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ABSTRACT In this paper, we propose a design support tool set for interface circuits between synchronous
and asynchronous modules. To facilitate the design of interface circuits between synchronous and asyn-
chronous modules, the proposed tool set generates interface circuits and design constraints based on a
predefined communication scheme. In addition, the proposed tool set performs timing verification and delay
adjustment to guarantee the operations of the generated interface circuits. In the experiment, we evaluated the
latency and overhead of the generated interface circuits. The latency and handshake overhead of the interface
circuits generated by the proposed tool set depend on the cycle time of the receiver module. In addition,
we designed a system which consists of a synchronous RISC-V processor and an asynchronous multilayer
perceptron (MLP) circuit using the proposed tool set. The energy consumption of the system was reduced
by 34.0% compared with a system which uses a synchronous MLP circuit.

INDEX TERMS Interface circuits, asynchronous circuits, design automation, low power.

I. INTRODUCTION
Most digital systems are designed based on the concept of
System-on-a-Chip (SoC). SoCs are composed of several cir-
cuits such as microprocessors, memories, specific circuits,
and so on. When these circuits are controlled by a clock
signal, the power consumption of the clock network becomes
high because the clock signal is distributed to the whole area.
On the other hand, these circuits are often controlled by differ-
ent clock signals. In such a case, synchronizers are required
to reduce the metastability problem between different timing
modules.

To solve these problems, Globally Asynchronous Locally
Synchronous (GALS) was proposed in [1]. GALS systems
are composed of several local synchronous modules. Each
local module is controlled by an independent clock signal
and communicated with other local modules asynchronously.
However, interface circuits such as a two-flop synchro-

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

nizer [2] and [3] are required to guarantee asynchronous
communications between local synchronous modules.

Asynchronous circuits will be used instead of synchronous
modules to reduce power consumption. Compared with syn-
chronous circuits, asynchronous circuits have low power
consumption because circuit components are controlled by
local handshake signals instead of clock signals. When
asynchronous circuits are communicated with synchronous
circuits, interface circuits are also required between syn-
chronous and asynchronous modules.

To guarantee asynchronous communications between syn-
chronous and asynchronous modules, interface circuits based
on handshake protocols were proposed in [4], [5], and [6].
In the interface circuits, local clock signals to write data to
the internal registers of the interface circuits are generated
using handshake signals. However, to guarantee the timing
for writing data to the registers, the generation timings for the
local clock signals must be adjusted by referring to the timing
constraints for each register. In addition, design constraints
are required for the interface circuits to satisfy the required
performance and to transfer data correctly.
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Interface circuits designed in [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], and [16] use a design flow with
commercial electronic design automation (EDA) tools for
synchronous circuits. As commercial EDA tools do not intend
the design of asynchronous circuits, design processes which
are not supported by commercial EDA tools are performed
by specific tools or hands.

In this paper, we propose a design support tool set for
interface circuits between synchronous and asynchronous
modules. The design target is the interface circuits described
in [6]. The proposed tool set generates register transfer level
(RTL) models with design constraints for the interface cir-
cuits. In addition, the proposed tool set performs timing veri-
fication and delay adjustment to satisfy the timing constraints
of the interface circuits. The contributions of this paper are as
follows.

• Using the proposed tool set, we can design interface cir-
cuits between synchronous and asynchronous modules
automatically.

• The proposed tool set can be integrated into the general
design flow due to the use of commercial EDA tools.

We expect that the proposed tool set enables the integration
of asynchronous circuits into SoC designs. For example, there
are many SoC designs including a synchronous CPU, syn-
chronous hard-wired logics such as accelerators, and so on.
When the synchronous hard-wired logics are always running,
the power consumption of the SoC designs becomes high.
We expect that the power consumption of the SoC designs can
be reduced by converting the synchronous hard-wired logics
to asynchronous ones and connecting the synchronous CPU
and the asynchronous hard-wired logics through the interface
circuits generated by the proposed tool set.

The rest of this paper is organized as follows. Sec-
tion II describes related work. Section III describes asyn-
chronous circuits with bundled-data implementation. Sec-
tion IV describes the target interface circuits. Section V
describes the proposed tool set for the design of interface
circuits between synchronous and asynchronous modules.
Section VI describes the experimental results. Finally, sec-
tion VII describes the conclusion and future work.

II. RELATED WORK
Several design methods for interface circuits were proposed
to transfer data between modules with different timings.
On the other hand, to design asynchronous circuits using
commercial EDA tools, design methods based on the design
flow for synchronous circuits were proposed. In this section,
we describe the differences between these methods and our
proposed method.

To communicate between modules with different timings,
several design methods for interface circuits were proposed
in [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], and [16]. We describe those design methods for
interface circuits and describe the differences between those
methods and our proposed method.

For the communication between synchronous circuits with
different timing signals, a two-flop synchronizer is well used
(e.g., [2] and [3]). The two-flop synchronizer has a simple
structure and reduces the metastability problem.

References [7], [8], [9] proposed an interface circuit based
on handshake signals to transfer data between local syn-
chronous modules in GALS systems. In [7], an interface
circuit is designed using a pausible clock [17]. The pausible
clock is based on an on-chip ring oscillator to pause the clock
signal. In [8] and [9], to reduce the power consumption of
interface circuits, clock gating is applied to interface circuits.
In [7], [8], [9], controllers of the interface circuits are synthe-
sized by specific tools such as 3D Tool [18] and Petrify [19].

References [10] and [11] proposed an interface circuit
based on FIFOs to transfer data between local synchronous
modules in GALS systems. The interface circuits consist of
FIFOs and FIFO controllers. In each FIFO controller, a clock
signal is generated using a mutual exclusion element (arbiter)
and C-element [20].

Compared with [2], [3], and [7], [8], [9], [10], [11] where
the target is the interface circuit between synchronous mod-
ules, we focus on the interface circuit between synchronous
and asynchronous modules.We are going to reduce the power
consumption of a system by using asynchronous modules.

