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ABSTRACT The large amount of sensitive personal information used in deep learning models has
attracted considerable attention for privacy security. Sensitive data may be memorialized or encoded into
the parameters or the generation of the Wasserstein Generative Adversarial Networks (WGAN), which
can be prevented by implementing privacy-preserving algorithms during the parameter training process.
Meanwhile, the model is also expected to obtain effective generated results. We propose a vector-valued
differential private bilateral alternative (DPBA) algorithm, a novel perturbation method for the training
process. The vector-valued Gaussian (VVG) noise involving functional structure information is injected into
the WGAN to generate data with privacy protection, and the model is verified to satisfy differential privacy.
The bilateral alternative noise can eventually randomly perturb the gradient and generates informative
feature-rich samples. The dynamic noise and vector-based perturbation approach ensure privacy strength.
After extensive evaluation, our algorithm outperformed state-of-the-art techniques in terms of usability
metrics for all validation datasets. The downstream classification accuracy for the generated Mnist was
97.04%, whereas that for the Fashion-Mnist dataset was 80.91%. Mnist improved the average accuracy of
the neural network classifier by at least 16.81%, and Fashion-Mnist by at least 3.55%. In the multichannel
generation tasks, the binary classification accuracy improved by at least 10.4% compared to CelebA, and the
accuracy of the Street View House Numbers SVHN was as high as 86.1%. The perturbation method proved
highly resilient to gradient attack recovery under simulated gradient attacks.

INDEX TERMS Data generation, deep learning model, differential privacy, noisy perturbation, WGAN.

I. INTRODUCTION
With in-depth research and rapid development of artificial
intelligence (AI) technology in recent years, AI applications
have penetrated all aspects of industrial production and
human life. AI technology represented by deep learning
generally needs to achieve a better model effect through
the analysis and training of a significant number of labeled
samples. However, these samples typically contain sensitive
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information regarding an entity. A significant amount of
sensitive information about the user was incorporated into
the final training results after convolution and pooling layers.
Existing attack methods against deep learning models can
extract private information through certain means [1], which
eventually leads to privacy leakage.

Various protection strategies based on differential privacy
(DP) have been proposed to address these issues: Noise
perturbation in a classifier based on the nearest neighbor
algorithm [2] provides strict privacy protection during the
data analysis. Combining with conditional filtering of noise
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based on an adaptive Gaussian mechanism [3] to prevent
excessive noise, achieving the expected utility and privacy.
Using the p-Power exponential mechanism(EM) [4] when
the noise variance is quite a small relative to the signal and
the dimension is not too high. Variational Bayesian privacy-
preserving frameworks based on the optimal Bayesian
inference method [5] are another way to solve the high
cumulative privacy loss caused by noise. Training with DP
models based on decision trees [6] to calculate the attribute
weights, which can influence the degree of the noise and
reduces the negative impact of the DP on data usability.
Differential privacy has recently emerged as an accepted
standard for defending against possible privacy threats in
federated learning [7], [8]. Whether it is a client-server
architecture that relies on a central server [9], [10] or an end-
to-end network architecture [11], it is necessary to provide
dual protection for internal training and external model
publishing. The above shows the importance and application
prospect of privacy protection, DP remains a research hotspot
in academia for privacy conservation in machine learning,
and its outcomes continue to be demonstrated in practical
applications [12], [14].

Distinguishing it from the general direct application of
DP techniques to the original data features [15], [16] or
the original data release, the generative adversarial network
(GAN) with DP algorithms implanted in it protects private
data during the generation training process [17], [20].
Then, instead of publishing authentic data, data platforms
publish desensitized data with utility, thereby reducing the
probability of privacy disclosure. No doubt that the traditional
DP framework [21] limits the expressiveness of the data
after injecting noise. It is definitely significant that the
GAN framework when embedding DP, generated data that
can be useful for a series of subsequent assignments and
tasks without compromising personal privacy. During the
processing of all records of a dataset by a GAN, the
DP requires recording the contribution of each component
to the total privacy budget and then adding a random
perturbation that is scaled appropriately. Our study focused
on the relationship between privacy and usability of the
generation. To improve the usability of the generated data
with a privacy guarantee, we propose a WGAN based on a
vector-valued differential private bilateral alternative (DPBA)
scheme for privacy data generation. We impose a dynamic
Gaussian noise in vector form, denoted as vector valued
Gaussian (VVG), on the vector-valued cost according to the
indices. Even if the shape of this Gaussian distribution is
reconstructed, our method obtains a fixed privacy budget.
VVG is a special form of tensor-valued Gaussian (TVG)
[22] that can yield high-quality data with tighter noise
bounds. Dynamically varying Gaussian noise was used to
render the model gradient parameters more resistant to attack.
A variant of dyn [S, σ ] [23] was used in the algorithm to cause
independently and identically distributed Gaussian noise to
vary randomly within a certain range during each training
round. The training method of the GAN was coupled with

the Wasserstein distance with a gradient penalty to facilitate
control of the gradient flow. Considering the introduction of
the gradient penalty, the vector-valued cost function is divided
into two parts, both of which require the imposition of a
dynamically varying VVG to ensure global DP. The main
contributions of our study are as follows:

1. Dynamic noise by vector form injection into the
vector-valued cost reduces the relative privacy loss while
satisfying the higher availability of the generated data. The
training procedure does not require modification of the
internal structure of the network, which can improve training
efficiency.

2. The innovative division of the cost vector into two parts,
in which the twoVVGmechanisms control the corresponding
cost vectors, yields a balance between privacy preservation
and usability.

The remainder is as follows: Section II presents related
work and the motivation for our work. Section III introduces
the related knowledge. Section IV describes the algorithm
details of the proposed DPBA approach and presents the
analysis and proof. Section V discusses and compares
the results of the study. Finally, Section VI concludes
the research.

II. RELATED WORKS
Before discussing our work, it is necessary to provide a
detailed analysis of the theory, and the advantages or the
disadvantages of existing representative DP algorithms on
generative adversarial networks.

To preserve the privacy information of the training process,
DP-GAN [24]was the first to propose a moderate noise
addition on the gradient to satisfy the privacy of generative
adversarial networks. Lorenzo et al [25] proposed a clipping-
attenuation strategy to form a noise addition. Differentially
Private Conditional GAN (DP-CGAN) [26] proposed a
conditional model to generate corresponding labels and
data to protect privacy. It adds noise to the gradient after
using different clipping thresholds according to the generator
and discriminator loss paradigms. Private GAN (Pri-GAN)
[18] proposed an optimized discriminator with gradient
estimation for the determination of clipping-bound C and
then added noise to the gradient. These privacy-preserving
training methods are based on DP stochastic gradient descent
(DP-SGD), where the gradients are clipped according to
the ℓ2 parametric and preset boundaries when updating
the weights of each layer of the network. The refreshed
gradients were aggregated, and a Gaussian mechanism was
attached in each round. However, the direct perturbation
of the gradients makes it more difficult for the global
parameters to converge, and the usability of this approach is
often worse. Gradient Sanitized WGAN (GS-WGAN) [27]
improves the basic DP-SGD by adjusting the loss function
to alleviate the need for gradient clipping. Similarly to the
Private Aggregation of Teacher Ensembles (PATE-GAN)
[28], it deploys multiple discriminator networks trained on
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different parts of the dataset, amplifying privacy through
subsampling. As a result, this approach must consider the
sharing of parameters across multiple discriminators, the
desires for equipment and arithmetic can also be extremely
significant. In contrast to the gradient-plus-noise method,
in particular, to improve the availability of generated data,
we adopted a complementary noisy cost approach based on
distance transmission perturbation. It avoids the problem of
adding repeated noise and makes the operation faster and
more convenient. The interactive training approach ensures
that the noise factor is propagated in a circular chain to
achieve the same privacy effect as the SGD perturbation.

Considering the random characteristic mean embedding
of the data distribution, the DP Mean Embeddings with
Random Features (DP-MERF) [29] use the optimal trans-
mission method of the MaximumMean Discrepancy (MMD)
estimator. For adding noise to the estimator to achieve data
desensitization, DP-MERF was computed using a reciprocal
evaluation of the kernel function using points extracted
from the real and generated data distributions. Nonetheless,
compared with theMMDmatrix-associated loss function, the
objective function based on the Wasserstein distance is more
general for high-dimensional data. Sinkhorn [30] introduced
a semi-biased loss based on the optimal transmission algo-
rithm of Sinkhorn divergence. Splitting the batch of generated
data, calculating cross-term (biased) and self-term (debiased)
losses by Sinkhorn iterations, and then adding noise to
the biased losses to protect privacy. The Sinkhorn distance
optimization algorithm obviously increases the network
computational complexity while calculating the loss function.
The proposal ofWGAN [31], [32] promoted the development
of DP-GAN, an optimization-based transmission algorithm,
but its essence is objective function perturbation. In our study,
a similar scheme is used, but the difference is that the noise
is made more complex and the optimization cost is divided
into two parts. The noise was added first, and then calculated
the vector-valued cost. The noise also contributed to the
optimization. The bilateral alternative effect is demonstrated
by the fact that when one part of the loss is perturbed, the
noise-added part is used as a perturbation term to satisfy the
DP while optimizing the parameters through the other part,
and vice versa. It is also necessary to pay attention to the
effectiveness of adding noise when perturbing the objective
function. For example, differentially private GAN [33] adds
noise directly to the discriminator loss, and the noise factor as
a constant term in reverse derivation has no variations. Thus,
the privacy of each parameter cannot be guaranteed.

