
Received 9 January 2023, accepted 1 February 2023, date of publication 8 February 2023, date of current version 14 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3243549

A Comparative Study of Reinforcement Learning
Algorithms for Distribution Network
Reconfiguration With Deep Q-Learning-Based
Action Sampling
NASTARAN GHOLIZADEH 1, NAZLI KAZEMI 1, (Graduate Student Member, IEEE),
AND PETR MUSILEK 1,2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
2Department of Applied Cybernetics, University of Hradec Králové, 50003 Hradec Králové, Czech Republic

Corresponding author: Nastaran Gholizadeh (nastaran@ualberta.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada under Grant ALLRP
549804-19; and in part by the Alberta Electric System Operator, AltaLink, ATCO Electric, ENMAX, EPCOR Inc., and FortisAlberta.

ABSTRACT Distribution network reconfiguration (DNR) is one of the most important methods to cope
with the increasing electricity demand due to the massive integration of electric vehicles. Most existing
DNR methods rely on accurate network parameters and lack scalability and optimality. This study uses
model-free reinforcement learning algorithms for training agents to take the best DNR actions in a given
distribution system. Five reinforcement algorithms are applied to the DNR problem in 33- and 136-node test
systems and their performances are compared: deep Q-learning, dueling deep Q-learning, deep Q-learning
with prioritized experience replay, soft actor-critic, and proximal policy optimization. In addition, a new deep
Q-learning-based action sampling method is developed to reduce the size of the action space and optimize
the loss reduction in the system. Finally, the developed algorithms are compared against the existing methods
in literature.

INDEX TERMS Distribution network reconfiguration, reinforcement learning, deep Q-learning, data-driven
control, soft actor-critic, proximal policy optimization.

I. INTRODUCTION
Large-scale penetration of electric vehicles and integration of
renewable energy resources have increased the complexity of
power distribution networks [1]. As a result, more advanced
control and optimization techniques are required to keep
the system within operational constraints, reduce losses, and
supply demands [2]. Distribution network reconfiguration
(DNR) is the process of connecting and disconnecting dif-
ferent distribution lines in a way that the system loss is min-
imized and the voltage level is maintained. The non-linearity
of AC power flow and the network radiality constraint make
DNR optimization an NP-hard, mixed-integer, nonlinear
problem [3]. Therefore, heuristic optimization algorithms [4]

The associate editor coordinating the review of this manuscript and
approving it for publication was Emilio Barocio.

and mathematical simplifications [5] are typically used for
DNR optimization in the literature.

Majority of DNR studies are based on heuristic optimiza-
tion algorithms. To this end, a new social beetle swarm
optimization algorithm considering two social behaviors is
developed in [6] to solve the multiobjective DNR prob-
lem which minimizes network loss, load balance index, and
maximum voltage deviation. The same method is coupled
with grey target decision-making in [7] to improve the pro-
cess of selecting the best beetle and solve the problem
of conflicting objectives. Chaos disturbed beetle antennae
search (CDBAS) [8] and Levy flight and chaos disturbed
beetle antennae search (LDBAS) [9] algorithms are com-
bined with grey target decision-making technique to solve
the DNR problemwhile minimizing the load balancing index,
active power loss, and the maximum node voltage deviation.

13714

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0003-0013-0406
https://orcid.org/0000-0002-6541-0233
https://orcid.org/0000-0002-7780-5048

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

A modified multi-objective Bayesian learning-based evolu-
tionary algorithm is proposed in [10] to balance the voltage
stability and the absorption rate of wind energy which is then
combined by a technique for order preference by similarity
to an ideal solution (TOPSIS) to solve DNR. In [11], a
θ -modified bat algorithm is developed to solve theDNRprob-
lem while the uncertainties associated with multiobjective
DNR are handled via cloud theory constructed based on fuzzy
theory combined with the concept of probability. However,
to solve the DNR problem, all of these studies utilize heuristic
or meta-heuristic algorithms which are time-consuming, have
high computational cost, and do not guarantee finding the
optimal solution.

In a different set of studies, mathematical models are
utilized to solve the DNR optimization [12]. For example,
a distributionally robust chance-constrained DNR approach
for a three-phase unbalanced distribution network is proposed
in [13]. It optimizes the switching cost and the expected
power supply cost from an upstream grid. Later, the model
is reduced to a mixed-integer, linear programming problem.
A risk-averse two-stage mixed-integer conic programming
model is presented in [14] for grid reconfiguration where the
seasonal reconfiguration decisions of microgrids (MG) are
made in the first stage, and validated under stochastic island-
ing scenarios in the second stage. In [15], Benders decompo-
sition framework is combined with mixed-integer quadratic
programming (MIQP) to solve DNR and reduce voltage
volatility. MIQP and mixed-integer linear programming are
used in [16] for operation mode adjustment minimizing the
active power loss and for service restoration maximizing
restored loads. The main drawback of these methods is that
they simplify the powerflow equations. Hence, the obtained
solutions are neither accurate nor optimal.

