mel-frequency cepstral
coefficients (MFCC) and
MGD function cepstral

coefficients (MGDCCs).

LOWER LIMB ATAXIA

Clinical Implication

Univariate analysis: FRDA
has higher mean CPP,
lower Cepstral Spectral
Index of Dysphonia value
[92].

Differential diagnosis: 80%
accuracy in [91] and 84.6%
accuracy in [90].

Severity estimation: 74%
in the 3-level CA severity
estimation [90]

Device lllustration Description

IMU  kinematic Heel-shin task in SARA
sensor (2019) and foot tapping have been
[34], [47], [48] IMU Sensor employed to evaluate CA.
: Lower limb domain has
been suggested to assess

non-ambulant individuals.
Wireless A wireless non-intrusive
sensing system Transmitter ' — system to sense lower limb
) heel-shin via a repetitive

task.

Feature

Resonant frequency and
magnitude of angular ac-
celeration, velocity, and an-
gle in both time and fre-
quency domain. Tapping:
Coefficient of variation (CV)
of the inter-tap interval, re-
currence period density en-
tropy (RPDE) [95], spectral

entropy, multiscale fuzzy
entropy [96].

Amplitude information
of channel frequency

response (CFR).

Clinical Implication

Univariate analysis:
Magnitude of the resonant
frequencies [48].
Differential diagnosis: ML
models yielded 89% [48]
and 88.24% [34] accuracy.
Severity estimation: 0.72
correlation  with  SARA
acquired through stacking
regression models [34]

Differential diagnosis:
SVM  resulted 98.7%
coincidence rate, 98.9%
sensitivity and  98.5%

(2020) [50] Nk :
B &

Receivers

Test [115], Phonemic Verbal Fluency [116], Lexical fluency,
Semantic fluency Tasks [117]. In addition, researchers in CA
have used other vocal tasks which have been investigated in
PD such as repetition of the vowel /a/ or /pa/-/ta/-/ka/ per
one breath; narrating a fictional story for 90 seconds [118];
or produce a sample of continuous speech [91]. Apart from
the clinical evaluation in formal scales such as SARA and
SCAFI, the researcher may also evaluate speech motor func-
tion by the Munich Intelligibility Profile (MVP-Online) and
the Bogenhausen Dysarthria Scales (BoDyS) [92].
Researchers may employ a professional microphone or
more recently portable devices such as a smartphone’s micro-
phone or recording over a telephone. The speech domain is a
promising candidate for developing tele-diagnostic and tele-
rehabilitation programs. This is enabled by methods that are
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specificity.

inexpensive, non-invasive, provide easy assess to a relatively
large population, are simple to administer and can be per-
formed remotely.

Features used in general speech studies have an extended
history of development. Work by Buder reviewed more than
100 acoustic measurements with many of them have been
implemented in the actual clinical setting [119]. Kent and
colleagues revealed the excessive variation of fundamental
frequency (Fo) was the most frequent biomarker in ataxic
speech [120]. Individuals with FRDA also presented signif-
icantly higher scores on the Cepstral Spectral Index of Dys-
phonia during vowel production [91]. Work by Brendel et al.
used time-based acoustic parameters including speaking
rate, maximum syllable repetition rate, and pitch varia-
tion coefficient to assess dysarthria severity and the speech
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TABLE 3. Developed instruments in axial ataxia.

TRUNCAL ATAXIA

Device

Balance
mat/force plate
platform (1983)
[97]

A dual-
axis rotating
platform (2006

- 2010) [98]-
[101]
Electromyography
(EMG) (2009)
[99]

Tilting platform
(2016) [102]

Optical tracking
camera-based

system (2009
- 2016) [99],
[102]

IMU  wearable
sensor  (2022)
(8], [34], [56],
[103]-[105]

lllustration
y &
y)\x
mg

Centerof Pressure

Pitch forward
(toes down)

o
N A

2 5 g S

Pitch backward
(toes up)

[Emg]

1
¥ Electromyography

Up-moving
platform

Infrared
4 >emitting
o 1LY/ diodes

r
4

) |

Description

A force measuring platform
has been used to quantify
ataxic postural sway while
standing upright.

