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ABSTRACT Crude oil is one of the non-renewable power sources and is the lifeblood of the contemporary
industry. Every significant change in the price of crude oil (CO) will have an effect on how the global
economy, including COVID-19, develops. This study developed a novel hybrid prediction technique that
depends on local mean decomposition, Autoregressive Integrated Moving Average (ARIMA), and Long
Short-term Memory (LSTM) models to increase crude oil price prediction accuracy. The original data is
decomposed by local mean decomposition (LMD), and the decomposed components are reconstructed into
stochastic and deterministic (SD) components by average mutual information to reduce the computation
cost and enhance forecasting accuracy, predict each individual reconstructed component by ARIMA, and
integrate the residuals with LSTM to capture the nonlinearity in residuals and help to find the final prediction
result. The new hybrid model LMD-SD-ARIMA-LSTM has reduced the volatility and solved the issue
of the overfitting problem of neural networks. The proposed hybrid technique is validated using publicly
accessible data from theWest Texas Intermediate (WTI), and forecast accuracy are compared using accuracy
measures. The value of Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) for
ARIMA, LSTM, LMD-ARIMA, LMD-SD-ARIMA, LMD-ARIMA-LSTM, LMD-SD-ARIMA-LSTM, and
Naïve are 1.00, 1.539, 5.289, 0.873, 0.359, 0.106, 4.014 and 2.165, 1.832, 9.165, 1.359, 1.139, 1.124 and
3.821 respectively. From these results, it is concluded that the proposed model LMD-SD-ARIMA-LSTM
has minimum values for MAE and MAPE which assured the superiority of the proposed model in One-step
ahead forecasting. Moreover, forecasting performance is also compared up to five steps ahead. The findings
demonstrate that the suggested approach is a helpful tool for predicting CO prices both in the short and
long term. Furthermore, the current study reduces labor costs by combing the stationary and non-stationary
Product Functions (PFs) into stochastic and deterministic components with improved accuracy. Meanwhile,
the traditional econometric model can strengthen the prediction behavior of CO prices after decomposition
and reconstruction, and the new hybrid forecasting method has better performance in medium and long-
term forecasting of the CO price. Moreover, accurate predictions can provide reasonable advice for relevant
departments to make correct decisions.

INDEX TERMS ARIMA, LMD, LSTM, stochastic and deterministic influences, crude oil prices.

I. INTRODUCTION
As the ‘‘lifeblood of the industry,’’ crude oil (CO) is the most
significant strategic component raw element in contemporary
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industrial society, the key to prosperity and national security,
and the cornerstone of civilization [1]. It is connected to
how the global economy is growing, and different economic
data will be more significantly impacted by changes in oil
prices. Predicting how the price of crude oil will fluctuate in
the future is therefore quite important. Scholars have used a
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range of research techniques to perform in-depth analyses and
forecasts of global oil prices from the perspective of diversifi-
cation. The artificial intelligence model and the econometric
model, and the integrated forecasting model are roughly the
three components of these researchmethodologies, according
to the summary of the literature examined. For the models in
econometrics The authors in [2] examined how well various
ARIMA-GARCH (Generalized Autoregressive Conditional
Heteroscedasticity) models performed in simulating and pre-
dicting the conditional mean and volatility of weekly crude
oil prices. The researchers in [3] apply the findings of the
ARIMA model compared with those of the Decomposition-
based vector autoregressive model (DVAR), which is used
to forecast the monthly price data for WTI crude oil. The
authors in [4] examined the predictive power and impact of
the Google index on CO price by incorporating it into the
ARMA-GARCH and ARIMA models. By contrasting the
suggested MMGARCH (Mixture Memory GARCH model)
to other discrete unpredictable models. Klein andWalther [5]
extend the literature on predictable and esteem predicting
CO price returns. Stelios et al [6] compare the VAR model’s
capacity for forecasting to that of the Random Walk (RW)
model and the AR model. The results are listed at the top of
Table 1. Generally, the economic model assumes that the data
are stable, regular, and linear. Under this assumption, the
economic model can accurately predict the CO price. The
international crude oil market, however, exhibits complex
non-linear, and multidimensional characteristics of crude oil
price movements. The intricate features concealed in crude
oil may be too complicated for these conventional metering
methods to detect. Support vector regression (SVR), Arti-
ficial Neural Network (ANN), Random Forest (RF), and
other widely used non-linear models are applied to CO price
forecasting, successfully fitting the non-linear CO price series
as a result of the rapid growth of artificial intelligence. For
example, the researchers in [7] utilized a neural network and
genetic algorithm to predict the price ofWTI CO. In the same
way, the authors in [8] utilized a neural network to forecast the
price term structure of crude oil futures. Fan et al [9] utilize
an Imperialist Competitive Algorithm and Support Vector
Regression (ICA-SVR) techniques to forecast the price of
crude oil. Mostafa and EI-Masry [10] projected CO price
using gene expression programming (GEP); CO price is
forecasted by Gao and Yalin [11] based on stream learning.
The artificial intelligence model outperformed the conven-
tional paradigm, in line with empirical research. A single
artificial intelligence (AI) model cannot correctly represent
the dynamic changes of complicated CO price time series
responsible for the significant variations in the time series.
However, an AI model can accurately anticipate non-linear
and non-stationary sequences. However, the hybrid forecast-
ing model overcomes the drawbacks of time series instability
and nonlinearity and enhances the CO price prediction accu-
racy by combining a range of methodologies. In the past few
years, integrated models for predicting the price of CO have