III. PRELIMINARIES
This section briefly describes the preliminary knowledge
necessary for the DPBA-WGAN, including an overview of
Renyi differential privacy (RDP) and generative adversarial
networks. Our main purpose is to use this relaxed version of
DP such that the training of WGAN satisfies both differential
privacy and better image generation quality.

A. RENYI DIFFERENTIAL PRIVACY
Differential privacy was first proposed by Dwork for the
privacy leakage problem of databases, and is considered to
have strict DP [34].
Definition 1: A randomized mechanism M gives

ε-differential privacy if for all datasets x and x’ differ on at
most one element, and all S ⊆ Range (M).

Pr [M (x) ∈ S] ≤ eε × Pr [M (x ′) ∈ S] (1)

where Pr denotes the probability. The definition depends on
two adjacent datasets x and x ′ ∈ X , M provide privacy
protection by randomization of the output results.

The relaxed version of (ε, δ)-Differential privacy [35], [36]
introduces a δ factor to the original concept of DP.
Definition 2: A randomized mechanism M : x → R with

domain x and range R satisfies (ε, δ)-differential privacy if
for any two adjacent inputs x, x ′ ∈ Xand for any subset of
outputs S ⊆ Range (M) it holds that inequation,

Pr [M (x) ∈ S] ≤ eε × Pr [M (x ′) ∈ S]+ δ (2)

δ is a relaxation term for accepting DP to a certain point
of dissatisfaction, denoting that it is ε-DP except with
probability δ. Although different from the definition of
equation (1), when δ = 0, it is essentially pure DP.
Achieving DP usually requires the addition of controllable

noise to reduce the sensitivity of query results and to make the
budget ε smaller and the privacy protection effect higher. The
Gaussian mechanism is a prototypal (ε, δ)−differentially
private algorithm that allows the release of an approximate
answer to an arbitrary query with values in Rn. The
mechanism is defined as follows:

GσMf (x) ≜ Mf (x)+N (µ, 12f 2σ 2) (3)

where Gσ is the gaussian mechanism, N denotes Gaussian
distribution with mean µ and standard deviation 12f σ , the
definition for ℓ2-sensitivity 12f [36] is as follows:

12f ≜ max
x,x ′

∥∥Mf (x)−Mf (x ′)
∥∥
2 (4)

RDP is a broader definition extended [37] by the above,
sharing many properties through modifications that make
differential privacy a helpful and general tool, making
gaussian mechanisms more versatile and simple.
Definition 3 (Renyi Divergence): For the expectation Ex of

the two probability distributions P and Q defined across R,
the Renyi divergence of order α > 1 is:

Dα (P||Q) ≜
1

α − 1
logEx∼Q

(
P (x)

/
Q (x)

)α (5)

Definition 4 ((α,)-RDP): A randomization mechanism f :
x → R is said to have Renyi differential privacy of order
α, or referred to as (α,)-RDP, if for any adjacent dataset x,
x ′ ∈ S, there exists

Dα

(
f (x) ||f

(
x ′
))
≤ ε (6)
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Proposition 1 (From RDP to (, δ)-DP): If f denotes
an (α,)-RDP mechanism, then it also satisfies(
ε +

(
log

(
1
/
δ
))/

(α − 1), δ
)
-differential privacy for any

0 < δ < 1.
Corollary 1: The algorithmic mechanism f is a com-

bination of n ε-differential privacy mechanisms, and let
0 < δ < 1 in such a way that log

(
1
/
δ
)
≥ ε2n. Then we

have f satisfying
(
ε′, δ

)
-differential privacy, where:

ε′ ≜ 4ε
√
2n log

(
1
/
δ
)

(7)

In fact, (α,)-RDP can also be expressed as (εδ, δ)-DP
for any given probability, where 0 < δ < 1. The above
definition and proposition also inherit the properties of
ε-DP. The privacy guarantee in the ε-DP type is defined
as e−ε

× Pr [M (x ′) ∈ S] ≤ Pr [M (x) ∈ S] ≤ eε ×
Pr [M (x ′) ∈ S], while the privacy protection in (α,)-RDP is
defined as

{
e−ε
× Pr [M (x ′) ∈ S]

} α
α−1 ≤ Pr [M (x) ∈ S] ≤{

eε × Pr [M (x ′) ∈ S]
} α−1

α .
This allows intuitive and quantitative privacy budget con-

cepts to be combined with advanced composition theorems.
When k random functions (M1,M2, · · · ,Mk) act on the
same dataset, they are called a composition, written as M1:k .
Assuming that the number of iterations is T and each random
function Mi satisfies (εi, δi)-DP, the composition formed by
the series of T Gaussian mechanismsMi fulfills (ε, δ)-DP.

B. GAN ARCHITECTURE
Generative adversarial networks [38] are a framework for
estimating generative models using an adversarial process
proposed in 2014 by Ian J. Goodfellow et al. It consists
of a generator (G) and a discriminator (D), where G
captures the underlying distribution of real data samples and
generates new data samples, and D is a binary classifier that
discriminates whether the input is real or generated. Both
the generator and discriminator can be deep neural networks.
The proposal of GAN started a technical revolution, but
training instability is a common problem, WGAN [39]
concluded that Wasserstein distance is the most suitable
for GAN training after analyzing Kullback-Leibler (KL)
divergence, Jensen–Shannon (JS) divergence, Total Variation
(TV) distance, and Wasserstein (W) distance. Since when the
distribution of functions in space satisfies the K-Lipschitz
condition, where K is the factor, theW distance is everywhere
continuous and almost everywhere differentiable for the
joint distribution represented by the predicted and labeled
distributions. The objective function of D is:

LD = Ex̃∼Pg
[
D (x̃)

]
− Ex∼Pr [D (x)]

+Ex̂∼Px̂

[(∥∥∇x̂D (x̂)∥∥2 − K
)2] (8)

The objective function of G is as follows:

LG = −Ex̃∼Pg
[
D (x̃)

]
(9)

where x̃ is the data generated by the G, this data and the
real data x are used for the training of the D. The gradient

distribution during training obeys K-Lipschitz.When training
the generator, feedback from the discriminator is needed.
D aims to identify as much fake data as possible, while G
generates as much data as possible that can deceive D. The
two gambling with each other in this way.

GANs have formidable expressive capabilities to perform
arithmetic operations in the latent vector space, and convert
them into computations in the corresponding feature space.
Info-GAN [40], GAN based on U-net [41], gaussian mixture
model (GMM) [42], two-stage GAN [43], etc. are all variants
of competitive training approaches by generative adversarial
networks.

IV. METHOD IMPLEMENTATION
In this section, we describe the design of the WGAN
framework based on DPBA, elaborate on the design of the
algorithm, and provide further proof and privacy analysis
of this schema. The purpose of our method is to prevent
attackers from recovering original datasets that contained
sensitive information from gradients or parameters, thereby
reducing the possibility of data leakage containing sensitive
information during the training of deep learning models.
Preventing the generator from generating samples with
private data or reflecting critical features, maintaining the
generation with better usability. Finally, we conclude that the
proposed method can achieve this goal.

A. DP WGAN SCHEMA
In practical instances, the distribution of the original training
data is unknown and must be inferred by empirical estima-
tion. The requirement to be implemented here is to synthesize
the simulated sample estimates directly using the gaming
process of the WGAN mechanism, release and input them
into the actual downstream network. The risk of privacy
leakage of the original data can be limited during the training
and release of the data. With a suitable training scheme,
it is possible to resist model attacks and improve the privacy
protection level.

Our design to achieve the above goal is to add differentially
private variables to the traditional training intermediate
process, over the gradient or loss function, to constrain the
trained model to obtain some private information extracted
by the attacker. We propose a new strategic target for the loss,
as shown in FIGURE 1, where the vector-valued loss with a
sensitive stream is split into two portions. When one portion
of the vector is perturbed, the same portion of the other vector
is undisturbed, culminating in the use of a new cost for the
discriminator update and generator training. The essence of
the WGAN is that the sample generation task is a game of
G and D. The discriminator needs to identify whether the
input data are real or fake, whereas the generator continuously
generates fake samples based on noisy feedback. After
repeated iterations, the final expectation was reached with
an approximate distribution of the original data. Because
the quality of the generation depends on the performance
of the discriminator, the original data features should be
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FIGURE 1. Overview of the DPBA-WGAN structure.

shadowed. To achieve the WGAN with the DPBA algorithm,
we decided to train the discriminator first, and the sensitive
parameters can flow into the generator during the training
process. According to the flow of information in FIGURE 1,
the design will be friendlier to the downstream generator
by desensitizing the discriminator parameters. In the update
process of the generator’s parameters θG, as shown in
equation (10):

θ
(t+1)
G := θ tG − η · ∇(D(G(z));θ)J

(
L(D(x),G(z);θ)

)
(10)

The loss L involving the parameters θ of discriminator
D(x) and G(z), J is the Jacobian, ∇(D(G(z));θ) denotes the
gradients when updating the parameters of the generator.