A dual-axis rotating plat-
form is capable of moving
constantly in 16 different di-
rections. Other moving plat-
forms include a seesaw to
move in two directions or
to move in a sinusoidal pat-
tern.

EMG

(measured
electrical response to a
nerve’s muscle) placed
along knee and trunk
muscles to track activities
underlying body segment

electrodes
potential

movements  related to
instability of individuals
with SCA.

A tilting platform designed
to investigate how CA sub-
jects adapt postural stabil-
ity in moving up and down
along the inclination.

A system includes twenty-

one infrared diodes
(IREDs) [99], retro-
reflective  markers, and

eight cameras for motion
analysis.

Wearable sensors IMU
capture ataxic balance.
[34] used a single IMU with
a cloud-based services for
both ambulant and non-
ambulant ataxic people.
Sampling frequency was
mostly 100 Hz with 80.9
percent positioning IMU
sensors on the lower back
closed to the centre of
mass [104].

Feature

Sway path, sway area, cen-
ter of foot pressure (CFP),
amplitude of body sway,
displacement of the CFP,
sway direction.

Center of Mass (COM)
displacement, velocity of
COM, angles and muscle
EMG responses.

the
time

Amplitude of
Electromyography
series signals.

Center of Pressure (COP)
displacement.

COM displacement, COM
velocity peaks, angular dis-
placements, absolute rota-
tion angles, rotations of the
upper arm and the upper
leg.

Sway Path, length of
trajectory, sway area, mean
sway velocity, root mean
square of time series,
entropy (approximate,
sample, fuzzy), recurrence

quantification analysis,
harmonic ratio, index of
harmonicity, dominant
frequencies, mean
frequency, total power,

F50-95 [104], Jerk Index
[106], centroidal frequency.

Clinical Implication

Univariate analysis quantify
and characterize the postu-
ral sway of individuals with
CA while standing upright.

Univariate analysis: Individ-
uals with SCA have the
greatest unsteadiness fol-
lowing backward and later-
ally directed perturbations.

Univariate analysis: The lat-
eral and posterior instabil-
ity in CA individuals caused
by rigidity in the pelvis and
knee.

Univariate analysis: CA sub-
jects expressed difficulty
adapting their posture to
the moving up along the in-
clination, while the moving
down did not present any
instability in both cohorts.

Univariate analysis: Lateral
velocity of COM were
higher in CA individuals
than healthy controls.

Univariate analysis: Sway
path of subjects with CA
were significantly longer
than the total lengths of
controls.

Differential diagnosis: Pos-
tural stability quantified by
entropy and RQA are capa-
ble of diagnosing CA.
Severity estimation: A re-
gression model correlated
0.7 with clinical assess-
ment.

impairment profile in individuals with FRDA [92]. Ataxic
speech has been analysed by combining perceptual and
acoustic features of dysphonia to categorize individuals
with FRDA against control participants to more than
80% accuracy [91]. Phase-based cepstral features employed

14016

Mel-frequency cepstral coefficients (MFCC) and the modi-
fied group delay function cepstral coefficients (MGDCCs) to
differentiate ataxia cohorts and estimate ataxic severity [90].

Supporting libraries used in speech studies include Librosa
and Snack sound toolkit. Librosa is a well-known python
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package for music and audio analysis [121]. It extracts spec-
tral and rhythm features including chroma, melspectrogram,
MFCC, spectral centroid, flatness, and bandwidth. Snack
sound toolkif® is another library supporting scripting lan-
guages to extract visual features from speech [122]. Another
stand-alone program used to extract vocal features is Analysis
of Dysphonia in Speech and Voice program.’