There have been other studies which use algorithmic or
fuzzy logic approaches. Switch opening and exchange (SOE)
method is developed in [17] for multi-hour stochastic DNR
which is based on sequential opening of switches until no
loops remain in the network and modifying the status of
obtained branches. In [18], a multiagent weight-based self
reconfiguration algorithm with distributed generators is pre-
sented for load sharing and reducing congestion in lines.
An adaptively tunable fuzzy logic controller is proposed
in [19] for network reconfiguration during power system
restoration. Finally, intra-day dynamic reconfiguration [20] is
solved using time period reduction and decimal coding strat-
egy to maximize the accommodation revenue of distributed
generation (DG) units and to minimize the operation cost of
distribution network. These methods can improve the quality
of the solutions, but as the system size grows, the number
of decision variables increases and they cannot guarantee
optimality. In addition, their execution time becomes expo-
nentially longer with the increase in system size.

Recently, machine learning has also been successfully
applied for DNR. By combining original neural network algo-
rithm with chaotic local search and quasi-oppositional-based

learning approaches, a new algorithm is developed in [21] to
simultaneously solve DG allocation and DNR optimization.
However, artificial intelligence algorithms used for optimiza-
tion purpose still face the problems of poor convergence and
falling into local optima [9]. A deep neural network is devel-
oped in [3] to adaptively learn the reference joint probability
distributions (PD) of DG outputs and loads from historical
data. Later, three-phase unbalanced DNR is solved using
a modified column-and-constraint generation method under
the worst-case PD scenarios. In this study, neural network is
only developed for forecasting the PD of DG outputs. In [22],
a deep convolutional neural network (CNN) is developed for
DNR. It learns the relationship between network topology
and short-term voltage stability performance from historical
data. Since the model is only trained on historical network
topologies, it is unable to perform new reconfigurations that
result in unperceived topologies. Hence, the optimality of the
reconfiguration actions is not guaranteed. In [23], a hybrid
data-driven and model-based DNR framework is proposed
which uses long short-termmemory (LSTM) network to learn
the mapping mechanism between load distribution and opti-
mal reconfiguration strategies. The model presented in [24]
was similar except that it also considered the switching cost in
addition to the system loss in the objective function. Themain
disadvantage of these two models is that the dimension of the
neural network needed for training grows with the size of the
network and the computational cost increases exponentially.
In addition, they do not search for optimal reconfiguration
strategies for different load values as they are only trained on
a few reconfiguration topologies.

Most DNR algorithms discussed so far are model-based
controllers. This means that they need accurate values of
distribution network parameters which is difficult to obtain
due to the expansive structure of distribution networks and
seasonal weather changes [25]. On the other hand, the com-
putational burden of these algorithms increases exponentially
with the size of the network [26] which makes them imprac-
tical for real-time control. Reinforcement learning (RL) is an
area of machine learning which uses various algorithms to
train agents for taking best actions in an environment [27].
This method allows building a model-free control approach
for DNR since the agent does not need to directly interact
with the distribution network and it does not need to know
the transition probablities between different state and action
pairs. Only very few studies have used RL for DNR process.
To this end, deep Q-learning and NoisyNet deep Q-learning
network (DQN) with automatic exploration is applied to
DNR in [28] and [29], respectively. However, in neither of
these two studies, the scalability of the proposed method is
demonstrated on larger test systems. Moreover, these studies
compare the performance of only several DQN methods.
DQNwas also applied to the DNR problem in [30]. However,
DQN performance was only compared with the brute-force
search and genetic algorithms, but not with any other RL
algorithm. Batch-constrained soft actor-critic RL algorithm

VOLUME 11, 2023 13715

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

is developed in [31]. It learns a control policy from a finite
historical operational dataset without interacting with the
distribution network. The main drawback of this approach is
that the agent is only trained on historical operational dataset
which means that it does not search for new and more optimal
reconfiguration strategies.