References [12], [13], [14], [15], [16] proposed FIFOs to
transfer data between synchronous and asynchronous mod-
ules. For each pipeline stage in the FIFOs, data are writ-
ten to register using full/empty signals, read/write signals,
handshake signals, or a clock signal. In [12], [13], [14], [15],
[16], the FIFOs are synthesized using commercial EDA tools.
Moreover, in [15], controllers of the FIFOs are synthesized
by specific tools such as Petrify and Minimalist [21]. In [16],
a design framework is provided to synthesize the FIFOs.
However, the control circuits of the FIFOs are complex
because the decision of memory addresses and the generation
of full/empty or read/write signals are required. Compared
with [12], [13], [14], [15], [16], we focus on the interface cir-
cuit based on handshake protocols. The interface circuit based
on handshake protocols has a simple structure compared with
the interface circuit based on FIFOs.

References [4], [5], [6] proposed an interface circuit based
on handshake protocols to transfer data between synchronous
and asynchronous modules. In [4], registers that are con-
trolled by clock signals and handshake signals are used to sup-
port the coherent communication of multi-bit data between
synchronous and asynchronous modules. In [5], interface
circuits based on the two-flop synchronizer are designed to
transfer data between synchronous and asynchronous mod-
ules. In [6], interface circuits using the two-flop synchronizer
and Click Element [22] are used to communicate between
synchronous and asynchronous modules. Compared with [4],
[5], [6], the target of this paper is to support the design
of interface circuits between synchronous and asynchronous
modules by the proposed tool set.

To make the design of asynchronous circuits easy, several
design methods based on the design flow with commercial
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EDA tools for synchronous circuits were proposed in [23],
[24], [25], [26], [27], [28], [29] and [30]. We describe those
design methods for asynchronous circuits and describe the
differences between thosemethods and our proposedmethod.

References [23], [24], [25], [26] proposed a conversion
method from synchronous circuits to asynchronous circuits
with bundled-data implementation. In [23], [24], [25], DFFs
in synchronous gate level (GL) netlists synthesized by a com-
mercial synthesis tool are replaced into master-slave latches
with corresponding latch controllers. In [26], for synchronous
RTL models generated by a high-level synthesis (HLS) tool,
the clock signal of registers is replaced to the local clock
signals from asynchronous control modules.

References [27] and [28] proposed a design flow for
asynchronous circuits from a high-level language. In [27],
asynchronous GL netlists are generated fromCommunicating
Sequential Processes (CSP)models using a design flow called
Proteus. In, [28], asynchronous circuits are generated from a
high-level language called Haste using a design flow called
TiDE.

References [29] and [30] proposed a design flow for
asynchronous circuits on Field Programmable Gate Arrays
(FPGAs). In [29], delay constraints for asynchronous circuits
are generated by a developed tool. In addition, the timing
for writing data to registers is guaranteed by a developed
tool. In [30], placement constraints for asynchronous circuits
are generated to reduce the number of delay adjustments by
fixing the placement of asynchronous control modules.

Compared with [23], [24], [25], [26], [27], [28], [29], [30],
the target of this paper is the design support for interface
circuits between synchronous and asynchronous modules.
The proposed tool set generates RTL models with delay and
placement constraints for the interface circuits. Moreover, the
proposed tool set adjusts the timing for writing data to the
internal registers in the generated interface circuits.

III. ASYNCHRONOUS CIRCUITS WITH BUNDLED-DATA
IMPLEMENTATION USING CLICK ELEMENTS
Bundled-data implementation is one of the data encoding
schemes in asynchronous circuits. In bundled-data imple-
mentation, N -bit signals are represented by N + 2 signals.
Additional two signals correspond to local handshake signals;
the request signal req and the acknowledgment signal ack .
The timing for writing data to registers is guaranteed by delay
elements on req and ack .

In bundled-data implementation, there are two handshake
protocols. From here, we represent a rising transition of a sig-
nal as signal+ and a falling transition of a signal as signal−.
One is the two-phase handshake protocol in which only two
signal transitions (req+ and ack+ or req− and ack−) are
used to transfer data. Another is the four-phase handshake
protocol in which four signal transitions (req+, ack+, req−,
and ack+) are used to transfer data.
In this work, we use Click Element [22] to control asyn-

chronous modules. Click Element is one of the control tem-
plates used in the design of bundled-data implementation.

FIGURE 1. Asynchronous circuits with bundled-data implementation
using Click Elements: (a) circuit model and (b) timing diagram of ctrli .

Click Elements are implemented as a data-driven two-phase
handshake protocol.

A. CIRCUIT MODEL
Figure 1(a) shows the circuit model of bundled-data imple-
mentation using Click Elements. This circuit model consists
of a data-path circuit and a control circuit. The data-path cir-
cuit is the same as the one used in synchronous circuits. The
control circuit consists of control modules ctrli (0≤i≤n− 1)
assigned for each pipeline stage stagei.
ctrli consists of a Click Element, a delay element sdi to

satisfy the setup constraint of registers, and a delay element
hdi to satisfy the hold constraint of registers. The Click Ele-
ment consists of a D Flip-Flop (DFF) DFFi and a logic that
generates a local clock signal lclki.
ctrli starts its operation when reqi+ arrives at ctrli. reqi+

generates lclki+ through sdi. Then, lclki+ controls DFFi
in ctrli and registers regk in the data-path circuit. After the
control of DFFi and regk , DFFi generates acki+ to pass
the control to ctrli+1. In addition, acki+ arrives at ctrli−1
through hdi to acknowledge that the operation of ctrli is
completed. Note that the behavior of ctrli for reqi− is the
same as the behavior of ctrli for reqi+. Figure 1(b) shows the
timing diagram of ctrli. Red arrows represent the generation
of lclki+ from reqi− and acki+1+.

B. TIMING CONSTRAINTS
In bundled-data implementation, it is necessary to satisfy
setup, hold, branch, and pulse width constraints to operate
the circuit correctly. The detail of the timing constraints is
described in [29] and [30]. In this sub-section, we describe
the setup and hold constraints. We introduce p (0≤p≤m− 1)
which represents the identifier of paths.