developed quickly. Tao et al [12] suggested a more effective
EMD-SBM-FNNmodel that can capture the intricate dynam-
ics of the price of crude oil. Zhang et al [13] introduced
EEMD-PSO-LSSVM-GRACH a novel hybrid approach to
forecast CO prices. Yu et al [14] used the EEMD-DCD-
LSSVR model to predict the price of CO. The authors in [15]
estimated the price of CO, by using bootstrap aggregation
(bagging) and Stacked Denoising Auto Encoders (SDAE).
In the same way, the authors in [16] use the EEMD-RVFL
model to predict the price of CO. Moreover, the authors
in [17] used the EEMD-EELM-ADD model as a unique
decomposition-ensemble technique for predicting CO prices.
Ding [18] created a hybrid model EEMD-ANN-ADD for
predicting the price of CO. The authors in [19] use the
DFN-AI model to predict the CO price. Similarly, the authors
in [20] use the VMDICA-ARIMA hybrid model to predict
the price of CO. In the same way, Zhang et al [21] sug-
gested an algorithm for iterated combinations to predict the
CO price. The authors in [22] combine RW and ARMA to
predict the CO price. Similarly, Zheng et al [23] proposed
EEMD and Dynamic Artificial Neural Network (DANN)
to forecast the CO price. The authors in [24] showed load
prediction, based on the long short-term memory (LSTM)
model, based on Back Propagation Neural Network (BPNN)
and Local Mean Decomposition (BPNN-LMD-LSTM). The
design is based on a fixed-time consistency algorithm with
random delay to predict the economic dispatch of microgrids.
The authors in [25] proposed a landslide displacement pre-
diction model, the local mean decomposition-bidirectional
long short-term memory (LMD-BiLSTM), which depends
on the time-frequency analysis method. The authors Heng
Sun [26] utilizes method in three steps exhibits great potential
applications in the RUL prediction of rotating machines.
The authors in [27] LSTM, wavelet threshold denoising
(WTD), and LMD have been integrated into a novel com-
bined model called LMD-WTD-LSTM to estimate short-
term gas consumption. In the same way, the authors in [28]
introduced a new model which enhanced the accuracy of
the predictions. The novel technique called variational mode
decomposition (VMD) and used to predict the major factor
time series utilizing its secondary factors. A new technique
called multiscale forecasting model is introduced that pro-
duced an optimal forecast [29]. This model outperformed
the compared model to forecast the complex time series
data. In the same way, the authors in [30] decomposed the
data into many features via VMD. Then the mutli-features
are trained with machine learning classifiers. The authors
in [31] forecasted the Daily PM2.5 and PM10 data employ-
ing a Robust LMD (RLMD) and moving window ensemble
technique was done using linear and nonlinear modelling
frameworks. The research mentioned above claims that the
hybrid model mixes single models so that the benefits of each
model balance out the drawbacks of the other models. As a
result, the hybrid model is superior to the single model and
offers us research suggestions. From the above discussions
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the following research questions have been generated. How
can the end-point impact be eliminated due to the com-
plicated dynamic change of the crude oil price time series
and additional information obtained on different frequencies
of the crude oil price data itself? How the calculations for
the hybrid model may be streamlined. How can CO price
predictions be made more accurately? In the current study,
we use Local Mean Decomposition (LMD) and an artificial
intelligence model to forecast the price of CO: (1) Utilizing
LMD to decompose the time series of CO price in an adaptive
manner, removing the end-point effect, and further exploring
the data’s various frequencies. (2) This work uses average
mutual information (AMI) to decrease the calculation amount
while taking into account the growth of the hybrid model’s
calculation amount; (3) By separating the time series into
random and stochastic variables, the econometric model is
able to represent the volatility features of the crude oil price
time series; (4) combining the outcomes of the prediction
utilizing LSTM; (5) The experimental results demonstrate
that the LMD-SD-ARIMA-LSTM suggested in this study
outperforms a single model in terms of crude oil price pre-
diction accuracy. They also demonstrate that the traditional
econometricmodels can increase prediction accuracy through
decomposition and aggregation. Researchers are still working
on these problems. In comparison to previous studies, the
novel hybrid model LMD-SD-ARIMA-LSTM has reduced
the volatility and solved the issue of the overfitting problem of
neural networks. The proposed hybrid technique is validated
using publicly accessible data from the West Texas Inter-
mediate (WTI), and forecast accuracy are compared using
accuracy measures.