The backpropagation update requires the use of discrimi-
nator parameters. Although the generator is not exposed to the
real data stream during training, the discriminator will carry
the reflection and shadowing of sensitive statistics. Applying
the noise mechanism to the discriminator vector-valued cost
function, in this case, can effectively impose a privacy
barrier.

Unlike prior work on adding noise to discriminator
gradients, we focus on the interaction between the generator
and discriminator because the network is more vulnerable to
infection, and the adversary has more accessible information.
Adding noise to the cost function is more straightfor-
ward and easy [33], and it is easier to operate without
directly exchanging the parameters of the discriminator-
generator interaction or modifying the gradient update
process. From [33], we consider that the noise on the
cost function cannot be un-functional during the parameters
optimization. Thus, the noise term is added as a common
factor of cost so that the noise can always contribute
during backpropagation. The designated noise consists of
two bilateral alternative counterparts, which are more privacy
guaranteed and helpful for convergence. The change in
the gradients during the experiment must be within the
bounding range and usually requires clipping the target value.
Nevertheless, our framework is based on a WGAN with a
gradient penalty, in which the gradients satisfy the Lipschitz
condition, resulting in a bounded gradient without additional
processing of the target function or gradient.

B. DPBA-WGAN ALGORITHM
The specific implementation of DPBA-WGAN for image
generation is described in Algorithm 1. Even though the
generator does not directly access to sensitive training data,
the mapped features can be inferred from the discriminator
parameters. Thus, our algorithm preserves the parameters or
raw data in the discriminator from being divulged to the
generator, thereby making the generator as free of sensitive
parameters as possible. Consequently, when the published
model is physically attacked during an interaction, it is almost
impossible for aggressors to obtain valuable information.

Algorithm 1 DPBA WGAN Training Process
Input: real dataset X , discriminator D (θD), generator G (θG),
batch size B, Gaussian noise scale σ1, σ2, clipping coefficient 1,
total epochs T, gradient penalty weights λ, learning rate α, default
hyperparameters β1, β2 etc.
Output: Differentially private generator G with parameters θG
1: set the dataset X into subsets {Xl}Ll=1 ,L =

⌈
len (X)

/
B
⌉

2: for epoch t in range (0, T) do
3: for l in range (0, L) do
4: Initialize discriminator θD
5: # here write the subset Xl as x
6: sample real data {xi}Bi=1 ∼ x
7: sample latent vectors {zi}Bi=1 ∼ z← G (z)
8: a random number µ ∼ U [0, 1]
9: x̂ ← µx + (1− µ) · z

10: gradx̂ ←
1
B

B∑
i=1

clip
(
gradx̂ , 1

)
+N

(
µ1, σ

2
1i

)
11: LθD (x, z)← 1

B

B∑
i=1

[
LθD (xi)− LθD (zi)

]
· N

(
µ2, σ

2
2i

)
12: gradθD ← ∇θD

((
LθD (x, z)+ λgradx̂

)
, θD, α, β1, β2

)
13: update θD with differentially private gradθD
14: Initialize generator θG
15: sample generated data {zi}Bi=1 ∼ z← G (z)
16: gradθG ←−∇θG

(
LθD (z) , θG, α, β1, β2

)
17: update θG with gradθG
18: End for
19: End for
20: Return generator G (· · · , θG)

As shown in Algorithm 1, the entire dataset X is firstly
divided into subsets according to batchsize B. For each
training round of WGAN, the following steps are performed
for each batch of sampled data:

The discriminator and generator are trained sequentially,
and the discriminator D is trained first. Initialize the
parameters θD of the discriminator, subsample a batch of real
data Xl , and generate a batch of random noise data zi using
generator G.

The interpolation methodology was deployed to mix the
positive and negative data, and the batch of data was treated
as an arbitrary point in the entire subsampled space. The result
is used as the input of the discriminator to find the gradient
penalty item parameterized by the batch of x̂. Adding the
noise vector, i.e., VVG noise, to perturb the item. The upper
bound of the penalty is consequently constrained to be 1.

The real data xi and the generated data zi were used as
the input of the discriminator, and calculated the vectored
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scores of each genuine or fictitious batch separately. Another
VVGnoise perturbationwas applied to the score to disturb the
Wasserstein distance LθD (xi) − LθD (zi) of the real and fake
data, which can also be used to judge the degree of model
convergence.

After perturbation, the Wasserstein distance and penalty
term gradx̂ are redefined as a cost in the form of vector valued
(VV) in the ratio of 1 : λ. The Adam optimizer is used to
find the gradient of the discriminator and update the weights,
whereby the perturbed updating process of each parameter of
the discriminator is filtered out of the sensitive information.

Because the discriminator parameter θD provides original
data privacy protection, the generator G is trained by simply
regenerating a batch of fake data z. Based on the generator’s
cost obtained by the feedback of discriminator D, computing
the gradient and updating the θ of the generator.
The algorithm ends up with a WGAN that satisfies Renyi

differential privacy by applying VVG noise. This is because
the discriminator parameters before updating the generator
parameters can guarantee privacy, and the generator can
still guarantee privacy. Therefore, a WGAN consisting of a
discriminator trained first and a generator that needs to be
updated can also protect privacy. This generative adversarial
network is well protected in terms of privacy for both the
training process and generated data after it is released.

C. SENSITIVITY
Considering a univariate statistic for a sample set in
the privacy release problem, such as differential privacy,
our method defines the maximum difference between the
statistics L (X) and L

(
X ′
)
of two neighboring sample sets

as sensitivity [44]. Then, adding vector-valued Gaussian
noise to this statistic L is intended to make it impossible
to determine whether it is computed from X or X ′, which
makes it impossible for an attacker to determinewhich dataset
of X and X ′ comes from, even after deriving the statistic.
We characterized the sensitivity of L as follows:

1S = maxX ,X ′
∣∣L (X)− L

(
X ′
)∣∣ (11)

Here, the max symbol covers all adjacent sets, and the
maximum value of the change in the output result for any
single change in the distribution is noted as the sensitivity.
We assume that the batchsize of the WGAN process is B.
In accordance with [21], we can get the privacy budget by the
sampling rate, training iterations, and sensitivity et al, where
the sensitivity is need to be calculated as follows. Denote
the Wasserstein distance or penalty term in Algorithm 1
asLi (X), we theoretically clip this cost function so that it
satisfies ∥Li (X)∥ ≤ C , and add a Gaussian mechanism
to this Li (X) to make it satisfies Renyi difference privacy.
Same principle as gradient descent to obtain sensitivity [45],

the cost function can denote as L (X) = 1
|B|

|B|∑
i=1
Li (X),

we can get 1S = 2C
/
|B| in result, where C is the clipping

threshold to bound ∥Li∥. The gradient gradθ of WGAN in

the backpropagation will also impose a noise factor, and the
gradient of the parameter update process is set in to satisfy
1-lipschitz continuity, Cθ = 1. The gradient of the
perturbation can also get the relative upper boundary C, so the
above form of 1S can naturally be obtained.

D. NOISE OPTIONS
Traditional DP mechanisms based on Laplace or Gaussian
noise are tailored for scalar-valued query functions. Consid-
ering that the cost function can be represented in vector form,
we redefined the cost value shape precisely and used a DP
scheme for the vector-valued query function. The mechanism
of the VVG algorithm is shown in Algorithm 2.

Algorithm 2 VVG Mechanism With Bilateral Alternative
Noise
Input: f (x) ∈ Rm×1, µ1, µ2, σ1, σ2, σ3, σ4
1: for i = 1, 2, . . . , m:
2: set choice = 0 or 1
3: µ = µ1, σµ1 = [σ1, σ2]← choice value is 0
4: µ = µ2, σµ2 = [σ3, σ4]← choice value is 1
5: get random ith direction’s variance σi =

[
σµ1 , σµ2

]
6:
∑
= (σ1, · · · , σi, · · · , σm)T

7: vector valued noise z from VVG(m,1)
(
µ,
∑

, I
)

Output: f (x)+ z

The cost function is redefined as a vector in the batchsize
dimension, projected to the batchsize dimensional component
element, and compounded with noise in the batchsize
dimension. Fromwhich, we get final noisy objective function.
The objective cost in Algorithm 1 consists of two parts:
the training vector-valued loss and the vectored penalty in
the WGAN. Thus, the VVG perturbation applying to the
vector valued function also has two parts, that is, f (x) =
(L1 + z1) ◦ (L2 + z2). In our experiment, inspired by the
dynamic noise concept of [23], the dynamic noise scale
was obtained by setting the noise variance threshold to
vary within a certain interval. To prevent increasing epsilon
computational confusion or damaging the model by adding
repeated noise, we use the bilateral alternative (BA) strategy.
It is set that if the ith dimensional value in z1 matches VVG,
the corresponding ith value in z2 is set to 0, and vice versa.