To date, research in the speech domain has been some-
what constrained to the first approach of hand-crafted ML.
We suggest transforming 1-D speech signal into 2-D image
to leverage state-of-the-art DL techniques to tackle the sever-
ity and phenotype problems. Ataxia research may also try
to apply techniques which have been utilised in other rel-
evant domains. In PD speech domain, Wan and colleagues
utilised smartphone to record speech data to estimate a sever-
ity score [123]. Work by Rusz and colleagues considered
a smartphone to evaluate acoustic indices to diagnose peo-
ple with PD [118]. Animated humans (artificial intelligence
interactive avatars) ask individuals with PD questions and
record the resulting conversation to capture more complex
language related data [122], [124]. The computer-based chat
agency distinguished healthy controls and individuals with
dementia with an accuracy of 93% [122]. These techniques
are all promising and compatible to be applied to CA research
field.

3) LOWER LIMB

In the domain of lower limb ataxia assessments were primar-
ily based on two clinical tasks, foot-tapping and the heel-
knee-shin task. The foot-tapping task requires the subjects to
place their heel on the floor and repetitively tap the floor with
the ‘ball’ of the foot. In the heel-knee-shin task, subjects are
in their seated position and place the heel of one foot onto
the opposite knee and repetitively slide the heel down along
the shin to the ankle and back up to the knee. These proto-
cols are interchangeable to be repeated with the other limb.
Movements of these tasks utilise multiple joints which require
a higher involvement from the cerebellum and therefore
likely disclose ataxia signs. TABLE 2 presents studies which
applied ML and their corresponding features implemented
within the lower limb analyses. Wireless sensing techniques
presented in the gait section can also be implemented to
recognize and assess CA with the heel-knee-shin movement.
Researchers in this sector may refer to the activity and gesture
recognition based wireless sensing [125].

4) TRUNCAL ATAXIA

Truncal coordination is of great significance in forming a
stable base of support for limb movements and ambulation.
Balance based analytics significantly contribute to the accu-
racy of a classification model as well as place its largest
portion in the final optimal feature set [126]. Milne et al.

8http://www.speech.kth.se/snack/
9https://www.pentaxmedical.com/
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conducted a systematic review of the efficacy of rehabilitation
in genetic CAs and found significantly uniform evidence that
rehabilitation improves mobility and balance [127]. Diaz and
colleagues presented a complete picture of using wearable
sensors in balance analysis [128]. Ghislieri and colleagues
summarised balance assessment using wearable inertial sen-
sors for CA and other diseases [104].

Bedside balance testing involves tasks such as the
Romberg’s Balance manoeuvre (SARA sub-item two [15]),
Limits of Stability Test [129], Single Leg Stance Test [130],
Five Times Sit to Stand Test [131], Functional Reach
Test [132], Clinical Test of Sensory Interaction and
Balance [133], Tinetti Test [134], Berg Balance Scale
(BBS) [135], and the Balance Evaluation Systems Test
(BESTest) [136]. Among forty-one relevant balance mea-
sures, the BBS, SARA, and the TUG were identified as
the most robust outcome measures with at least 75% expert
consensus [137]. Associated closely with truncal balance is
the loss of ambulation (LoA). The Kaplan-Meier estimator
and Turnbull method together with the FARS have been
studied to predict the LoA with a dataset of 1021 individuals
with FRDA [138]. The findings concluded that individuals
with early onset (less than 15 years of age) FRDA typically
become wheelchair dependent at an average of 11.5 years
after the onset of the first symptoms. The authors also sug-
gested employing LoA as a valuable progression biomarker
ranking approach for individuals with ataxia. TABLE 3 lists
some relevant research and the features implemented within
truncal analyses. In one study, rehabilitation enhanced bal-
ance performance in individuals with CA and MRI revealed
enhanced structural connections between the cerebellum and
cortex [139].

5) UPPER LIMB

Similar to the lower limbs, CA impacts on upper limb dex-
terity and may be apparent in a range of tasks, such as degra-
dation of handwriting and difficulty performing tasks such as
fitting a key into a lock. Bedside testing includes finger tap-
ping (tap on a surface or between fingers, SARA [15]), finger-
to-nose test, rapid alternative hand movements, ballistic and
ramp tracking [142], [147]. These tasks aim to stress the cere-
bellum by employing movements through multiple joints and
aim to uncover ataxic movements which include dysmetria
(difficulty in effecting the correct distance of a movement),
intention tremor (abnormal movements which increase in
amplitude as the intended target is approached) and dyssyn-
ergia (the decomposition of a movement into smaller com-
ponent movements). TABLE 4 presents research and the
corresponding features implemented in upper limb move-
ment analyses. Work by Impedovo et al. presented a com-
prehensive review of online handwriting analyses from the
perspective of pattern recognition [149]. Developed as online
software, these approaches may be subject to scale-up capa-
bility in order to enable the development of tele-rehabilitation
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TABLE 4. Developed instruments in upper limb domain.