1) SETUP CONSTRAINT
The input data for regk must be stable before the setup
time to write the input data to regk . This is called the setup
constraint for regk . Figure 2(a) shows paths related to the
setup constraint for regk . sdpi,p represents a data-path from
lclki−1 to the destination register regk through the source
register regk−1. In contrast, scpi,p represents a control-path
from lclki−1 to regk through sdi. We define the maximum
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FIGURE 2. Paths related to timing constraints: (a) setup and (b) hold
constraints.

delay of sdpi,p as tmaxsdpi,p , the minimum delay of scpi,p as
tminscpi,p , the margin for tmaxsdpi,p as tsdpmi,p , and the setup time
of regk as tsetupi,p . The setup constraint can be represented by
the following inequality.

tminscpi,p > tmaxsdpi,p + tsdpmi,p + tsetupi,p (1)

If this setup constraint is violated, we must adjust the number
of cells in sdi.

2) HOLD CONSTRAINT
The data must be stable for the hold time after the next input
data are written to regk . This is called the hold constraint for
regk . Figure 2(b) shows paths related to the hold constraint
for regk . hdpi,p represents a data-path from lclki to the desti-
nation register regk through hdi. In contrast, hcpi,p represents
a control-path from lclki to regk . We define the minimum
delay of hdpi,p as tminhdpi,p , the maximum delay of hcpi,p as
tmaxhcpi,p , the margin for tmaxhcpi,p as thcpmi,p , and the hold time
of regk as tholdi,p . The hold constraint can be represented by
the following inequality.

tminhdpi,p > tmaxhcpi,p + thcpmi,p + tholdi,p (2)

If this hold constraint is violated, we must adjust the number
of cells in hdi.

C. GLOBAL CYCLE TIME
To evaluate the performance of bundled-data implementation,
a local cycle time (lct) and a global cycle time (gct) are
defined in [6]. lcti is the maximum delay of control-paths for
ctrli corresponding to stagei. gct is the maximum value of
lcti.
lcti is obtained by the following equation.

lcti = max(tmaxscpi,0 − tmaxdpi,0 ,

· · · , tmaxscpi,m−1 − tmaxdpi,m−1) (3)

FIGURE 3. Interface circuits: (a) StoA circuit and (b) AtoS circuit.

tmaxdpi,p represents the maximum delay of sdpi,p except for
the maximum path delay from the source register to the
destination register.

IV. INTERFACE CIRCUITS BETWEEN SYNCHRONOUS AND
ASYNCHRONOUS MODULES
In this paper, the design target of the proposed tool set is two
interface circuits described in [6]. One is the StoA circuit to
transfer data from a local synchronous module (LS) to a local
asynchronous module (LA). Another is the AtoS circuit to
transfer data from an LA to an LS.
The StoA and AtoS circuits consist of two interfaces called

the synchronous interface and the asynchronous interface.
The synchronous interface is controlled by the four-phase
handshake protocol. In contrast, the asynchronous interface
is controlled by the two-phase handshake protocol.

Figure 3 shows the StoA and AtoS circuits in [6]. The syn-
chronous interface consists of a finite state machine (FSM)
Sfsm, a register Sreg, a two-flop synchronizer (A1 and A2 or
R1 and R2), and other components such as an XOR gate and a
multiplexer. The two-flop synchronizer is used to receive acki
which is an asynchronous input. In contrast, the asynchronous
interface consists of ctrli based on the Click Element and a
registerAreg. In the asynchronous interface, any synchronizer
is not required for reqi because the timing for writing data to
Areg is guaranteed by sdi.
The behavior of the StoA circuit is as follows. The StoA

circuit starts its operation when Sreq+ from LS arrives at
Sfsm. Sreq+ controls Sreg. Then, to acknowledge that DATA
is written to Sreg, Sfsm controls the multiplexer to generate
Sack+. Sfsm also generates reqi+ to transfer data from Sreg
to Areg. After the generation of reqi+, lclki+ is generated
from reqi+ through sdi. Then, lclki+ controls DFFi and
Areg. After the control of DFFi and Areg, DFFi generates
acki+ and Areq+ to pass the control to LA. acki+ arrives
at the two-flop synchronizer (A1 and A2) through hdi to
acknowledge that the operation of the asynchronous interface
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is completed. Finally, to acknowledge that the operation of
the synchronous interface is completed, Sfsm controls the
multiplexer to generate Sack− using the output of A2 when
Sreq− from LS arrives at Sfsm.
In contrast, the behavior of the AtoS circuit is as follows.

The AtoS circuit starts its operation when Areq+ from LA
arrives at ctrli. Areq+ generates lclki+ through sdi. Then,
lclki+ controlsDFFi and Areg. After the control ofDFFi and
Areg, DFFi generates Aack+ and reqi+1+ to pass the control
to Sfsm. Aack+ arrives at LA through hdi to acknowledge
that the operation of the asynchronous interface is completed.
reqi+1+ arrives at the two-flop synchronizer (R1 and R2)
through sdi+1 to transfer data from Areg to Sreg. The output
of R2 controls Sreg and Sfsm. Then, Sfsm generates Sreq+ to
pass the control to LS. When Sack+ from LS arrives at Sfsm,
Sfsm generates Sreq− and acki+1+ to acknowledge that the
operation of the synchronous interface is completed.

V. PROPOSED TOOL SET
In this paper, we propose a design support tool set for the
interface circuits described in Sect. IV. Currently, the pro-
posed tool set aims to implement the interface circuits on Intel
FPGAs. The proposed tool set is based on the approaches
for implementing asynchronous circuits on FPGAs described
in [29] and [30]. Note that it is not difficult to adapt the
proposed tool set to Xilinx FPGAs and Application Specific
Integrated Circuits (ASICs) because we can replace RTL
models and design constraints for Intel FPGAs with those for
Xilinx FPGAs and ASICs. This extension is our future work.

FPGAs are reconfigurable devices whose circuit structures
can be changed freely. Recently, FPGAs are used in many
fields such as the Internet of Things (IoT) and deep learning
because the design cost is low and the product life cycle is
long compared with ASICs. In addition, since there are exam-
ples of asynchronous circuits implemented on FPGAs in [29]
and [30], a design support tool set for interface circuits is
also required according to the consideration of the connection
between synchronous and asynchronous circuits in FPGAs.
From the above, in this paper, we focus on FPGAs instead of
ASICs.

A. OVERVIEW
Figure 4 shows the flow of the proposed tool set. To integrate
the proposed tool set into the design flow for synchronous
circuits, we use commercial EDA tools for compilation, static
timing analysis (STA), verification, and evaluation. On the
other hand, the processes which are not supported by com-
mercial EDA tools are carried out by the proposed tool set.
We support the generation of RTLmodels, design constraints,
and STA commands for interface circuits. In addition, we sup-
port timing verification and delay adjustment.