E. PRIVACY ANALYSIS AND PROOF
1) ANALYSIS OF PRIVACY WGAN
For better understanding the above algorithm, we discuss how
the DPBA-WGAN can protect the privacy from the original
to the generated data throughout the generative adversarial
training process.

The WGAN training focuses on the privacy barrier
of the discriminator. From the direction of the Renyi
privacy flows (Section IV-A), it is known that the generator
can naturally meet the privacy requirements after privacy
upstream. To achieve differential privacy in deep learning
network models, including WGAN, many existing studies
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are in the stochastic gradient descent (SGD) process, adding
a sufficient amount of noise to implement. Usually, the
large-scale noise added to the cost function at the time of
generation cannot achieve privacy protection of network.
Since gradient updating still use the sensitive parameters in
the backpropagation process. In general, we need to define a
function as the cost after performing the forward propagation
algorithm for neural networks, measuring the error between
the calculated output of the generation and the real score of
the input subsamples. It is assumed that the input un-noised
sample is x with loss L. By back propagation, w[l] is denoted
as the l th layer parameter of the L-layer network, and the
resulting ∂L

/
L∂w[l] has coefficients x. The input value of

x contains no additional noise, so the data privacy cannot
be guaranteed. We implemented the WGAN by adding VVG
noise in the calculation of the cost function to protect privacy
while training and producing privacy samples. The network
following these prerequisites while training:

1. Train the discriminator first, and each round of training
should contain the same batch size of real and fake data as the
input.

2. Use the bilateral alternative perturbation, ensure that the
trained discriminator network no longer carries or reflects
sensitive information in preparation for the training of the
generator.

3. Combine the discriminators and generators of the above
conditions into one whole, i.e., the WGAN deep neural
network model.

4. The generator in the WGANmodel generates batches of
data and feeds them into the discriminator

5. According to the cost of desensitization, the noisy
gradients are calculated of theWGAN, and update parameters
with privacy guarantee.

The sensitive x may be encoded or reflected in the
discriminator’s parameters and gradients during training.
The generator’s parameters and gradients are computed
based on the discriminator’s parameters. Correlating the
two can lead to some sensitive and informative messages
being transferred to the generator’s gradients and parameters.
However, applying our DPBA method in the deep WGAN
model can prevent x from contributing explicitly to the
gradients, desensitize the flowing parameters, and generate
insensitive data while protecting privacy from disclosure.

2) RDP PROOF OF THE WHOLE NETWOK
To better illustrate the flow of sensitive messages in the entire
network, a simple network model, as shown in FIGURE 2,
is illustrated as an example to show how the discriminator
vector-valued cost with RDP affects the gradients during the
parametric update when generating fake samples as the input
in the WGAN structure.

Suppose the input data are x. This network consists of
an m-layer generator network and an n-layer discriminator
network, w[l], b[l] are the parameters of the l th layer,
with z[l] and a[l] caching intermediate values, and g is
the activation function, then we have z[l] = w[l]a[l] +

b[l], a[l] = g
(
z[l]
)
, z[1] = w[1]x + b[1]. Forward

propagation calculates the loss value by L. Since the noise
is added in the bilateral alternative way, it can be seen
as that the total noise adding to the L is obey Gaussian
distribution. The addition of the above noise scheme, denoted
as N , allows the discriminator to satisfy RDP, where the
privacy budget is ε = r

(
α21S2

)/[
2σ 2 (α − 1)

]
. After

T iterations of RDP component theory, the final privacy

budget is ε′ =
(
rα21S2

)/[
2 (α − 1) σ 2

]√
2T log

(
1
/
δ
)
.

The universal proof of RDP is shown in Appendix A.
The cost function is used for backward propagation to

continuously update the parameters, assuming that vector
perturbation has been performed on the VV cost function
of each batchsize data. If we want to obtain the parameter
w[l]
1 , then we add up the multiplications obtained from the

derivation of the corresponding chain equations as follows:

∂L
∂w[1]

1

= (
∂L

∂a′[n]
∂a′[n]

∂z′[n]
∂z′[n]

∂w′[n]
∂w′[n]

∂a′[n−1]1

∂a′[n−1]1

∂z′[n−1]1

∂z′[n−1]1

∂w′[n−1]1

· · ·
∂a[2]1

∂z[2]1

∂z[2]1

∂w[2]
1

∂w2
1

∂a[1]1

∂a[1]1

∂z[1]1

∂z[1]1

∂w[1]
1

+
∂L

∂a′[n]
∂a′[n]

∂z′[n]
∂z′[n]

∂w′[n]
∂w′[n]

∂a′[n−1]2

∂a′[n−1]2

∂z′[n−1]2

∂z′[n−1]2

∂w′[n−1]2

· · ·
∂a[2]1

∂z[2]1

∂z[2]1

∂w[2]
1

∂w2
1

∂a[1]1

∂a[1]1

∂z[1]1

∂z[1]1

∂w[1]
1

+ · · · ) ·N (12)

Here, one of the derivative chains is chosen to specify how
RDP budget is affecting the gradient update, as is shown in
the chain corresponding to the bolded red line in FIGURE 2:

∂L
∂a′[n]

∂a′[n]

∂z′[n]
∂z′[n]

∂w′[n]
∂w′[n]

∂a′[n−1]3

∂a′[n−1]3

∂z′[n−1]3

∂z′[n−1]3

∂w′[n−1]3

· · ·
∂a[2]2

∂z[2]2

∂z[2]2

∂w[2]
2

∂w2
2

∂a[1]1

∂a[1]1

∂z[1]1

∂z[1]1

∂w[1]
1

·N (13)

If only the generator is released, it is clear that
∂z[1]1

/
∂w[1]

1 = x, where x is the coefficient of the
aforementioned parameter w gradient. The input x is the
data derived from the generator, not the real data, and does
not contain sensitive information. Thus, we firstly described
the discriminator, whose parameters are obtained from the
gradient with real data x and perturbed when the noisy factor
N is added. Combined with the fact that L satisfies Renyi
differential privacy, it can be inferred that ∂L

∂a′[n]
satisfies Renyi

differential privacy [37], ∂a′[n]
/
∂z′[n], ∂a′[n−1]3

/
∂z′[n−1]3 ,

· · · , ∂a[1]1

/
∂z[1]1 are also satisfied, and so do ∂z′[n]

/
∂w′[n],

∂z′[n−1]3

/
∂w′[n−1]3 , · · · , ∂z[1]1

/
∂w[1]

1 , and equation (13) sat-
isfies Renyi differential privacy. Similarly, the derivative
chains in equation (12) satisfies Renyi differential privacy
as well, so ∂L

/
∂w[1]

1 satisfies Renyi differential privacy.
According to the inference, the gradients corresponding to the
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parameters w[l] and b[l] in the WGAN also satisfy the Renyi
differential privacy.

At this point, it can be concluded that under the premise
of the generated data and the real data distribution as the
input of the training scheme, adding a suitable VVG noise
perturbation to the discriminator VV cost before training
the generator can ensure that the entire network update
process satisfies Renyi differential privacy. The coefficients
involved in the backpropagation process are perturbed that
do not expose original data privacy. According to the chain
transferability, the discriminator parameters sanitize sensitive
information, and privacy in the backpropagation of the entire
process of RDPwill be guaranteed. Unlike the traditional cost
function with noise, the noise size does not change with the
gradient update, but the overall gradient is heading toward
the optimal value. Thus, the noise perturbation method is
not directly involved in progress, but functions as part of
the optimization function and does not diminish with the
decay of the gradient. When the optimal gradient is obtained
with noise as a whole, that the model training is completely
perfect. During each training round, the vital information of
raw input data x may be leaked, and a hacker may extract
the sensitive information in the model based on x as well
as the weights in back-propagation. However, the gradients
are affected by noise perturbations that satisfy differential
privacy. The gradients with x are perturbed, and the input x
is subjected to a fake distribution for generator. Therefore,
intruders have a significant obstacle in separating sensitive
information from the feedback of queries in the training
response.

As can be seen above, the entire update process of
the network satisfies the Renyi differential privacy, and
the whole WGAN architecture satisfies Renyi differential
privacy during the training process. Therefore, the fake
generation by such a generator is satisfactory for privacy
guarantee. We can conclude that applying VVG noise to the
cost of a VV form can effectively help desensitize the data in
WGAN deep training.

V. EVALUATION
This section describes the implementation and validation of
the scheme using several datasets and evaluation metrics.
We compared the experimental results with other methods,
observed the effect of some hyper-parameter variations on
the realized results, and verified the scheme’s resistance
against gradient attacks on a simple classification network
accompanied by a presentation of the experimental procedure
and results.