UPPER LIMBS

Device lllustration Description Feature Clinical Implication
IMU  Kinematic ) A tri-axial accelerometry Smoothness factor: Sim-  Differential diagnosis:
sensor (1978) E'?Ct“)mc Target No.2 system to quantify tremor ple Periodic Motion Equiva- Smoothness factor was a
[140] Circuitry 1 and ataxia. lency Factor as an estima-  useful feature to distinguish
4 tion of the motion. individuals with CA from

Triaxial Effort factor: Theoretical those without.

Peak Equivalent, the av-

Robotic device
(2015) [141]

EMG
[142]

(2015)

Prism-equipped
goggles (2019)
[143], [144]

Q-motor system
(2019) [145]

Kinect camera

(2020)  [1486],
[147]
IMU (2020,

2021) [10], [47],
[148]
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[, { "~ Acceleromef
‘ .

Target No.1 _I

Moving
target

Endeffector

Goggles

T
H' arget: .

)

Touch screen

Load force.

)
» ,4e
(:/“'i’/' ))
e

%0

Clinician kinect

Ataxic

Subject Clipician

IMU Sensor 7° :

An end-effector robotic de-
vice to assess quantita-
tively and objectively up-
per limb performance of
Friedreich’s Ataxia.

Muscle activities, which
integrate rich information
more than the movement
kinematics, have been
employed to quantify the
motor functions of CA
subjects  through step-
tracking and pursuit tasks.

Using prism-equipped gog-
gles to assess CA mo-
tor learning/adaptation ca-
pability.

Q-motor system quantifies
a lift, finger tapping, and
pronate/supinate tasks.

A Kinect camera system
quantifies CA by measuring
the instability of the index
finger (IF) movements.

Finger-to-nose, finger
tapping and fast alternative
hand movements have
been employed to
segregate and quantify
ataxia using a wrist worn
IMU motion sensor.

erage peak acceleration
value compares with corre-
sponding sinusoidal model.

Kinematic (movement
duration, average velocity
and peak velocity),
Accuracy (length ratio,
Lateral deviation, aiming
angle), Smoothness
(normalized Jerk index,
speed metric), and
Submovement (numbers,
duration and amplitude of
submovements).

Ratios of the fitting param-
eters (B,/K,), a ratio of
the weights for the position-
and velocity-related torque
components, represent the
muscle activities relatively
to the movement kinemat-
ics

The finger-touch errors are
employed to calculate prob-
abilities of correct and in-
correct touches during tri-
als. Adaptive Index was a
quantitative marker to as-
sess motor function.

Grip force, tap duration, tap
force, peak interval, inter
tap interval, orientation in-
dex (°/s) and position index
(cm/s).

Smoothness of IF's move-
ment, temporal and spatial
of IF quantified by the stan-
dard deviation of the range
from the IF to the camera,
average and peak veloc-
ity of IF, main spectral and
spectral bandwidth of IF.

Coefficient of variation
of inter-tap interval,
recurrence period density
entropy [95], Spectral
entropy, multiscale
fuzzy entropy [96], and
movement decomposition.

Univariate analysis
and  severity  estimation:
Accuracy and smoothness
measurements were the
most discriminative and
highly correlated with the
clinical scores provided by
SARA.

Univariate analysis: B, /K,
for subject controls were
explicitly separated in con-
trary to CA subjects with
overlapping areas.

Severity estimation: Adaptive
index factor showed a neg-
ative correlation with clin-
ical assessments such of
SARA and 9-Hole Peg Test.