As inputs of the proposed tool set, we use Extensible
Markup Language (XML) files because XML can freely
define tags according to the content of data. The XML
files are prepared from synchronous and asynchronous RTL
models. The XML files include the design parameters and

FIGURE 4. Flow of proposed tool set.

the path information between synchronous and asynchronous
modules. The detail of XML files is described in Sect. V-B.

After the preparation of the XML files, the proposed tool
set generates RTL models and design constraints for the
interface circuits from the XML files. ModelGenerator gen-
erates RTL models for the interface circuits. ConstGenerator
generates delay constraints to satisfy the performance and
placement constraints to fix the placement of the interface
circuits on the target FPGA.

Then, we perform compilation and STA using commercial
EDA tools. The compilation is performed for the RTLmodels
of synchronous modules, asynchronous modules, and inter-
face circuits using the generated design constraints. After the
compilation, RepTimingGenerator generates STA commands
to analyze path delays in the interface circuits. The STA is
performed by a commercial EDA tool using the generated
STA commands.

Finally, we perform timing verification and delay adjust-
ment. TimingChecker checks whether there are timing
violations in the interface circuits or not. If there are timing
violations, DelayAdjuster adjusts the delays of delay ele-
ments to satisfy the timing constraints of the interface circuits.

B. INPUTS OF THE PROPOSED TOOL SET
Interface circuits are required to connect LS with LA. In this
work, three kinds of XMLs are needed for the proposed
tool set to synthesize the interface circuits automatically.
The three XMLs are called Config-XML, Param-XML, and
Path-XML, respectively. We prepare the Param-XML and
Path-XML from synchronous and asynchronous RTLmodels
manually. Figure 5 shows examples of Config-XML, Param-
XML, and Path-XML. Arrows represent the dependencies
between RTL models and XMLs.

1) CONFIG-XML
The Config-XML represents parameters for the generation
of design constraints for the interface circuits as shown in
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Fig. 5(a). ⟨delayconst⟩ represents whether delay constraints
for the interface circuits are generated or not. ⟨placeconst⟩
represents whether placement constraints for the interface
circuits are generated or not. The details of the generation of
delay and placement constraints are described in Sect. V-D.

2) PARAM-XML
The Param-XML represents parameters for the generation of
RTL models and design constraints for the interface circuits
as shown in Fig. 5(b) and (d). Figure 5(b) is for the StoA
circuit while Fig. 5(d) is for the AtoS circuit.

In the Param-XML, ⟨StoA⟩ and ⟨AtoS⟩ represent param-
eters for StoA and AtoS circuits. ⟨StoA⟩ and ⟨AtoS⟩ are
prepared from synchronous and asynchronous RTL models.
⟨sync⟩ and ⟨async⟩ represent parameters for the synchronous
interface and the asynchronous interface.

We explain the preparation of ⟨StoA⟩ in the Param-XML
using Fig. 5(b). We assume that LS sends reg0out using
the request signal s2aSreq and the acknowledgment signal
s2aSack while LA receives reg0out using the request signal
a2sAreq and the acknowledgment signal a2sAack . Therefore,
an StoA circuit is expected to send reg0out from LS to LA.
In ⟨sync⟩, a request signal name, an acknowledgment signal
name, a clock signal name, and the clock cycle time are
specified in ‘‘Sreq’’, ‘‘Sack’’, ‘‘Sclk’’, and ‘‘Sct’’. In this
example, those are s2aSreq, a2sSack , clock1, and 18 ns,
respectively. In ⟨async⟩, a request signal name, an acknowl-
edgment signal name, and a global cycle time are specified
in ‘‘Areq’’, ‘‘Aack’’, and ‘‘Agct’’. In this example, those are
s2aAreq, s2aAack , and 8 ns, respectively.

⟨const⟩ in the Param-XML represents parameters for
design constraints of StoA andAtoS circuits. ⟨delayconst⟩ and
⟨placeconst⟩ represent parameters for delay and placement
constraints. In ⟨delayconst⟩, the target gct and the ratio of the
gct are specified in ‘‘Tgct’’ and ‘‘crmax’’. In ⟨placeconst⟩,
whether placement constraints are applied to the top module,
synchronous interface, asynchronous interface, ctrli, Sfsm,
and register are specified in ‘‘top’’, ‘‘sync’’, ‘‘async’’, ‘‘ctrl’’,
‘‘fsm’’, and ‘‘reg’’. ⟨margin⟩ represents margins for the tim-
ing constraints. In ⟨margin⟩, a control-path margin for the
setup constraints, a data-path margin for the setup constraints,
a control-path margin for the hold constraints, and a data-path
margin for the hold constraints are specified in ‘‘scpm’’,
‘‘sdpm’’, ‘‘hcpm’’, and ‘‘hdpm’’. ⟨ctrdelay⟩, ⟨pathratio⟩, and
⟨delement⟩ represent parameters for control-path delays in
ctrli, ratios of control-path delays in ctrli, and cell information
used as delay elements, respectively.

3) PATH-XML
The Path-XML represents the path information between LS
and LA as shown in Fig. 5(c) and (e). Figure 5(c) is for the
StoA circuit while Fig. 5(e) is for the AtoS circuit. The Path-
XML is used to generate RTLmodels, design constraints, and
STA commands for the interface circuits.