A. EVALUATION INSTRUCTIONS
1) DATASETS
Our algorithm was evaluated on image data using two typical
datasets, Mnist [46] and Fashion-Mnist [47], with 60,000
training images coupled with 10,000 test images, with every
image size of 28 × 28 and with a single channel. The SVHN

dataset [48] consists of Google Street View House Numbers,
which includes 73,257 training image samples. The test set
consists of 26,032 test image samples, and the whole dataset
consists of 10 categories, i.e., the numbers 0-9. CelebA [49]
is an open dataset from the Chinese University of Hong Kong
(CUHK), it has 202,599 images of 10,177 celebrity identities,
and they are all well-labeled with features, which is a very
promising dataset for face-related training. For the Mnist
and Fashion-Mnist, suppose we know that a certain digit or
cloth belongs to a certain person, when the attacker recovers
the recurring data and compares it with the person, then we
can determine whether the person is in the set. For SVHN,
it’s possible to sure whether one’s house number is in the
set. Or to get the pupil distance of a person’s face from the
recovered CelebA image, etc. More details of the datasets are
in Appendix B.

2) EVALUATION METRICS
The purpose of the algorithm is to protect privacy while
ensuring the high usability of the model. Privacy-preserving
ability depends on the privacy budget ε. The smaller the
value of ε, the better the privacy performance [21]. Two
metrics were used in the experiments to verify the algorithm
availability: the Frechet Inception Distance (FID) [50] was
used to calculate the distribution gap between the generative
data and authentic data, which can evaluate the quality
of the generated privacy data. The privacy data released
by the generator were used as the training set for the
downstream classifier to evaluate the accuracy of the real
test dataset. For comparison, the classification algorithm uses
Logistic Regression (LR), Multilayer Perceptron (MLP), and
Convolutional Neural Networks (CNN) [30]. Consistently,
the parameters of the train and test batchsize is 256, the
max iterations is 500. Using Adam optimizer with no weight
decay, the learning rate is 0.001, and the betas is 0.999. For the
classification training, 10 percent of the training set was used
as the holding part for the early stop [51] mechanism, and the
training was stopped if the accuracy of the validation set did
not improve for 10 continuous rounds. When performing the
downstream tasks, we additionally used the random_forest,
Gaussian_nb, Bernoulli_nb, linear_svc, decision_tree, lda,
adaboost, bagging, gbm, and xgboost classifiers, the detailed
results are presented in Appendix C.

3) IMPLEMENTATION
To improve the quality of the generated data as much as
possible and to ensure the robustness of the model, the
experimental model refers to WGAN [39] and introduces
a post-perturbation penalty term as well as the Wasserstein
distance to ensure that the model satisfies differential privacy
and generates privacy-preserving data. To elaborate on the
generalizability of the algorithm, the Mnist and Fashion-
Mnist datasets were initially preprocessed so that each label
was trained independently, and both were experimented
with using a convolutional neural network architecture.
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FIGURE 2. An example of parameter flows in WGAN Structure.

TABLE 1. Comparison results on Mnist and Fashion-Mnist(δ = 10−5).

The CNN-based generator uses 1 Linear layer and 3 convo-
lutional layers, with Rectified Linear Unit (ReLU) activation
function after each hidden layer and Tanh activation function
in the output layer. The discriminator used two convolutional
layers and two fully connected layers with the LeakyReLU
activation function after each hidden layer. The CelebA
dataset was trained based on a Progan [52] structure. SVHN
was trained using the labeling approach of DCGAN [53],
and also using the CNN-based discriminator and generator
network, but with additional deeper layers to ensure the
usability of the output. The algorithms designed for our
experiment were executed using the four aforementioned
datasets.

B. RESULTS AND COMPARISON
To verify the merits of our DPBA algorithm, the experi-
mental results on Mnist and Fashion-Mnist are compared
with the following state-of-the-art techniques available:
DP-GAN [24], GS-WGAN [27], DP-Sinkhorn [30], and DP-
MERF [29], as shown in TABLE 1.

In order to make the comparison results more reliable, all
δ is set to 10−5, the epsilon for DP-GAN, GS-WGAN, and
DP-Sinkhorn is 10. The epsilon values for DP-MERF and our
scheme can be smaller, set to 1 depending on the impact of
the noise scale on the final outcomes. The evaluation results
of every methodology were materialized on 6 K generated
samples. DP-GAN and DP-MERF directly used the source
code provided by [29], and the results of GS-WGAN were
derived from [27], [30].While theDP-Sinkhorn is reproduced
using the Sinkhorn optimal distance transmission algorithm
proposed by the authors, combined with the CNN framework
in our experiment, the parameter m is set to 1.

FIGURE 3 provides the visualization samples of the
generation, which roughly show the generated quality of
each approach. The quantitative results in TABLE 1 show
that the FID metrics of our scheme exceed all benchmarks.
For example, the FID value on Mnist improves 77.6 times
against DP-MERF (4.47 vs. 351.27) and approximately 10
times higher on Fashion-Mnist (28.17 vs. 309.55). Despite a
larger privacy budget, its FID score still outperforms other
algorithms, such as DP-Sinkhorn. Our proposed method
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FIGURE 3. Generated samples on Mnist and Fashion-Mnist via various
methods.

generates samples that capture the statistical properties of
the original data better, thus contributing to the performance
of downstream tasks. As can be seen in the table, the
metrics of cnn, mlp, and logistic_regretion outperform the
classification results of other schemes on both datasets,
with an average accuracy of 92.67% for Mnist, whereas the
best baseline (GS-WGAN) was only 79.33%. The average
accuracy of Fashion-Mnist was 77.65%, which is a relative
improvement of 3.55% over the best baseline (DP-Sinkhorn).
In conclusion, our scheme has significantly improved various
metrics and the quality of generated images with smaller
privacy overhead. More details of the classification results
can be found in Appendix C.

C. INFLUENCIES OF HYPERPARAMETERS
Privacy and availability can be influenced by many non-
aligned hyperparameters such as iteration rounds, subsam-
pling rate, and noise scale. In FIGURE 4, it can be seen that
the changing of a certain hyperparametric value will have an
impact on the output results.

As a whole, as the privacy budget ε increases, the privacy
can be less protected, but the values of accuracy and FID
increase, meaning the usability of the model becomes higher.
The first row of each figure indicates the effect of the
parameter variables on the accuracy of the downstream
classification results, and the FID shows the trend of the
output statistical quality of feature information benefiting
for the usage. FIGURE 4(a) shows that the classification
accuracy of the generated privacy data improves by 10.9%-
41.2% over the comparison line when changing the number
of iterations, and the value of FID has a 5 to 87.5 times
improvement. When trained using our scheme, the model
can converge faster with a smaller privacy budget. When the
value of epsilon is less than two, the model can generate
higher-quality image, which improves the training efficiency
of the model and enhances the output effectiveness of the
network. The efficiency and quality of the DP-GAN, DP-
Sinkhorn, and DP-MERF algorithms were all inferior to our
solution. As shown in FIGURE 4(c), both the DP-MERF and
our models maintain robustness when a larger noise scale
is used. Setting the privacy loss to less than one, as the

TABLE 2. Comparison results on CelebA.

noise scale increases, the generated samples still maintain
a significant advantage in the CNN and MLP testing tasks.
In the comparison of FID, it can be seen that, with the same
privacy protection budget, our scheme produces images of
much better usable information than DP-MERF, with a more
accurate grasp of high-dimensional pixel features. In the
evaluation of the sampling rate, it is generally illustrated that
the larger the sampling rate, the higher the generative quality,
and the better the privacy guarantee and usability. The best
privacy results and image quality for a sampling rate of 1/600
in FIGURE 4(b) are also consistent with the derivation of the
privacy overhead in Section IV (equation (14)). More details
on the experimental results are provided in Appendix C.

D. EXPERIMENT ON RGB IMAGE
We further evaluated the privacy and usability of our
algorithm on RGB images. The privacy model was first
trained on the CelebA dataset with the same privacy loss ε and
δ as DP-Sinkhorn for comparison purposes, which ensured
privacy magnitude consistency.

The targets of the downstream output are all for the binary
classification task of identifying gender, with 0 for male and
1 for female, and FIGURE 5 shows the visualization of the
generated samples. By naked-eye observation, the Datalens
method cannot identify gender at all, and DP-Sinkhorn can
faintly tell the outline of gender. In contrast, our RGB results
contain richer figurative information, and we can directly
determine gender through observation at a glance. TABLE 2
presents a quantitative comparative analysis. In terms of
FID and classification accuracy, our method achieves the
best performance among the three, and the generative image
quality (FID) is improved by 4.36 times than DP-Sinkhorn,
and the accuracy is also improved by more than 10% in the
dichotomous classification test. The comparative evaluation
results show that our schema is not only able to synthesize
RGB images that provide useful information for downstream
classification, but also that the model can better serve the
downstream task under the same privacy conditions. Thus,
we achieve better privacy and high usability of the model.

As a more complex dataset than MNIST and Fashion-
MNIST, SVHN also achieved good generation effects with
a privacy budget of 10. The FID distance between the real
training and test datasets was calculated to be 1.02. FIGURE
6(a) shows some samples of the real dataset, and FIGURE
6(b) shows the visualization results of the generated dataset
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FIGURE 4. Analysis of hyperparameters on Mnist(δ = 10−5).

from the differential-privacy WGAN with an FID indication
of 268.58. The produced dataset was testedwith a CNN-based
downstream classifier, and the final accuracy was 86.1%,

FIGURE 5. Generated samples on CelebA.