Univariate  analysis and
severity estimation: Q-motor
measurements presented
group differences and
predominantly correlate
with clinical rating scores.

Univariate analysis: |F's av-
erage velocity was the most
significant feature

Severity estimation: The av-
erage speed was the only
feature to 0.95 correlate
with the SARA clinical rat-

ing.

Univariate analysis:
distance, speed, duration,
morphology, and temporal

relationships or entropy-
based features

Severity estimation: High
correlation  with  clinical
assessment (0.82 - 0.91)
using support  vector
machine, or Gaussian

Process Regression
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programs. They have proved to be useful biomarkers in the
assessment of AD and PD and hence, may find applicability
in CA research [149].

6) GAIT

Gait deficit is often the first ataxic feature to be noted [14].
Gait changes include widening of the lateral base of support,
variability in stride length and timing, hesitancy and unsteadi-
ness [151]. Spatiotemporal variability measures, spatial step
variability compound measures, lateral step deviation, and
harmonic ratios are among the higher sensitivity biomarkers
quantifying ataxic gait [159], [160].

Clinical walking tasks used to evaluate ataxic gait include
slow, preferred, and fast speed walking [154], SCAFI
(8 meter/25-foot walk), Timed Up and Go (TUG) test [161],
FARS (a timed walk of 50 feet) [19], SARA (sub-item
one) [15], ICARS (gait disturbances sub-items one and
two) [16], U-turning [162], walking in a circle [163], Tan-
dem Walk test [146], Timed 25 Foot Walk Test [164],
10 metre Walk Test [165], Six Metre Walk Test [166], and
Functional Ambulation Classification [167]. A review sum-
marised the structure of typical motion capture techniques
applied in neurological diseases across six categories of sen-
sor systems including inertial kinematic, optical, magnetic,
mechanical, acoustic, and computer vision [168]. Works of
Boekesteijn et al. [169] and Jourdan et al. [170] list 34 hard-
ware platforms that are commercially available to quantify
gait deficit. Specifically, APDM Mobility Lab™ [153] and
BioSensics [171], [172]are among two that have been used
on ataxia research. TABLE 5 presents research and the cor-
responding features implemented in certain gait analyses.
Intensive rehabilitation has demonstrated benefits in individ-
uals with degenerative CA [127], [167], [173]. A telereha-
bilitation study in PD employed a pedometer or step counter,
to monitor the progression of mobility during drug trial [174].

Mobility exerts a very significant effect on quality of
life, and hence, measurement of the effect of CA on gait
is an important endeavor. Our experience with gait metrics
has utilized wearable kinemetic sensors to look at mean
power frequency bands, fuzzy entropy and resonance fre-
quency [154]. Recently, wireless sensing has emerged as a
privacy-preserving and non-invasive solution for assessing
the impact of neurological diseases on gait [175], [176].
It has advantages over a wearable sensory system as it does
not involve any devices attached to subject’s body and pro-
tects privacy to a greater extent than camera-based systems,
as it records only movement disturbances. Other platforms
using continuous wave radar or ultra-wideband are less active
than wifi-based platforms due to installation cost, reduced
portability and dedicated transmitter requirements. Using
consumer WiFi devices, design and implementation of an
indoor falls detection system was reported to have more
than 90 per cent detection precision [177], [178]. Falls risk
prediction is also an important component of research in
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ataxic gait. Along with the developments of deep neural
networks, we would expect applications using state-of-the-art
models to address CA related problems. Long Short-Term
Memory networks have proved their potential with a gait data
set containing 48 participants living with PD, Huntington’s
disease and multiple sclerosis. The system was able to differ-
entiate unaffected subjects from people with one of the three
diagnoses with more than 94% accuracy and classify affected
individuals into one of the three diseases with more than
95.67% accuracy [179]. Virtual reality is another promising
tool with which to study CA rehabilitation with its ability to
provide an engaging and highly individualized environment.
In PD research, the virtual environment helps to mimic real-
world situations [180].