In the Path-XML, ⟨StoA⟩ or ⟨AtoS⟩ represent the path
information from LS to LA or LA to LS. ⟨StoA⟩ and ⟨AtoS⟩ are

FIGURE 5. Inputs of proposed tool set: (a) Config-XML, (b) Param-XML for
StoA circuit, (c) Path-XML for StoA circuit, (d) Param-XML for AtoS circuit,
and (e) Path-XML for AtoS circuit.

prepared from synchronous and asynchronous RTL models.
⟨hierarchy⟩ represents the hierarchical structures of LS and
LA. ⟨path⟩ represents a path between LS and LA.
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We explain the preparation of ⟨StoA⟩ in the Path-XML
using Fig. 5(c). LS sends reg0out from reg0 and LA receives
reg0out to reg1. We assume that the bit-width of reg0out
is 32. reg0 is controlled by clock1 while reg1 is controlled
by lclk1 from ctrl1. In ⟨hierarchy⟩, parent hierarchies for the
register of LS, the register of LA, and the control module of LA
are specified in ‘‘Sreg’’, ‘‘Areg’’, and ‘‘Actrl’’. In this exam-
ple, those are LS, LS, and LA, respectively. In ⟨path⟩, a source
register, its bit width, its controller, a wire name, its bit width,
a destination register, its bit width, and its controller are
specified in ‘‘sname’’, ‘‘sbit’’, ‘‘sctrl’’, ‘‘wname’’, ‘‘wbit’’,
‘‘dname’’, ‘‘dbit’’, and ‘‘dctrl’’. In this example, those are
reg0, 32, clock1, reg0out , 32, reg1, 32, and ctrl1, respectively.

C. MODELGENERATOR
ModelGenerator generates RTL models for StoA and AtoS
circuits by referring to the Param-XML and Path-XML. The
RTL models are specified by Verilog Hardware Description
Language (HDL).

First, ModelGenerator generates an StoA or AtoS circuit.
ModelGenerator obtains a module name from ‘‘name’’ of
⟨StoA⟩ or ⟨AtoS⟩ in the Param-XML. ModelGenerator gen-
erates registers by obtaining the number of transfer data
from the Path-XML. ModelGenerator obtains the number of
transfer data by counting the number of paths with differ-
ent ‘‘sname’’ of ⟨path⟩ in the Path-XML. ModelGenerator
obtains the bit-width for ‘‘sname’’ by referring to ‘‘sbit’’
of ⟨path⟩ in the Path-XML. In addition, ModelGenerator
generates controllers (Sfsm and ctrli) and other components.
The controllers are predesigned as a template.

Next,ModelGenerator decides the number of cells in delay
elements (sdi) initially using the following equation.

numsdi = ⌈(gct − tpreqlclk )/tcell⌉ (4)

where numsdi represents the number of cells in delay ele-
ments, gct represents the global cycle time, tpreqlclk represents
the delay from DFFi−1 to lclki, and tcell represents the delay
of the cell used as the delay element. gct , tpreqlclk , and tcell
are obtained by referring to ‘‘Agct’’ of ⟨async⟩, ‘‘value’’ of
⟨ctrdelay⟩, and ‘‘delay’’ of ⟨delement⟩ in the Param-XML.
In addition,ModelGenerator generates hdi using ‘‘assign’’

statements initially. This is because cells in hdi are not
required if there are no hold violations.

To implement delay elements, ModelGenerator generates
primitive cells by referring to ‘‘name’’, ‘‘in’’, and ‘‘out’’ of
⟨delement⟩ in the Param-XML. Basically, ModelGenerator
uses inverters for the delay elements to reduce the difference
between the delays of the rising and falling transitions of a
signal. If num is an odd number, a buffer is used as the last
one of the delay elements. In addition,ModelGenerator uses
the ‘‘synthesis keep’’ attribute for Intel FPGAs to prevent the
optimization of the generated primitive cells.

Finally, ModelGenerator instantiates the generated StoA
or AtoS circuit. Then, ModelGenerator connects LS with LA
through the generated StoA or AtoS circuit using wire names

FIGURE 6. Example of RTL model for StoA circuit.

‘‘Sreq’’, ‘‘Sack’’, ‘‘Areq’’, and ‘‘Aack’’ of ⟨StoA⟩ or ⟨AtoS⟩

in the Param-XML.
Figure 6 shows the generated RTL model for the StoA

circuit from the Param-XML and Path-XML in Fig. 5. The
32-bit registers Sreg0 and Areg0 are generated by referring
to ⟨path⟩ in ⟨StoA⟩. Then, the controllers Sfsm and ctrl0
and other components are generated. Moreover, 10 inverters
(NOT ) in sd0 are generated by the equation (4) (⌈(gct −

tpreqlclk )/tcell⌉ = ⌈(8.0 − 4.2)/0.4⌉ = 10). Finally, the
generated StoA circuit is connected with local modules using
wire names such as s2aSreq, s2aSack , s2aAreq, and s2aAack .
Note that the generation of the AtoS circuit is the same as the
generation of the StoA circuit.

D. CONSTGENERATOR
To achieve the target performance and reduce the number
of delay adjustments, ConstGenerator generates delay and

13414 VOLUME 11, 2023



S. Semba, H. Saito: Design Support Tool Set for Interface Circuits Between Synchronous and Asynchronous Modules

FIGURE 7. Example of delay constraints.

placement constraints. The delay constraints are specified in
a Synopsys Design Constraints (SDC) file. The placement
constraints are specified in a Tool CommandLanguage (TCL)
file.

1) GENERATION OF DELAY CONSTRAINTS
Since there is no global clock signal in asynchronous circuits,
delay constraints are used to satisfy the performance of asyn-
chronous circuits.
ConstGenerator generates delay constraints for the asyn-

chronous interface when ‘‘true’’ is assigned to ⟨delayconst⟩ in
the Config-XML. For the asynchronous interface, ConstGen-
erator generates local clock constraints for lcki andmaximum
delay constraints for scpi by referring to ⟨delayconst⟩ and
⟨pathratio⟩ in the Param-XML.
ConstGenerator decides the local clock cycle time constlcki

by the following equation.

constlcki = Tgct ∗ crmax (5)

Tgct and crmax are obtained from ⟨delayconst⟩ in the Param-
XML. Note that the pulse width of lclki is assumed to the half
of constlcki .
ConstGenerator generates maximum delay constraints for

scpi. Maximumdelay constraints are usually assigned to ports
and registers. Therefore, scpi is divided into a path from
lclki−1 to DFFi−1, a path from DFFi−1 to lclki, and a path
from lclki to the destination register. As an example in Fig. 6,
the scpi in the asynchronous interface is divided into the path
from clock1 to Sfsm, the path from Sfsm to lclk0, and the path
from lclk0 to Areg0.
ConstGenerator decides the value constscpi,j for each max-

imum delay constraint by the following equation.

constscpi,j = Tgct ∗ crmax ∗ Rj (6)

where Rj (0≤j≤2) represents the ratio of the delay for each
divided path.Rj from lclki−1 toDFFi−1, fromDFFi−1 to lclki,
and from lclki to the destination register are obtained from
‘‘pclk2pdff’’, ‘‘pdff2lck’’, and ‘‘lck2dff’’ of ⟨pathratio⟩ in the
Param-XML.