The organization of the study is as follows. Section I con-
sists of an introduction and a literature review. Section II
provides a brief description of the methods used in
this study. In the same way, sections II-D and III con-
sist of analysis and discussion along with a conclusion
respectively.

II. METHODOLOGY
A. LOCAL MEAN DECOMPOSITION
Using adaptive time-frequency analysis, LMD is a tech-
nique for handling non-stationary signals [32]. Separating
various envelope signals and purely frequency-modulated
signals from the original signals is the foundation of the
LMD approach. A physical significant product function (PF)
component of the instantaneous frequency can be derived by
multiplying the envelope signals with sole frequency mod-
ulated signals. The decomposition procedure for the initial
signal x( t) can be broken down into five steps:

i Select all local extremum points ni of the original signal
x(t) and calculate the mean mi of adjacent extremum
points ni, ni+1 and envelope estimate αi :

αi =
|ni − ni+1|

2
(1)

The envelope estimate αi and local means mi are then
used to smooth using the moving average tom11(t) and
envelope estimate function α11(t);

ii Ignore the local mean function m11(t) in the original
signal x(t), that is:

h11(t) = x(t) − m11(t) (2)

iii Dividing it by α11 (t) , h11(t) is the amplitude demodu-
lated.

s11(t) = h11(t)/α11(t) (3)

purely frequency modulated signal is Repeated itera-
tions n times until s1n (t). Stopping iteration should be
done when n→∞ limα1n (t ) =1.

iv The corresponding envelope α1 (t) and the first compo-
nent PF1 (t) are obtained:

α1(t) = α11(t)α12(t) . . . α1n(t)

=

∏n

q=1
α1q(t) (4)

PF1(t) = a1(t)s1n(t) (5)

v The component PF1 (t) is removed from x(t), the new
signal u1(t) is obtained and the process is repeated k
times until the signal uk (t) is a constant the oscillations
have stopped, too. Finally, the original signal x(t) can
be written as

x(t) =

∑k

p=1
PFp (t) + uk (t) , t = 1 . . . n

(6)

B. ARIMA
Box and Jenkins first proposed the ARIMAmodel in the early
1970s. The following structure of the model is said to be
the autoregressive integrated moving average model, which
is defined as ARIMA (p,d,q): The dependent variable must
be stationary (through the I-component), and the independent
variables are taken as all lags of the dependent variable (the
AR-component) and/or errors lags. In general, therefore, one
might consider an ARIMA model to be a specific kind of
regression model (the MA component).
In general, a model with ARMA looks like this:

Yt = α0 +

∑p

i=1
αiYt−1 +

∑q

j=1
βiεt−j + εt (7)

The AR coefficient and constant term are represented by
p, whereas the MA coefficients are represented by q. The
following steps are involved in modelling the ARIMA (p,d,q)
model: First, the observation sequence’s stationaries are
tested. If the observed sequence is not stationary, a differ-
ence in times d must be used to convert the sequence into
a stable time series. Second, after the difference, the station-
ary sequence is subjected to the white noise test when the
observed sequence is stationary. The ARMA (p,q) model is
fitted if the test result is a sequence that is not white noise.
ACF and PACF can be used to determine p and q. The analysis
is over if the test yields a white noise sequence. The fitted
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TABLE 1. Descriptive statistics for the WTI crude oil prices.