This study develops an RL model for DNR that samples
from a very large action space. Hence, it is not only based
on historical operation. In addition, this article compares the
performance of five popular RL algorithms for DNR includ-
ing DQN, policy gradient methods, and actor-critic methods.
Although there were studies that implemented DQN and soft
actor-critic (SAC) for DNR, no previous study implemented
dueling DQN, DQN with prioritized experience replay, and
proximal policy optimization (PPO) for this purpose. In addi-
tion, no study presented a comprehensive comparison of
these algorithms. The main contributions of this paper are as
follows:
• Proposal of a new action search algorithm to find the
feasible action space for RL algorithms.

• Development of a new DQN-based action sampling
method to reduce the size of the action space and
improve the optimality of the obtained DNR solutions
by RL.

• Implementation of five RL algorithms for DNR (includ-
ing DQN, dueling DQN, DQN with prioritized experi-
ence replay, SAC, and PPO) and comparison of their
performances.

II. PROBLEM FORMULATION
This section covers the problem formulation for DNR as well
as the RL algorithms.

A. PRELIMINARIES
There are two main components in a standard RL struc-
ture: environment and agent. As shown in Fig. 1, the agent
selects an action at according to the environment state st
and receives the reward rt+1 and next state st+1 from the
environment. The main goal of RL algorithm is to train the
agent to select the actions in the environment that maxi-
mize its rewards. The environment for RL is modeled as a
Markov decision process (MDP). An MDP is denoted by
(S,A,P,R, γ, T) and consists of a state space S (where,
st ∈ S), action space A (at ∈ A), transition probability
function P , reward function R (rt ∈ R), discount factor
γ ∈ [0, 1), and a time horizon T .

The agent finds the optimal control policy π for its envi-
ronment by maximizing the expected discounted return G =∑T

t=0 γ
trt+1. By calculating the action-values using Bellman

equation, the agent decides which action to select in a given
state. Bellman equation, starting from state st and taking
action at while following policy π , is determined as

Qπ (st , at) = Ert ,st+1∼π [r(st , at)+ γQπ (st+1, π(st+1))],

(1)

FIGURE 1. Reinforcement learning framework.

B. DNR ENVIRONMENT
To apply RL algorithms to the DNR problem, DNR should
be modeled as an MDP. For this purpose, the switching
actions are defined as at = [1, 1, 0, . . . , 1] where the open
and close commands of the lines are represented by zeros
and ones, respectively. In this study, it is assumed that all
lines have switcheswhich can be opened or closed. Therefore,
the action dimension is equal to the number of lines in the
system. The state of the system is the switch states, active, and
reactive power consumption at different buses represented
by st = [pt , qt , αt]. Here, αt = [α1t , α2t , . . . , αmt] is the
switch states, pt = [p1t , p2t , . . . , pnt] is the active power,
and qt = [q1t , q2t , . . . , qnt] is the reactive power of different
buses. Parameter n stands for the number of busses, andm for
the number of lines in the system. The transition probability
between time-steps, P , is assumed to be the random process
of power injections.

The reward function for this RL problem is the negative of
network loss which needs to be maximized so that the loss
will be minimized. It is defined as

R(st , at) = −C lplt (st+1)− C
v(st+1), (2)

where plt (st+1) is the total line losses of the system at state
st+1 and C l is the penalty for line losses in [1/kW]. The
variable Cv(st+1) is the penalty of violating the network
voltage constraint defined as

Cv(st+1) =

λ if Vmax < max(Vt,n) or

min(Vt,n) < Vmin

0 otherwise

(3)

where λ is a large constant number to impose a highly neg-
ative reward for actions that cause voltage violation in the

13716 VOLUME 11, 2023

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

Algorithm 1 Structure Identification

1 Input: Topology information of the network
2 Output: Feasible action space
▷ Construct the network with graph analysis tools

3 Close all lines
4 Find all loops in the network l ∈ {1, 2, . . . ,N }
5 Find the set of all switches Sl that open each of these
loops

6 Find the total number of combinations,M , between Sl
from each loop
▷ Find all combination of lines for opening loops

7 for i ∈ {1, 2, . . . ,M} do
8 flag = 0
9 while flag = 0 do
10 for j ∈ {1, 2, . . . ,N } do
11 if loop j exists then
12 Open a line from loop j
13 if Network is disconnected then

Close the line and open a different
line

14 if the line is already open then
15 Open a different line from loop j
16 if Network is disconnected then
17 Close the line and open a

different line

18 Find all the loops l in the network
19 if l = 0 then
20 flag = 1
21 Save the current structure of the network as a

feasible action
22 else
23 Repeat 5-21 for the new loops

system. Load balance and radiality constraints are fulfilled
while selecting the action space A.
The complete action space for DNR is very large. For

example, a system with 20 lines has a total of 220 actions.
However, most of these actions cause loops or disconnections
in the system and hence, are infeasible to be performed in
a real distribution system. To address this issue, Algorithm
1 is used to select only the feasible actions as the action
space for RL. In this algorithm, first, all lines are closed to
find all loops in the network (lines 3-4). Then, all of the
switches that open these loops are found (line 5). Finally,
all combinations between these switches are found in a way
that no loops remain in the network and no disconnections
occur (lines 6-23). It should be noted that action space is a
pool from which the agents choose their actions. Algorithm 1
only changes the action space and it does not alter the action
selection strategy of the agents in any of the RL algorithms.