Figure 7 shows the generated delay constraints for the StoA
circuit by referring to the Param-XML in Fig. 5. In lclki of the
asynchronous interface, constscpi is 8.0 (Tgct ∗ crmax = 8 ∗

1.0). In the path from clock1 to Sfsm, constscpi,j for pclk2pdff
is 0.4 (Tgct ∗crmax∗Rj = 8∗1.0∗0.05). Similar to constscpi,j
for pclk2pdff , constscpi,j for pdff 2lck and lck2dff are 7.2 and
0.4.

FIGURE 8. Example of placement constraints: (a) Design Partitions and
(b) LogicLocks.

2) GENERATION OF PLACEMENT CONSTRAINTS
For Intel FPGAs, when asynchronous circuits are re-
synthesized by delay adjustment, the placements of control
modules and delay elements are slightly changed. As a result,
the number of delay adjustments is increased because the
delays of control modules and delay elements are changed.
In addition, when the distance between the synchronous inter-
face and the asynchronous interface in StoA and AtoS circuits
becomes long, the transfer latency between the synchronous
interface and the asynchronous interface may be increased.

To reduce the number of delay adjustments and reduce the
transfer delay, ConstGenerator generates two kinds of place-
ment constraints when ‘‘true’’ is assigned to ⟨placeconst⟩ in
the Config-XML. One is Design Partitions to specify which
stage of synthesis is kept for each resource. Another is Logi-
cLocks to specify the placement region for each resource.
ConstGenerator generates Design Partitions for StoA and

AtoS circuits as shown in Fig. 8(a). To keep the synthesis
result of StoA and AtoS circuits, ConstGenerator generates
Design Partitions for the top-level modules of StoA and AtoS
circuits. Since the hazard-free implementation for ctrli is
required, ConstGenerator also generates Design Partitions
for the ctrli in StoA and AtoS circuits to prevent hazards
caused by optimizations. In addition, to prevent significant
changes in delays of sdi and hdi by re-synthesis, ConstGen-
erator also generates Design Partitions for the sdi and hdi in
StoA and AtoS circuits.
ConstGenerator generates LogicLocks for StoA and AtoS

circuits by referring to a Logic Lock region ‘‘LL’’ in
the Param-XML and Path-XML. To reduce routing delays
between the synchronous interface and the asynchronous
interface, ConstGenerator generates LogicLocks for the
top-level modules of StoA and AtoS circuits. When logics
in StoA and AtoS circuits are placed in different regions, the
delays of the logics are varied by routing delays. Therefore,
ConstGenerator generates LogicLocks for the Sfsm and ctrli,
sdi, and registers of StoA and AtoS circuits to fix their delays
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FIGURE 9. Example of STA commands.

of them. Note that ConstGenerator does not generate Logi-
cLocks for hdi because cells are not inserted in hdi if there
are no hold violations.

Figure 8(b) shows the generated LogicLocks for the StoA
circuit by referring to the Param-XML and Path-XML in
Fig. 5. The LogicLock commands for the top-levelmodule for
the StoA circuit are generated by referring to ‘‘LL’’ of ⟨StoA⟩

in the Param-XML. Similarly, the LogicLock commands for
the Sfsm, ctrli, sdi, Sreg, and Areg are generated.

E. REPTIMINGGENERATOR
To analyze the timing constraints, we must analyze delays
of all paths in the StoA and AtoS circuits. Therefore, Rep-
TimingGenerator generates STA commands to analyze path
delays. STA commands are specified in a TCL file.
RepTimingGenerator generates STA commands for StoA

and AtoS circuits as shown in Fig. 9. For paths between
registers in StoA and AtoS circuits, RepTimingGenerator gen-
erates report_timing commands. For other paths in StoA and
AtoS circuits, RepTimingGenerator generates report_path
commands. In addition, for paths between the StoA or AtoS
circuit and LS or LA, RepTimingGenerator generates STA
commands by referring to ⟨path⟩ in the Param-XML.

F. TIMINGCHECKER
In StoA and AtoS circuits, it is necessary to satisfy setup
and hold constraints for the internal registers to operate the
circuits correctly.

To verify the setup and hold constraints, TimingChecker
calculates the path delays from the timing report files gen-
erated by STA using report_timing and report_path com-
mands. To analyze the timing constraints, TimingChecker
obtains margins tsdpmi,p and thcpmi,p from ‘‘sdpm’’ and
‘‘scpm’’ of ⟨margin⟩ in the Param-XML.
The timing constraints of StoA andAtoS circuits are similar

to the inequalities (1) and (2). Since the synchronous inter-
faces in StoA andAtoS circuits are controlled by clock signals,
we consider the number of cycles of paths for scpi, sdpi,
hcpi, and hdpi through the synchronous interfaces. There-
fore, we extend the inequalities (1) and (2) to the following
inequalities (7) and (8).

tminscpi,p + Sct ∗ num > tmaxsdpi,p + tsdpmi,p + tsetupi,p (7)

tminhdpi,p + Sct ∗ num > tmaxhcpi,p + thcpmi,p + tholdi,p (8)

where scpi,p represents a control-path except for the path
through the synchronous interface and hdpi,p represents a

FIGURE 10. Paths related to timing constraints for StoA circuit: (a) setup
and (b) hold constraints.

data-path except for the path through the synchronous inter-
face. num represents the number of cycles of the path in the
synchronous interface.

1) TIMING VERIFICATION OF THE StoA CIRCUIT
TimingChecker verifies the setup and hold constraints for
Areg. In contrast, it does not verify the timing constraints for
Sreg because the timing constraints for Sreg are verified by
STA for LS.
To verify the setup constraint for Areg, TimingChecker

checks whether the inequality (1) is satisfied or not. Fig-
ure 10(a) shows scpi and sdpi related to the setup constraint
for Areg of the StoA circuit.

To verify the hold constraint for Areg, TimingChecker
checks whether the inequality (8) is satisfied or not. Fig-
ure 10(b) shows hcpi and hdpi related to the hold constraint
for Areg of the StoA circuit.