ARMA (p,q) model’s residual sequence is next checked for
white noise. The ARMA (p,q) model is re-fitted if the test
result is a non-white noise sequence. If not, the analysis is
over [33].

C. LSTM
It is a type of RNN with the capacity to take long-term
dependability into account. Scientists The authors in [34]
developed the LSTM in 1997. Because LSTMs can retain
information over a longer amount of time and do not have
long-term dependencies, they differ from other RNN tech-
niques. Inside, LSTMs operate similarly to other RNN meth-
ods employing neural network gates and layers. They have a
chain structure. The LSTM’s construction is designed to have
a cell that runs the length of the device. Gates are used to
control whether or not data may be transferred into the cell
state. Additionally, there are parts known as gated cells that
enable the storage of data from earlier LSTM outputs; this is
the place where the memory-related aspects of LSTM come
into play.

An advanced soft computing technique known as LSTM
was developed from the Recurrent Neural Network (RNN).
One of the numerous Artificial Neural Network (ANN) tech-
niques, the RNN, was developed to address the ANN’s weak-
ness in handling time correlation in the data sequence and
enhances neurons in the networks with canonical connections
to make it possible for RNN to create a sequence-to-sequence
mapping between input and output data [24]. Unfortunately,
the long-range dependencies are still a challenge for tradi-
tional RNN, which have difficulty learning the long-term
temporal correlations due to expanding gradients or, con-
versely, vanishing gradients [25]. The authors in [34] used
LSTM memory cells to get around this restriction. These
cells use a three-gate mechanism made up of an input gate,
an output gate, and a forget gate to store the temporal state
of the networks [35]. Figure 1 shows an LSTM cell with all
three of those gates as well as the cell state [36].

LSTM gates are simply used to limit the amount of infor-
mation that can be transferred. They typically consist of a
layer of a sigmoid neural network and an action of pointwise
multiplication. While the forget gate is used to use selectively
forget the information in the cell state, the input gate decides
what new information will be stored in the current cell state.
The output gate is then utilized to determine the value that we
wish to output [22]. The forget gate is the initial component

of the LSTM cell. It can be expressed as follows and is used to
regulate the magnitude to forget the previous cell’s concealed
state:

ft = (Wf ht−1 + Uf xt + bf ), (8)

where ft denotes the value of the forgetting gate at the current
cell, it ranges from 0 (completely forget) to 1 (completely
keep) and Wf ,Uf shows the network’s weights; bf shows
the value of the bias variable, ht−1 shows the prior hidden
value, whereas xt denotes the new input value at the current
cell. The state of the cell is then updated using the input gate.
This stage will involve two acts. First, we pass the previously
hidden state value (ht−1) to the input gate and the current
input value (xt ) is shown in a sigmoid function in Eq. (9).
The output of the input gate (it ) determines how much extra
information will be maintained in the current cell, where
0 denotes ‘‘totally disregard’’ and 1 denotes ‘‘completely
keep’’. Second, to aid with network regulation as stated in
Eq, we also provide the previous hidden state (ht−1) and the
current input (xt ) into tanh function Eq. (10). Similarly, when
it comes to the forget gate, there are some weights of the
networks and bias values involved in this step, as denoted by
Wi, Wc,Ui,Uc, bi, and bc.

it = (Wiht−1 + Uixt ), (9)

Ct = tanh(Wcht−1 + Ucxt + bc). (10)

The (current) cell state (Ct ) may now be calculated to the
information we currently have. The forget vector (ft ) will
be pointwise multiplied by the preceding cell state (Ct−1).
The output of the input gate (it ), which has been pointwise
multiplied with the cell candidate value (C̃), is then added to,
as given in Eq. (11).