VI. CHALLENGES AND FUTURE PROSPECTS

A. PHENOTYPIC IDENTIFICATION AND DEEP LEARNING
Phenotype classification plays a vital role in diagnosis, dis-
ease discovery, symptom management and in customizing
rehabilitation therapy. By understanding the pathology under-
lying ataxia we can develop appropriate methods to mea-
sure the efficacy of interventions such as medications and
rehabilitation. It remains a challenging question as current
approaches do not reflect significant phenotypic difference.
In the context of clinical assessment, phenotype identification
holds the possibility of reduced costs in genetic testing and
increased diagnostic certainty. Such a system is not designed
to substitute clinicians or to conduct a self-diagnosis, but
rather assists with supplementary evidence. In CA, pheno-
typic diagnostic has been reported with neuroimaging-based
approaches facilitated by end-to-end approaches [72]. There
has been limited work to identify pure CA from CABV and
CA plus proprioceptive loss or the presence of bradykinesia
or spasticity. There has also been a lack of work to separate
known genotypes with pure CA. One approach may be to
employ the end-to-end framework with input sources from
time-series signals.

B. SEVERITY ESTIMATION AND ITS SUBJECTIVE

GROUND TRUTH

ML models classifying phenotypes use objective ground truth
referred from gene tests. Contradictorily, current supervised
ML models estimating ataxia severity use subjective ground
truth referred from human rated scores. Although obtaining
high correlations with clinical scores (0.62 to 0.91 Pearson’s
correlation [34], [80], [86], [89], [90], [147]), the subjective
ground truth sets a limit on what ML models can learn.
This is even more applicable with the fact that most research
involves less than three clinicians to assess the participants
and reported correlation results was with high standard devi-
ations [34]. We suggest a novel approach to utilize a set
of non-ataxic control’s data as a reference base. Severity
estimation can be calculated based on the amount of differ-
ence in which an individual with CAs performance deviates
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TABLE 5. Developed instruments in gait domain.

GAIT

Device

Walkway
platform (2018)
[150]

Optical motion:

lllustration

Pressure-sensitive
walkway

.

g

—
—

|.' o I;}fratr'ed Kinect cameras
ig reflective

markers (2002) -
[151] R
° Kinect

cameras (2017,
2020) [148],
[152]

S-band sensing

e

Walking direction

Description

The pressure-sensitive
walkway (GAITRite)
platform [150] has been
used for data collection and
measurement  extraction.
It was a 5.79 meter long
mattress integrated with
18,432 pressure-activated
SEensors.

Capture gait parameters

A wireless system obtained

Feature

Spatio-temporal features:
Stride length, stance time,
step time, stride time,
swing time, step length,
single support time, double
support time, velocity, and
degree of asymmetry of
the ratio between two limbs
with respect to the base.

Step time, gait speed, step
width, stride length, and
step length. Optical mo-
tion system can produce
body-related features such
as head, shoulders, elbows
and trunk sway [146]

Kurtosis, mean, and stan-

Clinical Implication

Univariate analysis:  Gait
captured parameters
showed a high reliability
(ICC > 0.8) and a low

variability ~ with  clinical
scores of Functional
Ambulation  Performance

score (FAP) and the Gait
Variability Index (GVI).

Univariate analysis:
width,  cadence,
orientation, the number
of missteps presented
invariability of CA
individuals comparing to
healthy controls. Obtaining
high correlation with the
gold standard platform
(VICON).

Differential diagnosis: With

Step
feed

framework | | up to 93% accuracy in dif-  dard variances of amplitude 30 subcarrier data, SVM re-
(2018) [9] ferentiating the normal and  and calibrated phase infor-  sulted in 93% accuracy to
abnormal gait. mation. classify abnormal and nor-
mal walk.
IMU  sensors Wearable kinematic sen- Maximum Lyapunov  Differential diagnosis: An
(2016-  2021) sors have been applied to exponent [158], mean automatic SVM classifier
[49], [52], analyze ataxic gait. power in frequency bands obtained 78.4% accuracy
[153]-[157] (3-15Hz and 15-30Hz), in [49] and 98.5% from
IMU fuzzy entropy, resonance a neural network with
S frequency [154], range of head/spine sensors [52].
motions, double support Severity estimation: 0.62
time, anthropometric  correlation  with  SARA
measures [52], Log- [154].
likelihood transition
probabilities of Hidden
Markov Models [49]

from the control’s baselines. This approach can utilise signal
processing techniques such as recurrence quantification anal-
ysis [181], multiscale entropy [182], or poincaré plot [39].
Also, unsupervised learning techniques such as clustering or
association can be used to as independent relative to clinical
subjective ground truth.