2) TIMING VERIFICATION OF THE AtoS CIRCUIT
TimingChecker verifies the setup and hold constraints for
Sreg and Areg.

To verify the setup constraint for Areg, TimingChecker
checks whether the inequality (1) is satisfied or not. Similarly,
to verify the hold constraint for Areg, TimingChecker checks
whether the inequality (2) is satisfied or not.

To verify the setup constraint for Sreg, TimingChecker
checks whether the inequality (7) is satisfied or not. Fig-
ure 11(a) shows scpi and sdpi related to the setup constraint
for Sreg of the AtoS circuit.
To verify the hold constraint for Sreg, TimingChecker

checks whether the inequality (8) is satisfied or not. Fig-
ure 11(b) shows hcpi and hdpi related to the hold constraint
for Sreg of the AtoS circuit.

G. DELAYADJUSTER
DelayAdjuster increases the number of cells in sdi and hdi
if timing violations are identified by TimingChecker. In
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FIGURE 11. Paths related to timing constraints for AtoS circuit: (a) setup
and (b) hold constraints.

contrast, DelayAdjuster decreases the number of cells in
sdi and hdi if timing violations are not identified by Tim-
ingChecker and timing violations are not happened by delet-
ing some of the cells in sdi and hdi.
DelayAdjuster adjusts the number of cells in sdi and hdi.

When the setup constraint for the register which is controlled
by ctrli is not satisfied, DelayAdjuster adjusts the number of
cells in sdi. When the hold constraint for the register which is
controlled by ctrli is not satisfied, DelayAdjuster adjusts the
number of cells in hdi.
If there are timing violations for the registers, to satisfy the

timing constraints,DelayAdjuster inserts primitive cells in sdi
and hdi by the following equation.

numi,insert = ⌈(−ti,dff )/tcell⌉ (9)

where numi,insert represents the number of inserted cells, and
ti,dff represents the difference between the left and right sides
of the inequalities (1), (2), (7), and (8).

If timing violations are not happened by deleting some of
the cells in sdi and hdi, to reduce the transfer delay,DelayAd-
juster deletes primitive cells in sdi and hdi by the following
equation.

numi,delete = ⌈(ti,dff − tmargini,p )/tcell⌉ (10)

where numi,delete represents the number of deleted cells, and
tmargini,p represents the margins for scpi,p and hdpi,p. tmargini,p
are obtained by ‘‘scpm’’ and ‘‘hdpm’’ of ⟨margin⟩ in the
Param-XML.

VI. EXPERIMENTAL RESULT
In the experiment, to clarify the quality of the StoA and AtoS
circuits generated by the proposed tool set, we evaluate the
latency and overhead of the generated StoA and AtoS circuits
by changing cycle times. Then, to clarify that the proposed
tool set can be applicable for realistic designs, we design the
StoA and AtoS circuits to connect a synchronous RISC-V
processor and a Multilayer Perceptron (MLP) circuit. For

TABLE 1. Number of lines in all XML files and the number of delay and
placement constraints generated by the proposed tool set.

TABLE 2. Latency and handshake overhead of the generated interface
circuits.

the experiment, we implemented the proposed tool set using
Python 3.7 and Eclipse 2021-12. The tools were performed
on a Windows 10 machine (Intel Core i9-10900@2.8 GHz
CPU and 64 GB memory).

First, to clarify the quality of the StoA and AtoS circuits,
we generated StoA and AtoS circuits by the proposed tool set
and performed RTL simulation using ModelSim-Intel FPGA
Edition 2020.1. To check that the generated StoA and AtoS
circuits can transfer data at different cycle times, we changed
the values of ‘‘Sct’’ and ‘‘Agct’’ in the Param-XML. ‘‘Sct’’
and ‘‘Agct’’ in the Param-XML were set to 10 ns and 20 ns.
For the RTL simulation, we replaced the primitive cells in sdi
to ‘‘assign’’ statements with delays corresponding to the val-
ues of ‘‘Sct’’ and ‘‘Agct’’. In the RTL simulation, we assume
that a synchronous module sends arbitrary data to an asyn-
chronous module through the generated StoA circuits. Then,
the asynchronous module sends the data to the synchronous
module through the generated AtoS circuits (i.e., round-trip
data transfers). After the RTL simulation, we confirmed that
all data are correctly transferred.

Table 1 represents the number of lines in all XML files
and the number of constraints generated by the proposed
tool set. Name, Path, XML, Delay, DP, and LL represent
the interface circuit name, the number of data-paths between
synchronous and asynchronous modules, the number of lines
in the XMLs, the number of delay constraints, the number of
Design Partitions, and the number of LogicLocks for the StoA
or AtoS circuit, respectively. Table 1 represents that XML,
Delay, and LL depend on the number of data-paths between
synchronous and asynchronous modules.
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FIGURE 12. Interface circuit based on [2].

Table 2 represents the latency and handshake overhead
obtained from the RTL simulation for the StoA and AtoS
circuits generated by the proposed tool set when the num-
ber of data-paths between synchronous and asynchronous
modules was one. The latency represents the delay until the
receiver module receives the data after the sender module
sends the data to the receiver module. The handshake over-
head represents the delay until the sender module sends the
next data to the receiver module after the sender module sends
the data. SSct (SAgct), RSct (RAgct), Name, Latency, and
Overhead represent Sct (Agct) of the sender module, Sct
(Agct) of the receiver module, interface circuit name, latency,
and handshake overhead, respectively. StoS represents a ref-
erence interface circuit based on the two-flop synchronizer
as shown in Fig. 12 to evaluate the latency and handshake
overhead.

If the cycle time of the receiver module was increased,
the latencies of all interface circuits were increased. This is
because the two-flop synchronizer was inserted on the signals
for the receiver module in the cases of the StoS and AtoS
circuits or the delay of sdi was implemented based on the
cycle time of the receiver module in the cases of the StoA
circuits. Similarly, if the cycle time of the receiver module
was increased, the handshake overheads of all interface cir-
cuits were increased because the sender module waits for the
next data transfer until the acknowledgment signal from the
receiver module is received.