Ct = ft ⊙ Ct−1 + it ⊙ C̃ . (11)

The output gate is used to determine the next hidden state
in the last step (i.e., the value of the current hidden state, h).
First, we use the sigmoid function as given in Eq to transmit
the previously hidden state value (ht−1) and current input
value (xt ) into the function (12). Here, Wo,Uo and bo are
the corresponding networks weights and bias values for the
output gate. The output of the tanh function is then pointwise
multiplied with the sigmoid output from the output gate (Ot ),
as described in Eq. (12), using the newly discovered cell state
(Ct ) as input Eq. (13). The result of this final step is the value
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FIGURE 1. The flow chart of the proposed model.

of the current hidden state (ht ), which is sent along with the
current cell state () to the following time step.

Ot = (Woht−1 + Uoxt + bo) (12)

ht = Ot ⊙ tanh(Ct ) (13)

D. EVALUATION
In this study, metrics are assessed using three different predic-
tion error criteria: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), andMean Absolute Percentage Error
(MAPE). The last one displays the level of inaccuracy in a
percentage number, whereas the first two display the error
level. As shown by Shahid et al in [37] and Hansun et al
in [36] and [38], All three of those requirements can be

stated as:

MAE =
1
n

∑n

t=1
|Yt−Ft| (14)

RMSE =

√
1
n

∑n

t=1
(Yt−Ft)2, (15)

MAPE =
1
n

∑n

t=1

|Yt − Ft|
Yt

. (16)

where n shows the total number of values, the actual value
is denoted by Yt , and Ft shows the predicted value. Next,
the Diebold Mariano statistic (DM) is used to compare the
performance of the two forecasting errors [39], [40] and is
defined as follows:

DM =
k̄√

Var(k̄)
, (17)
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FIGURE 2. Daily crude oil prices of the WTI market (Dollar per Barrel).

where k̄ =
1
t

∑n
t=1 kt , kt = (Yt − F1,t )2 − (Yt − F2,t )2,

Var
(
k̄
)

=
1
t (z0 + 2

∑k
n=1 zn) and zn = Cov(kt , kt−n).

F1,t signifies the first model predicted values, while F2,t
representing the second model’s predicted values.

III. EMPIRICAL ANALYSIS
A. STATISTICAL DESCRIPTION OF DATA
West Texas Intermediate (WTI) data from the U.S. Energy
InformationAdministration (EIA, http://www.eia.doe.gov) in
this study, as depicted in Figure 1. The datasets forWTI crude
oil fromMarch 12, 2018, to February 14, 2022, having a total
of size 999 samples were chosen. For forecasting accuracy,
the data is divided into 75/25 training and testing parts respec-
tively. The training part of a total of 749 samples comprised
from March 12, 2018, to February 23, 2021, and the testing
part of size 250 is from February 24, 2021, to February 14,
2022. A dramatic downward trend in the price of WTI can be
seen in Figure 1 graphical analysis up until 11 January 2022.
This is followed by another downward trend in the price of
WTI up until 11 May 2020, which was seen up until 30 May
2020. It is simple to spot a most pronounced upward trend
fromMay 12, 2020, to February 14, 2022. In contrast to other
months, the seasonal plot in Figure 2 demonstrates that the
annual variance is still minimal from January to May for year
2020 and from September to December for the year 2018.
PP and ADF statistics are shown in Table 1 demonstrating

the sequence is not stationary. Jarque-Bera (J-B) statistics,
however, indicate that the data is normal.

B. DATA DECOMPOSITION AND RECONSTRUCTION
This study proposed the reconstruction of PFs that are
obtained from LMD. PFs from LMD is separated into two
components, Deterministic and Stochastic. The stochastic
and Deterministic PFs are modeled separately, and different
models are selected for stochastic and deterministic compo-
nents, ARIMA and LSTM models are then fitted for every
stochastic and deterministic component all individual deter-
ministic PFs are then combined for final forecasting. Figure 3
illustrates the suggested method’s entire framework. WTI
price data is decomposed by LMD. For the LMD method,
The maximum number of generating function components is
20 and the maximum number of iterations is set to 30. The
decomposition results demonstrate WTI CO price sequence
is composed of three PFs and one residual.