FIGURE 6. Samples of SVHN.

which is a good trade-off between privacy and usability for
our model compared with the accuracy of 90.02% for the real
training dataset.

E. RESISTENCE OF GRADIENTS ATTACK
A simple classification network was customized to test the
ability of our DPBA perturbation strategy against gradient
attacks. We performed a simulation of a gradient attack on a
single image (digit 7) during the training of the Mnist dataset.
Privacy tactics consist of (i)no privacy, (ii)fixed noise scale,
(iii)dynamic interval noise scale, and (iv)bilateral alternative
dynamic interval noise. We can obtain gradient fitting results,
which show the success and failure of the aggression. The
gradient leakage resistance of each perturbation decision
was evaluated using the anti-attack rate (AAR). The total
number of training iterations is 500, and the gradient attack
is executed in every iter; once the fitted gradient value is
less than 1, the gradient reconstruction is successful, and the
sample of input can be recovered. For each attack, including
completely failed gradient attacks, the predefined attack limit
is set to 300. We recorded the changes in the gradient
reconstruction procedure.

The heat maps in FIGURE 7 record the variation in the
reconstructed gradients with the number of attacks under the
gradient attack approach for various perturbation strategies in
training.
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FIGURE 7. Gradients attack in various noise strategy.

TABLE 3. Resilience against gradients attack (training iterations=500).

Table 3 provides a quantitative analysis of the resistance
to invasion. Combined with the graphs, when there is no
privacy scenario, most of the attacks in FIGURE 7(a) can
restore the sample, and the number of successful gradient
reconstructions is always all less than 30 rounds, accounting
for less than 1/10 of the predefined upper limit. When (ii)
shown in FIGURE 7(b) and (iii) shown in FIGURE 7(c) are
used to protect the gradients during training, the gradient
values of the reconstruction attack become significantly more
volatile and the success of the gradient assault becomes less
easy. The overall noise scale with a dynamic value domain
is larger. Therefore, it requires more rounds than the fixed
noise scale because gradient reconstructions are expected to
be successful. The overall constructed gradient fluctuation
was also larger.

Table 3 shows that the AARwith fixed σ is 60.6%, and that
with dynamic σ is 65%,which are 352.2% and 385.1% higher
than the anti-attack rate without noise (13.4%), respectively.
When we use (iv) shown in FIGURE 7(d), the gradient
reconstruction process oscillates violently and is absolutely
unable to meet the demand of recovering the sample, and the
gradient intrusion fails completely.

Larger range-valued noise provides a more robust defen-
sive barrier than conventional fixed noise scales. However,
in a summary of the strategies demonstrated above, the gra-
dient privacy-preserving training methods of gradient attack
defense using our bilateral alternative dynamic range-valued
noise work best, mainly attributed to the combined effect of

greater sensitivity and larger noise scale. Effectively makes
it difficult for a successful gradient attack to occur, and
defending a privacy breach.

VI. CONCLUSION
Our DPBA-WGAN adds a specially designed VVG noise to
the critic vector valued cost function. The methodology can
indirectly transform gradients to a non-sensitive numerical
type, ensuring that the generative model can produce
expected amounts of synthetic dataset, which matches
the statistical properties of the source data and does not
compromise privacy.

The DP training strategy in our algorithm aims at an overall
network architecture with noise-free decay, to participate in
parametric optimization and interaction. We do not change
the internal structure of the discriminator and generator,
which makes the training process considerably easier and
faster. Considering the bounded cost and gradients by the
Lipschitz condition, we accurately estimate the sensitivity in
differential privacy. The restriction prevents the gradient from
exploding or diminishing. Using the Wasserstein distance to
train the WGAN network, which can eliminate the pitfall
of poor data generation owing to the instability of the
network. The evaluation of datasets with different numbers
of channels shows that the datasets generated with DPBA
have excellent generation quality and are well-suited for
continuous commitment to the use of downstream tasks.
In summary, the novel strategy provides a new reference for
the privacy-preserving training of deep learning models and
data generations.

APPENDIX A
RENYI DIFFERENTIAL PRIVACY PROOF AND BUDGET
Based on thewell-defined sensitivity and the known sampling
rate r (r = B

/
A), where B denotes the batch size, and A

denotes all sample sizes, a Gaussian mechanism satisfying
(α, ε)-differential privacy can be designed.

Theory 1. Given the sampling rate r and sensitivity 1S,
for any positive number α ≥ 1, add the probability density
function as N

(
µ, σ 2

)
random noise to the vector loss

function during each round of WGAN training, then the
mechanism satisfies (α, ε)-RDP and the level of privacy
protection is ε ≤ rα21S2

/[
2σ 2 (α − 1)

]
.

It is then shown that after T rounds of iterative training, the
parameter values and loss still guarantee differential privacy,
and a more conventional variant of

(
ε′, δ

)
can be obtained by

applying the idea from Corollary 1. That is, given a training
number T, a sampling rate r and sensitivity 1S of the dataset,
for any positive number α ≥ 1, 0 < δ < 1, such that
log

(
1
/
δ
)
≥ 2T , a random noise with pdfN

(
µ, σ 2

)
is added

to the target vector function or parameters during WGAN
training, making the mechanism a T

(
ε′, δ

)
-DP component

theory mechanism, where ε =
(
2rα21S2

)/[
(α − 1) σ 2

]
,

so that we have:

ε′ =
(
rα21S2

)/[
2 (α − 1) σ 2

]√
2T log

(
1
/
δ
)

(14)
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From Equation (14), it can be shown that the discriminator
satisfies

(
ε′, δ

)
-differential privacy.

For the sake of the following argumentative illustration,
the coefficient α2

/
(α − 1) ≥ 4, there exists a number

greater than or equal to 4
√
2
/

σ , denoted as α′, such that

ε′ =
(
α′
/
σ
)
2r
√
T log

(
1
/
δ
)
.

proof. The target distribution to be perturbed is denoted by
LD, and X and X ′ are denoted as two adjacent datasets that
differ by at most one element from each other. Therefore,
after adding noise to one part of the cost function for
perturbation, the loss functions of the two adjacent datasets
can be expressed as follows:

LD (X) = LD (θ,X)+N
(
µ, σ 2

)
L′D

(
X ′
)
= LD

(
θ,X ′

)
+N

(
µ, σ 2

)
(15)

where LD (θ,X) =
1
B

(
B∑

i=1,i̸=j
M (xi)+M

(
xj
))

, and

L′D
(
θ,X ′

)
=

1
B

(
B∑

i=1,i̸=j
M (xi)+M

(
x ′j
))

, θ denote

various types of parameters in the training process of the
network.

In Equation (15), we know that LD (X) is the sum of two
independent variables: LD (θ,X) and N

(
µ, σ 2

)
. According

to the Gaussian approximation principle, the final function is
obtained by adding two independent variables that conform to
the Gaussian distribution; thus, LD (X) also conforms to the
Gaussian distribution. Similarly, L′D

(
X ′
)
obeys a Gaussian

distribution. Without loss of generality, assume that the two
distributions, LD (X) and L′D

(
X ′
)
, differ only in the first

characteristic, we define u0N
(
µ, σ 2

)
, u1N

(
µ+1S, σ 2

)
,

with:
Case 1. supposing that

LD (X) ∼ (1− r) u0 + ru1L′D
(
X ′
)
∼ u0N

(
µ, σ 2

)
For simplicity and clarity, the expectation µ is set on the y-
axis and according to the definition of Renyi entropy, it is
derived that,

Dα

[
LD (X) ||L′D

(
X ′
)]

=
1

α − 1
log

∫
[(1− r) u0 + ru1]αu

1−α
0 dx

=
1

α − 1
log

∫
u1−α
0

α∑
k=0

(
k
α

)
(ru1)k [(1− r) u1]α−k dx

=
1

α − 1
log

∫
u0

α∑
k=0

(
k
α

)
rk (1− r)α−k e−

k(1S2−21Sx)
2σ2 dx

=
1

α − 1
log

∫
u0

α∑
k=0

rk (1− r)α−k e
k21S2−k1S2

2σ2
1

σ
√
2π

× e−
(x−k1S)2

2σ2 dx

=
1

α − 1
log

α∑
k=0

rk (1− r)α−k e
k(k−1)1S2

2σ2

≤
1

α − 1
log

(
1− r + re

α1S2

2σ 2

)
=

α

α − 1
log

(
1− r + re

α1S2

2σ2

)
= r

α

α − 1

(
e

α1S2

2σ2 − 1
)
+ o

((
α1S2

2σ 2

)2)
(16)

Case 2. supposing that

LD (X) ∼ u0N
(
µ, σ 2

)
L′D

(
X ′
)
∼ (1− r) u0 + ru1

Since we have:

1
α − 1

log
∫
u1

[
1− r + r

u1
u0

]α

=
1

α − 1
log

∫ α∑
k=0

(
k
α

)
rk (1− r)α−k e

k(k+1)1S2

2σ2
1

σ
√
2π

× e−
[x−(k+1)1S]2

2σ2

=
1

α − 1
log

α∑
k=0

(
k
α

)
rk (1− r)α−k e

k(k+1)1S2

2σ2

≤
1

α − 1
log

[
1− r + re

(α+1)1S2

2σ2

]α

= r
α (α + 1) 1S2

2σ 2 (α − 1)
+ o

((
(α + 1) 1S2

2σ 2

)2)
(17)

following the definition of Renyi entropy, it is concluded that,

Dα

[
LD (X) ||L′D

(
X ′
)]

=
1

α − 1
log

∫
uα
0 [(1− r) u0 + ru1]

1−α dx

=
1

α − 1
log

∫
[(1− r) u0 + ru1]

[
u0

(1− r) u0 + ru1

]α

dx

=
1

α − 1
log

∫ [
(1− r) u0

(
1− r + r

u1
u0

)−α

+ ru1

(
1− r + r

u1
u0

)−α
]
dx

≤ (1− r) r
α21S2

2σ 2 (α − 1)
+ r2

α1S2

2σ 2 + o

((
α1S2

2σ 2

)2)
(18)

where 1
α−1 log

∫
u0
(
1− r + r u1u0

)−α

dx ≤ r α21S2

2σ 2(α−1)
+

o
((

α1S2

2σ 2

)2)
is determined by (16), 1

α−1 log∫
u1
(
1− r + r u1u0

)−α

dx ≤ r α1S2

2σ 2 + o
((

(α−1)1S2

2σ 2

)2)
is

arrived at based on (17).
It is obvious that α1S2

2σ 2 < α21S2

2σ 2(α−1)
is from (18), and

so (1− r) r α21S2

2α2(α−1)
+ r2 α1S2

2σ 2 < r α21S2

2σ 2(α−1)
. The ultimate
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TABLE 4. Accuracy in multiple classifiers on MNIST (δ = 10−5).

TABLE 5. Accuracy in multiple classifiers on Fashion-MNIST (δ = 10−5).

calculation is ε = r α21S2

2σ 2(α−1)
, which satisfies (α, ε)-

RDP. Similarly, it can be proven that the parameters also
satisfy (α, ε)-RDP, and the whole WGAN satisfies RDP by
differential privacy transferability. Hence, the fictitious data
released by the generator can achieve the purpose of protect
the privacy of the source data.

APPENDIX B
MORE DETAILS OF DATASETS
A. MNIST
This dataset contains statistics consisting of 250 handwritten
digits from different people with four files: training images,
training labels, test images, and test labels. The training set

contained 60,000 images and labels, whereas the test set
contained 10,000 images and labels. The anterior 5,000 in the
test set were from the training set of the original NIST project
and the posterior 5,000 were from the test set of the original
NIST project. The size of each image was 28 × 28 and each
label was a one-dimensional array of length 10. In the deep-
learning domain, handwritten digit recognition is an essential
example of learning.

B. FASHION-MNIST
It is slightly more complex than MNIST and consists of
10 categories of apparel: t-shirt, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, and ankle boot. It contains 70,000
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FIGURE 8. Analysis of hyperparameters on Fashion-Mnist(δ = 10−5).

FIGURE 9. Classification accuracy of downstream task between
non-private and private data(ε = 1, δ = 10−5).

images, of which 60,000 are training images and 10,000 are
test images. The image size is 28 × 28, which are single
channels.

C. SVHN
Since the algorithm that performs better in the Mnist
and Fashion-Mnist datasets with simpler features may
not be applicable to other sophisticated tasks, we also
used the SVHN dataset. Compared to the two datasets
mentioned above, the dataset used in our experiment is
a single-numbered SVHN with a pre-process, which is a
3-channel RGB image. The SVHN has an image size of
32× 32, which is marginally larger than that of the previous
two datasets. Compared with handwritten characters, SVHN
originates from real scenes in life, which are not only noisy
but also have diverse proportions and features of objects,
which poses great challenges for recognition by machines.

D. CelebA
There are three types of files in this dataset: pure ‘‘wild’’ files,
which are images crawled from the web without cropping,

images after cropping out the face part from ‘‘wild’’ files;
and cropped face images in jpg format. In our experiment,
we used a lightweight jpg format file. There are more than
200,000 images, including 40 attributes, such as gender,
beard, hair style, hair color, and skin tone. We only need
to consider whether the algorithm is also feasible for RGB
images and the dichotomous situation in the comparison
experiment. Therefore, so in order to speed up the experiment
progress, 25,156male images and 28,234 female imageswere
filtered through the dataset labels of the attribute file species
for generating network training, and 10% of the dataset was
left to test the effectiveness of the yielding images.

APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS
To supplement the experimental findings in TABLE 1,
TABLE 4, TABLE 5, the results of Mnist and Fashion-Mnist
on multiple downstream classifiers are presented.

All accuracy values in the tables were obtained using
the early stop training method and recording the average of
five testing outcomes. FIGURE 8 shows the hyperparameter
analysis on Fashion-Mnist to evaluate the privacy and usabil-
ity of this dataset when trained on the differential privacy
WGAN network. The same three hyperparameters are used
as variables in FIGURE 4. The analysis of various datasets
demonstrates the generalization ability of the proposed
scheme. FIGURE 9 shows the accuracy corresponding to
each attribute after downstream classification by adopting
our generated method, and a comparison with the approach
without a privacymechanism shows that the generativemodel
is balanced for all types of objects. The accuracy and error of
the histogram were averaged over five trials using early stop.
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FIGURE 10. Visualization of results under gradient invasion.

FIGURE 10 is used to supplement the results of the ability
to defend against different noise approaches when subjected
to a gradient attack, and is the result of the image visualization
reconstructed from the intruder gradient attack. We select the
process of recovering the image when subjected to an attack
in two certain training rounds, and in the results shown in
the figure, if the attack fails, the recovered image is all of the
noise.

REFERENCES

[1] Y. He, G. Meng, K. Chen, X. Hu, and J. He, ‘‘Towards security threats of
deep learning systems: A survey,’’ IEEE Trans. Softw. Eng., vol. 48, no. 5,
pp. 1743–1770, May 2022.

[2] M. E. Gursoy, A. Inan, M. E. Nergiz, and Y. Saygin, ‘‘Differentially private
nearest neighbor classification,’’ Data Mining Knowl. Discovery, vol. 31,
no. 5, pp. 1544–1575, Sep. 2017.

[3] H. Liu, Z. Q. Wu, C. G. Peng, F. Tian, and L. F. Lu, ‘‘Adaptive Gaussian
mechanism based on expected data utility under conditional filtering
noise,’’ KSII Trans. Internet Inf. Syst., vol. 12, no. 7, pp. 3497–3515,
Jul. 2018.

[4] Y. Li, X. Ren, F. Zhao, and S. Yang, ‘‘P-power exponential mechanisms
for differentially private machine learning,’’ IEEE Access, vol. 9,
pp. 155018–155034, 2021.

[5] M. Park, J. Foulds, K. Chaudhuri, and M. Welling, ‘‘Variational Bayes
in private settings (VIPS),’’ J. Artif. Intell. Res., vol. 68, pp. 109–157,
May 2020.

[6] Z. Sun, Y. Wang, M. Shu, R. Liu, and H. Zhao, ‘‘Differential privacy
for data and model publishing of medical data,’’ IEEE Access, vol. 7,
pp. 152103–152114, 2019.

[7] A. Imakura and T. Sakurai, ‘‘Data collaboration analysis framework using
centralization of individual intermediate representations for distributed
data sets,’’ ASCE-ASME J. Risk Uncertainty Eng. Syst., A, Civil Eng.,
vol. 6, no. 2, Jun. 2020.

[8] K. Bonawitz, P. Kairouz, B. McMahan, and D. Ramage, ‘‘Federated
learning and privacy,’’Commun. ACM, vol. 65, no. 4, pp. 90–97, Apr. 2022.

[9] P. Li, T. Li, H. Ye, J. Li, X. Chen, and Y. Xiang, ‘‘Privacy-preserving
machine learning with multiple data providers,’’ Future Gener. Comput.
Syst., vol. 87, pp. 341–350, Oct. 2018.

[10] X. Huang, Y. Ding, Z. L. Jiang, S. Qi, X. Wang, and Q. Liao, ‘‘DP-
FL: A novel differentially private federated learning framework for the
unbalanced data,’’ World Wide Web, vol. 23, no. 4, pp. 2529–2545,
Jul. 2020.

[11] L. Lyu, Y. Li, K. Nandakumar, J. Yu, and X. Ma, ‘‘How to democratise
and protect AI: Fair and differentially private decentralised deep learning,’’
IEEE Trans. Depend. Secure Comput., vol. 19, no. 2, pp. 1003–1017,
Mar./Apr. 2020.