Next, we connected a synchronous RISC-V processor and
an asynchronous MLP circuit through the generated StoA and
AtoS circuits using the proposed tool set. The MLP circuit
consists of three layers. The number of neurons is 32 for
each layer to classify given handwritten numbers from 0 to 9.
In this system, the RISC-V processor sends two 32-bit data
to the MLP circuit 13 times through the StoA circuit. After
the inference by the MLP circuit, the MLP circuit sends
the inference result (32-bit data) to the RISC-V processor
through the AtoS circuit. The connected system is called
RISC-Vs_MLPa.

FIGURE 13. Structure of RISC-Vs_MLPa.

FIGURE 14. Evaluation results: (a) execution time, (b) number of LEs,
(c) dynamic power consumption, and (d) energy consumption.

Figure 13 shows the structure of RISC-Vs_MLPa. The
synchronous RISC-V processor was designed by refer-
ring to [31]. The asynchronous MLP circuit was designed
by referring to [26] and [29]. We synthesized the RISC-
Vs_MLPa using Quartus Prime 21.1. The target device was
EP4CE115F29C7 (Cyclone IV E). The voltage and the tem-
perature were set to 1.2 V and 85◦. Sct of the synchronous
RISC-V processor was set to 18 ns while Agct of the asyn-
chronous MLP circuit was set to 8 ns. The number of delay
adjustments by the proposed tool set was 2. For the StoA
circuit, the number of lines in the XMLs, the number of delay
constraints, the number of Design Partitions, and the number
of LogicLocks were 71, 6, 10, and 10, respectively. For the
AtoS circuit, the number of lines in the XMLs, the number
of delay constraints, the number of Design Partitions, and the
number of LogicLocks were 46, 8, 14, and 9, respectively.

To check the quality of the RISC-Vs_MLPa, we compared
the RISC-Vs_MLPa and a RISC-Vs_MLPs which uses syn-
chronous MLP circuit [32] and StoS circuits in terms of the
execution time, the number of Logic Elements (LEs), the
dynamic power consumption, and the energy consumption.
Figure 14 shows the evaluation results.

Figure 14(a) shows the execution time of the RISC-
Vs_MLPa. The execution time was obtained from the
GL simulation using Modelsim. RISC-V -MLP, MLP, and
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MLP-RISC-V represent the transfer time from the RISC-V
processor to the MLP circuit, the inference time by the
MLP circuit, and the transfer time from the MLP circuit to
the RISC-V processor. Compared with the RISC-Vs_MLPs,
the execution time of the RISC-Vs_MLPa was reduced by
22.6%. This reduction comes from that the handshake over-
head of the StoA circuit was reduced compared with the StoS
circuit because synchronizers were not used in the asyn-
chronous interface and the asynchronous interface operated
with the two-phase handshake protocol. Note that RISC-V -
MLP was dominant in the execution time because the wait
time caused by the handshake overhead of the StoA circuit
occurred 12 times to transfer a single handwritten number.

Figure 14(b) shows the number of LEs of the RISC-
Vs_MLPa. The number of LEs was obtained from the syn-
thesis report generated by Quartus Prime. Compared with the
RISC-Vs_MLPs, the number of LEs of the RISC-Vs_MLPa
was increased by 0.7%. The number of LEs of the StoA
and AtoS circuits was negligibly small because the StoA
and AtoS circuits were composed of few components. The
number of LEs of the RISC-V processor in RISC-Vs_MLPa
was changed due to the different resource sharing results
between the RISC-Vs_MLPs and RISC-Vs_MLPs. In addi-
tion, the number of LEs of the asynchronous MLP circuit in
RISC-Vs_MLPa was increased compared to the synchronous
MLP circuit in RISC-Vs_MLPs due to the insertion of asyn-
chronous control modules with delay elements.Moreover, the
number of LEs of the StoA and AtoS circuits was increased
slightly compared with the StoS circuit because the number
of LEs used in ctrli was larger than the number of LEs used
in Sfsm and the two-flop synchronizer.

Figure 14(c) shows the dynamic power consumption of
the RISC-Vs_MLPa. The dynamic power consumption was
obtained by PowerPlay Power Analyzer with the value
change dump (VCD) file generated by Modelsim during GL
simulation. The dynamic power consumption of the RISC-
Vs_MLPa was reduced by 14.6% compared with the RISC-
Vs_MLPs. This is because the dynamic power consumptions
of MLP and top (the routing power of the clock network for
the top-level module) were reduced because the clock power
was reduced by converting the synchronous MLP circuit to
the asynchronous MLP circuit. On the other hand, the StoA
and AtoS circuits did not have a significant impact on the
dynamic power consumption due to the small number of LEs
and short latencies.

Figure 14(d) shows the energy consumption of the RISC-
Vs_MLPa. The energy consumption was the product of the
execution time and the dynamic power consumption. Com-
pared with the RISC-Vs_MLPs, the energy consumption of
the RISC-Vs_MLPa was reduced by 34.0% because the exe-
cution time and dynamic power consumption were reduced.

VII. CONCLUSION
In this paper, we proposed a design support tool set for inter-
face circuits between synchronous and asynchronous mod-
ules. The proposed tool set generates RTL models and design

constraints for the interface circuits. In addition, the proposed
tool set performs timing verification and delay adjustment to
guarantee the operations of the generated interface circuits.

In the experiment, to clarify the quality of the interface
circuits generated by the proposed tool set, we evaluated the
latency and overhead of the interface circuits. The latency
and handshake overhead of the interface circuits generated
by the proposed tool set depend on the cycle time of the
receiver module. In addition, to clarify that the proposed tool
set can be applicable for realistic designs, we designed a
system which consists of a synchronous RISC-V processor
and an asynchronous MLP circuit using the proposed tool
set. The energy consumption of the system was reduced by
34.0% compared with a system which uses a synchronous
MLP circuit.

As our future work, we are going to extend the interface
circuits to deal with a burst transfer to reduce the handshake
overhead. In addition, we are going to extend the interface
circuits to deal with standard interfaces. Moreover, we are
going to design the interface circuits with a clock gating
to reduce the power consumption of the interface circuits.
Furthermore, we are going to compare the interface circuits
generated by the proposed tool set and other GALS interfaces.
We will also extend the proposed tool set to deal with ASIC
designs. As the device technology is different from FPGAs,
the extension may clarify the usefulness of the proposed tool
set more.
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