The CO price sequence is divided into three PFs and a
residual series, with frequency changes from high to low and a
decreasing changing trend for the residual series, as shown in
the aforementioned Figure 3. Then, considering the different
influences of the decomposed PFs on the original series, the
PFs are reconstructed according to the mutual information
of each PF. AMI is also used to recreate the IMFs. AMI is
only a visual assessment of the plots that are produced for
each dataset’s PFs, as shown in Figure 3, From the second
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FIGURE 3. A seasonal plot of WTI from 2018-2022.

TABLE 2. ADF-test values for WTI, all PFs, and VPF.

PF to the fourth PF, the AMI plots are seen to follow the
same pattern, so the first four PFs are shown in Figure 4,
As a result, the first PF is regarded as stochastic, while the
rest are all deterministic. To create two components, add
from second to fourth as deterministic and the first PF for
stochastic. The Mutual information is calculated according
to Eq. (9), by adding all deterministic series new series is
formed called virtual product functions (VPF) is obtained and
displayed in Figure 5. Stochastic and deterministic graphs are
displayed in Figure 6.

Here, PF1 is considered to be a stochastic component,
while PF2, PF3, and PF4 are treated as deterministic. Stochas-
tic and deterministic (SD) components are treated separately
and then combined to make SD components.

1) ARIMA MODEL
The basic assumption to apply the ARMA model is the sta-
tionarity of the time series model. Successive differences are
taken to make time-series stationery [41], [42]. ADF test is
used to determine whether the time series is stationary [43].
After obtaining a stationary time series appropriate model

for the time series by choosing the AR and MA words in
the right order For selection, ACF and PACF plots of the
best order are employed. The Adam algorithm is used in
the Model for training and cross-validation. A 75:25 ratio
of data is designated for training and testing, accordingly.
Ljung-Box (LB) test is used for checking themodel adequacy.
Forecasting is done by fitting the ARIMA model to training
and testing periods. By fitting data with the ARIMA model,
we used R software. Figure 7 displays the residual of theWTI
ARIMA fitted model with ACF lag and Residual plot.

The first and second plot of the above figure shows that
residuals are uncorrelated, and data became stationary after
taking lag1. Whereas the final LB statistics figure demon-
strates that p-values are greater than 0.05 for all datasets [44].
A hypothesis shows no serial autocorrelation among the fitted
residual is not significant. So, All of these techniques can
offer the most accurate future projection. The forecasting
accuracy of the models is shown below.

PF1 and PF2 test thinks that the residuals are distributed
normally, and the series is stationary. However, PF3, PF4, and
VPF need to be differenced. PF3 and PF4 have a difference
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FIGURE 4. The PFs and residual plots for the WTI Crude oil price by LMD.

FIGURE 5. Average mutual information (AMI) Plots for PFs.

of order 2 and the difference order number of VPF is 1.
Table 3 Box test results indicate that the p-value is greater
than 0.05. This amount exceeds 0.05 as a significance level
and hence the hypothesis that the residuals are white noise
could not be rejected. Accept the supposition that there is
no residual autocorrelation. ARIMA is successfully estab-
lished. All four PFs are fitted for the LMD-ARIMA model
whereas PF1 (stochastic component) and VPF(deterministic
component) are added and fitted for the LMD-SD-ARIMA
model.

2) STACK-LSTM
The residual of LMD-ARIMA and LD-SD-ARIMA is pro-
cessed in a hybrid stack LSTM model for forecasting. In this
technique output of the LSTM layer becomes the sequence
of vectors to be used as an input to the subsequent LSTM
layer. It has been seen in the Figure 8 input layers are
used again in the second layer and multiple hidden layers
are stacked one on top of another hidden layer. A three-
dimensional input layer is required for the LSTM layer.
RETURN_SEQUENCE=TRUE enables using the buried
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FIGURE 6. Stochastic and deterministic components plots.

FIGURE 7. ARIMA Fitted model for WTI.