[12] Apple Differential Privacy Technical Overview. Accessed:
Jun. 13, 2016. [Online]. Available: https://www.apple.com/privacy/docs/
Differential_Privacy_Overview.pdf

[13] M. Hay, M. Gaboardi, and S. Vadhan, ‘‘A programming framework for
OpenDP,’’ in Proc. 6thWorkshop Theory Pract. Differential Privacy, 2020,
pp. 1–63.

[14] A. Bavadekar et al., ‘‘Google COVID-19 vaccination search insights:
Anonymization process description,’’ Jul. 2021.

[15] Y.Wang,M. Gu, J.Ma, andQ. Jin, ‘‘DNN-DP: Differential privacy enabled
deep neural network learning framework for sensitive crowdsourcing
data,’’ IEEE Trans. Computat. Social Syst., vol. 7, no. 1, pp. 215–224,
Feb. 2020.

[16] F. Farokhi, ‘‘Privacy-preserving public release of datasets for support
vector machine classification,’’ IEEE Trans. Big Data, vol. 7, no. 5,
pp. 893–899, Nov. 2021.

[17] S. Ho, Y. Qu, B. Gu, L. Gao, J. Li, and Y. Xiang, ‘‘DP-GAN: Differentially
private consecutive data publishing using generative adversarial nets,’’
J. Netw. Comput. Appl., vol. 185, Jul. 2021, Art. no. 103066.

[18] S. Zhang, W. Ni, and N. Fu, ‘‘Differentially private graph publishing with
degree distribution preservation,’’ Comput. Secur., vol. 106, Jul. 2021,
Art. no. 102285.

[19] B. Xin, Y. Geng, T. Hu, S. Chen, W. Yang, S. Wang, and L.
Huang, ‘‘Federated synthetic data generation with differential privacy,’’
Neurocomputing, vol. 468, pp. 1–10, Jan. 2022.

[20] B.-W. Tseng and P.-Y. Wu, ‘‘Compressive privacy generative adversarial
network,’’ IEEE Trans. Inf. Forens. Security, vol. 15, pp. 2499–2513, 2020.

[21] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, ‘‘Deep learning with differential privacy,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 308–318, doi:
10.1145/2976749.2978318.

[22] J. Yang, L. Xiang, R. Chen, W. Li, and B. Li, ‘‘Differential privacy
for tensor-valued queries,’’ IEEE Trans. Inf. Forensics Security, vol. 17,
pp. 152–164, 2022.

[23] W.Wei and L. Liu, ‘‘Gradient leakage attack resilient deep learning,’’ IEEE
Trans. Inf. Forensics Security, vol. 17, pp. 303–316, 2022.

[24] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, ‘‘Differentially private
generative adversarial network,’’ 2018, arXiv:1802.06739.

[25] L. Frigerio, A. S. D. Oliveira, L. Gomez, and P. Duverger, ‘‘Differentially
private generative adversarial networks for time series, continuous, and
discrete open data,’’ in Proc. IFIP Int. Conf. ICT Syst. Secur. Privacy
Protection, vol. 562. Cham, Switzerland: Springer, 2019, pp. 151–164.

[26] R. Torkzadehmahani, P. Kairouz, and B. Paten, ‘‘DP-CGAN: Differen-
tially private synthetic data and label generation,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2019,
pp. 98–104.

[27] D. F. Chen, T. Orekondy, and M. Fritz, ‘‘GS-WGAN: A gradient-sanitized
approach for learning differentially private generators,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 12673–12684.

[28] J. Jordon, J. Yoon, and M. V. D. Schaar, ‘‘PATE-GAN: Generating
synthetic data with differential privacy guarantees,’’ presented
at the Int. Conf. Learn. Represent., 2018. [Online]. Available:
https://openreview.net/forum?id=S1zk9iRqF7

[29] F. Harder, K. Adamczewski, and M. Park, ‘‘Differentially private mean
embeddings with random features (DP-MERF) for simple & practical
synthetic data generation,’’ in Proc. 24th Int. Conf. Artif. Intell. Statist.,
vol. 130, 2021, pp. 1819–1827.

[30] T. S. Cao, A. Bie, A. Vahdat, S. Fidler, and K. Kreis, ‘‘Don’t generate
me: Training differentially private generative models with sinkhorn
divergence,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 12480–12492.

[31] M. Arjovsky and L. Bottou, ‘‘Towards principled methods for training
generative adversarial networks,’’ Stat, vol. 1050, no. 17, pp. 1–17, 2017.

[32] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein generative
adversarial networks,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 214–223.

13904 VOLUME 11, 2023

http://dx.doi.org/10.1145/2976749.2978318


D. Wu et al.: DPBA-WGAN: A VV Differential Private BA Scheme on WGAN for Image Generation

[33] C. Han and R. Xue, ‘‘Differentially private GANs by adding noise to dis-
criminator’s loss,’’ Comput. Secur., vol. 107, Aug. 2021, Art. no. 102322.

[34] C. Dwork, ‘‘Differential privacy,’’ in Automata, Languages and Program-
ming, vol. 4052, M. Bugliesi, B. Preneel, V. Sassone, I. Wegener, Eds.
Berlin, Germany: Springer, 2006, pp. 1–12.

[35] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
‘‘Our data, ourselves: Privacy via distributed noise generation,’’ in Proc.
Annu. Int. Conf. Theory Appl. Cryptograph. Techn., vol. 4004. Cham,
Switzerland: Springer, 2006, p. 486.

[36] C. Dwork and A. Roth, ‘‘The algorithmic foundations of differential
privacy,’’ Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4, pp. 211–407,
2014.

[37] I. Mironov, ‘‘Rényi differential privacy,’’ in Proc. IEEE 30th Comput.
Secur. Found. Symp. (CSF), Aug. 2017, pp. 263–275.

[38] I. Goodfellow, ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 63, no. 11, 2014, pp. 139–144.

[39] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. 31st Int. Conf. Neural
Inf. Process. Syst., vol. 30, 2017, pp. 5769–5779.

[40] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, ‘‘InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets,’’ in Proc. 30th Int. Conf. Neural
Inf. Process. Syst., 2016, pp. 2180–2188.

[41] E. Schonfeld, B. Schiele, and A. Khoreva, ‘‘A U-Net based discriminator
for generative adversarial networks,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 8207–8216.

[42] Y. Feigin, H. Spitzer, and R. Giryes, ‘‘GMM-based generative adversarial
encoder learning,’’ 2020, arXiv:2012.04525.

[43] S. Suh, J. Kim, P. Lukowicz, and Y. O. Lee, ‘‘Two-stage generative
adversarial networks for binarization of color document images,’’ Pattern
Recognit., vol. 130, Oct. 2022, Art. no. 108810.

[44] J. Dong, A. Roth, and W. J. Su, ‘‘Gaussian differential privacy,’’ J. Roy.
Stat. Soc., Ser. B, Stat. Methodol., vol. 84, no. 1, pp. 3–37, Feb. 2022.

[45] K. Wei, ‘‘Performance analysis and optimization in privacy-preserving
federated learning,’’ Feb. 2020, arXiv:2003.00229.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[47] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747.

[48] Y. Netzer, T. Wang, A. Coates, A. Bissacco, and A. Y. Ng, ‘‘Reading
digits in natural images with unsupervised feature learning,’’ in Proc. NIPS
Workshop Deep Learn. Unsupervised Feature Learn., 2011, pp. 1–9.

[49] Z. Liu, P. Luo, X. Wang, and X. Tang, ‘‘Deep learning face attributes
in the wild,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3730–3738.

[50] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
‘‘GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 6629–6640.

[51] H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, and
Z. Li, ‘‘DARTS+: Improved differentiable architecture search with early
stopping,’’ 2019, arXiv:1909.06035.

[52] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive growing of
GANs for improved quality, stability, and variation,’’ in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–26.

[53] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation
learning with deep convolutional generative adversarial networks,’’ in
Proc. Int. Conf. Learn. Represent., 2016, pp. 1–16.

DANHUA WU was born in Zhejiang, China,
in 1996. She received the B.S. degree in com-
puter science and technology from the Tianjin
University of Commerce, in 2019. She is currently
pursuing the M.S. degree with the Department
of Information Science and Technology, Guilin
University of Technology, China. Her research
interests include artificial intelligence and privacy
protection.

WENYONG ZHANG was born in Jiangxi, China,
in 1998. He received the B.S. degree in com-
puter science and technology from Beijing Union
University, in 2020. He is currently pursuing the
M.S. degree with the Department of Information
Science and Technology, Guilin University of
Technology, China. His research interest includes
machine learning with privacy protection.

PANFENG ZHANG was born in Hubei, China,
in 1978. He received the Ph.D. degree from the
Huazhong University of Science and Technology,
China. Since 2017, he has been a Lecturer at
the Department of Information Science and Tech-
nology, Guilin University of Technology. He is
currently the Host of Research on Hierarchical
Diversity AnonymousMethod for Data Publishing
Privacy Protection sponsored by the National
Natural Science Foundation of China. His research

interests include information storage, information security, and artificial
intelligence technology.

VOLUME 11, 2023 13905