C. SIGNAL PROCESSING TECHNIQUES,

CROSS-DOMAIN APPLICATIONS

DL-based neuroimaging MRI, CT, Fluoro deoxyglucose
positron emission tomography (FDG-PET) images have been
analyzed in other neurological disorders [183], [184], [185].
In epilepsy, Page and colleagues have utilised DL on EEG
data [186]. Another research branch to use DL is baseline pre-
diction. This research branch attempts to predict information
of an individual based on a known larger dataset. Baseline
prediction is a novel research direction in CA and has been
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reported in FRDA [187], [188]. By collecting certain reliable
baseline information, the researchers can predict the uncer-
tain or missing components of the new data to an acceptable
level of accuracy.

D. DEVICES AND APPROACHES

Activities of daily living are an important basis for
research [189]. Recently, radiofrequency technologies assess-
ing motor control in daily activities have been reviewed [189].
Magnetic induction or wireless sensing systems applied with
deep recurrent neural networks may emerge substantially
in limb and gait research [190]. Handwriting and drawing
are being progressively adopted in the assessment of PD
and AD which may spark particular interest in CA research
[149], [191]. These approaches can be easily performed on
patients’ personal computers or take advantage of smart-
phone’s popularity to scale up a broad market.
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E. FALL SCREENING AND PREDICTION

Falls are identified as a significant cause of injury in indi-
viduals with CA [192]. In an effort to provide a non-invasive
screening platform, work by Gallamini and colleagues sug-
gested employing a standing platform and Romberg’s balance
test to investigate the risk of falling [193]. Falls predic-
tion employed the traditional approach to search for linkage
between a signal’s features and a fall. For instance, research
in PD showed the high frequency (3 Hz to 8 Hz) com-
ponents of leg movements during Freezing of Gait (FOG)
were not present in ordinary walking or standing. By calcu-
lating a power ratio of the ‘“freeze” band [3-8 Hz] to the
“locomotor” band [0.5-3 Hz], the authors could estimate
a threshold to identify FOG events [194]. With a similar
method, Handojoseno et al. proved the power spectral density
and wavelet energy of electroencephalography (EEG) could
function as promising biomarkers to indicate FOG with 80%
accuracy [195]. Another approach used a DL auto encoder
with wearable devices to predict with a 71.3% accuracy
on average 4.2 seconds before a FOG occurred [196]. The
authors built anomaly detection models to monitor wearer’s
gait continually and established connections between FOG
with abnormalities captured by the sensor. These approaches
may find applications in CA.

VII. CONCLUSION

This review paper presented (I) a brief overview of clini-
cal background and relevant information for ML applica-
tions in CA; (II) an overview of ML objectives, promising
approaches, and supporting tools to solve significant clinical
problems in the practice of cerebellar medicine and research;
(IIT) existing and recent advancements in the diagnosis and
assessment of CA based on neuroimaging; (IV) examples
of highlights in measuring ataxia using instrumentation;
and finally (V) a list of potential future directions in this
field.

The area of CA measurement has advanced substantially
within the last decade and is now entering a new era of appli-
cation in clinical and research settings. Motor-based systems
combined with the development of new machine learning
techniques will take advantage of device compactness and the
popularity of smart devices, to progress various applications
including progress of tele-assessments. Continued collabora-
tion and global efforts can progress to allow a CA dataset
which may be publicly accessible. We foresee the future
challenges to estimate severity scores in a more reliable, con-
sistent, and accurate manner; identify early onset ataxia by
susceptibility biomarkers; and progress in phenotypes iden-
tification. With this review, we hope that we have succeeded
in stimulating the CA community toward the development of
advanced objective assessment tools.
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