LSTM layer’s 3D results as the next layer’s input. It makes
the model deeper and more accurate as a deep learning
technique. M networks are made up of many LSTM hid-
den layers. A Deep Recurrent Neural Network is formed
by several hidden layers (DRNN). Iterative weight updat-
ing utilizing training data is crucial for training the LSTM
network. The stochastic gradient descent approach employs
the Adaptive Movement Estimation (Adam) algorithm for
weight updating [45]. For constructing and training the
LSTMmodel Keras neural network API [46] uses Tensorflow
and [47] developed Tensorflow library written in Python. For

numerical calculations, Tensorflow is employed as a machine
learning framework. In contrast, Keras has a steep learn-
ing curve. Together, they deepen and improve the model’s
accuracy.

In this paper, in our dataset, we represent each trading
day of every month as a 1 × 20 input vector, where the
number of features we would use in prediction is 20. The 3D
vector forms the shape (W →| l →| f), where W represents
the number of windows, l shows the length of a window,
and f denotes the number of features, which is built in order
to make output calculation easier. A maximum number of
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TABLE 3. Accuracy measures of All PFs, VPF, and WTI crude oil prices.

FIGURE 8. Stacked LSTM model.

neurons (2∗k+1) is selected to define the number of hidden
layers, where k represents a number of inputs as the authors
in [48] also show three layers make up the LSTMmodel: one
layer followed by two hidden layers, and one dense layer. The
first hidden layer’s output is connected to a second hidden
layer, the third hidden layer, which is then coupled to a dense
layer. Figure 9 depicts the relationship between each layer.
After taking each hidden layer, for reducing the chance of
overfitting dropouts are utilized. The authors in [49] define
LSTM layers with trainable and non-trainable parameters as
we generated in Table 4.

Hyperparameters that will increase accuracy and reduce
the chance of overfitting the data are chosen [49]. The overfit-
ting drop-out technique, which randomly selects cells within
a layer based on the probability in such a way that their
output is set to 0, is used to reduce overfitting as developed
by Srivastava et al [50]. As a result, the ideal dropout is
chosen at 30%, which gives the lowest MSE. Epoch was
selected to 100 while performing this test, with one epoch
equaling one iteration of all training data that was processed

FIGURE 9. LSTM layers.

by the network in [51]. Each layer’s LSTM cells were
programmed to have the following values: 41, 41, 64, 1,
decay to 0.2, and window length to 22. We divided the
training data into a batch size, with a batch size of 32,
to facilitate the propagation of the training data across the
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TABLE 4. LSTM layers and Parameters (Model: ‘‘sequential’’).

FIGURE 10. Validation plots for proposed models.

network. This indicates that the network is trained using the
first 31 examples (0–31) from the training data, followed
by the subsequent 31 samples (32–63). One epoch has been
transmitted through the network once all samples have been
propagated through it, hence the epoch continues until that
happens [49].

In order to hasten learning, the loss function is used to
calculate the difference between the desired output and the
LSTM model output during the training. User-specified vali-
dation data, which we have defined to be 10% of the training
data, is what we want as the output. We have taken the
MSE as a loss function because it is frequently utilized for
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TABLE 5. Prediction Accuracies of WTI.

FIGURE 11. LSTM model fitting for LMD-SD-ARIMA residual model.

forecasting the time series [52]. We utilized the optimizer
Adam to construct the LSTMmodel due to its superior results
and quick convergence when other optimizers are compared,
the authors in [49] gave advised us to utilize it as default.
We take the decay as 0.3 while using optimizer Adam. With
the dropout set to 30% and the optimizer Adam’s decay set
to 0.3, Figure 10 depicts the validation loss and training of
our LSTM model by using the best hyperparameter setting.
Figure 10 shows that the model and data are most closely
matched and that theMSE loss reduces with increasing epoch
values.

IV. RESULTS AND DISCUSSIONS
The proposed new hybrid forecasting model LMD-SD-
ARIMA-LSTM, which is compared with the ARIMA,
LSTM, LMD-ARIMA, LMD-SD-ARIMA, LMD-ARIMA-
LSTM methods for predicting the CO price of WTI. Root
mean square error (RMSE), Mean absolute error (MAE), and

mean absolute percentage error (MAPE), all are used to cal-
culate WTI data and to evaluate the efficiency of the model.
Table 5 provides an overview of each model’s performance
accuracy.

In comparison to other models, the hybrid LMD-SD-
ARIMA-LSTM achieved the lowest RMSE of 0.150; as
a result, this technique is useful for predicting the price
of crude oil. Second, for the conventional econometric
model, accuracy measurements of the individual model
(i.e., ARIMA) and decomposition-ensemble models (i.e.,
LMD-ARIMA and LMD-ARIMA-LSTM) are compared,
and the accuracy of the latter is lower than the former
in forecasting. However, for the machine learning model,
the three accuracy measures of the individual model (i.e.
LSTM) and decomposition-ensemble models (i.e. LMD-
ARIMA-LSTM and LMD-SD-ARIMA-LSTM) are com-
pared, Decomposition-ensemble models’ accuracy metrics
are lower than those of an individual model. It shows that
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FIGURE 12. Accuracy measures of the hybrid model with other models.

FIGURE 13. The plot of the forecasting results of all models.

after decomposition and reconstruction, the performance of
the conventional econometric model for predicting oil prices

can be improved. LSTM model fitting of the LMD-ARIMA
and LMD-SD-ARIMA residual model is shown in Figure 11.
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FIGURE 14. The plot of the forecasting results of all models.

FIGURE 15. Graphical comparison of MAE WTI oil price forecast.

The predicting results of seven separate individual models for
WTI crude oil price data are shown in Figure 12 as relative
error histograms.

Twenty days of forecasting results for all seven models are
shown in Figure 13 which are compared with 20 days of orig-
inal WTI oil prices from 15th Feb 2022 to 15th March 2022.

Moreover, Table 6, shows that all the models are signifi-
cantly different from each other.

Figures 14 and 15 compare the proposed model’s errors to
those of the other models and provide a graphic comparison
of the results of oil price forecasts using all sevenmodels. The
forecasting performance of LMD-SD-ARIMA-LSTM is the
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TABLE 6. Diebold Mariano test for WTI Forecasting results using all selected models.

FIGURE 16. Five days ahead forecasting plot.

best, as shown by the three figures. Additionally, compared to
the short- and medium-term forecast, the LMD-SD-ARIMA-
LSTM technique performs better in the long-term forecast.

For improved presentation, actual data is now compared
with the function that divides up each five-day forecast.
For the testing data set, the original residuals and predicted
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FIGURE 17. Accuracy measures at each step.

values five days ahead are compared and presented in
Figure 16.

The average error for each step is analyzed separately.
Usually, the tendency of RMSE decreases according to
the extrapolated periods due to uncertainties. As predicted,
at each step the tendency of RMSE decreases. As in 1st step,
we got RMSE is 0.1504, for the second step it decreases to
0.1272 and it continues to decrease till it reaches 0.0001 for
five-step ahead.

The RMSE for all five steps is presented in Figure 17.

V. CONCLUSION
Crude oil is one of the non-renewable power sources and is
the lifeblood of contemporary industry. The stability of the
global economicmarket benefits from accurate crude oil price
forecasting. The LMD-SD-ARIMA-LSTM hybrid prediction
approach, which is discussed in this study, is based on the
LMD, ARIMA, and LSTM methodologies. The proposed
hybrid technique is validated using the WTI CO prices. This
study decrease the efforts by collecting the stationary and
non-stationary IMFs into stochastic and deterministic com-
ponents with improved accuracy. The investigation demon-
strates, in comparison to the other five approaches, the novel
hybrid method significantly increases the prediction accuracy
of the CO price. Additionally, the results demonstrate that
the conventional econometric model can enhance oil price
prediction accuracy following decomposition and reconstruc-
tion. Moreover, the new hybrid forecasting system performs
better when predicting the price of CO over the medium
and long term. Meanwhile, accurate predictions can provide
reasonable advice for relevant departments in order to make
correct decisions.

A. LIMITATIONS OF THE STUDY
In this study, we only used the univariate time series
data.

B. FUTURE RECOMMENDATIONS
The current study can be extended using LSTM based on
EEMD and other decompositions methods.Moreover, we can
extend the current study into the bivariate and multivariate
data.

In the future, some other traditional econometric fore-
casting models and other machine learning methods will
be explored and studied. The factors influencing crude oil
prices will also be taken into account, and it will be further
investigated to see if the novel hybrid forecasting approach is
appropriate for multi-variate forecasting of crude oil prices.
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