C. RL ALGORITHMS
RL algorithms are divided into two main categories: on-
policy and off-policy. In on-policy RL, the behavior policy

Algorithm 2 Deep Q-Learning

1 Input: Learning rate α, number of episodes N , discount
factor γ ,
batch size, environment

2 Output: Optimal policy
▷ Initialization

3 Initialize target network with parameters θtarg and
q-network with parameters θtarg← θ

4 Initialize replay buffer B
5 Initialize greedy policy π and ϵ-greedy policy πϵ
▷ Training

6 for Episode ∈ {1, 2, . . . ,N } do
7 Reset the environment and record s0
8 for t ∈ {0, 1, ..,T − 1} do
9 Select action at using πϵ
10 Execute action at and receive st+1, rt+1
11 Add transition (st , at , rt+1, st+1) into buffer B
12 Set st = st+1
13 Choose a batch, b, of transitions from buffer B
14 Compute loss function for the selected batch

yi =

ri For terminal state
ri + γ max(Q(si, ai|θtarg)) For non
− terminal state

L(θ) =
1
|b|

|b|∑
i=1

[yi − Q(si, ai|θ)]2

15 Perform gradient descent for q-network and
update its parameters θ

16 EveryM episodes synchronize θtarg← θ

which agent uses to select its actions and the target policy
which it tries to learn are the same. In off-policy RL, they are
different. Therefore, on-policy algorithms are more likely to
converge to a sub-optimal policy. This study implements and
tests the performance of DQN, dueling DQN, DQN with pri-
oritized experience replay, and SAC as off-policy algorithms,
and PPO as an on-policy algorithm.

Algorithm 2 summarizes the DQN algorithm. First, the
target neural network, q-network, replay buffer, and greedy
policy are initialized (lines 3-5). Then, for N number of
episodes, the environment is reset, for T number of steps,
an action is chosen by the policy and executed, the transitions
are added to the replay buffer, and finally, the loss over a batch
of transitions is computed and gradient descent is performed
on the q-network to update its parameters and the policy
(lines 6-15). Every M episodes, the target and q-network are
synchronized (line 16). It should be noted that the q-network
outputs actions values. The policy chooses the action with the
highest value.

Dueling DQN is an improvement over DQN [32]. The key
motivation behind this architecture is that, in some states,
performing an action will not change the obtained reward so
it is unnecessary to know the value of each action at every

VOLUME 11, 2023 13717

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

time step. An example of such condition is the Atari game
Enduro where taking an action will not change the obtained
reward until collision is imminent. In general, the action value
is defined as

Qπ (s, a) = Eπ [
T−1∑
t=0

γ trt |st = s, at = a], (4)

and the state value is defined as

Vπ (s) = Eπ [
T−1∑
t=0

γ trt |st = s]. (5)

The advantage value shows how advantageous selecting an
action is relative to the other actions at a given state. The
advantage function is obtained by subtracting the state value
from the action value

Aπ (s, a) = Qπ (s, a)− Vπ (s). (6)

By separating Qπ (s, a) into Vπ (s) and Aπ (s, a), the dueling
architecture learns the state value without having to learn the
effect of each action for each state. Vπ (s) and Aπ (s, a) are
combined into one equation as follows

Q(s, a; θ, α, β) = V (s; θ, β)+ (A(s, a; θ, α)

−
1
|A|

∑
a′
A(s, a; θ, α)). (7)

DQN with prioritized experience replay was first intro-
duced by Google DeepMind in 2015 [33]. The basic idea
behind this algorithm is to prioritize the transitions in the
replay buffer that are rare but more helpful for the learning
process. The metric to measure the importance of each tran-
sition is the magnitude of a transition’s time difference (TD)
error, δ. However, an offset value should be added to prevent
the importance to become zero, i.e.

pi = |δi| + ϵ. (8)

Using the priority, the probability of selecting each transition
is defined as

Pi =
(pi)a∑N
i=1(pi)a

, (9)

where a is a factor that determines how much prioritization
is used. Prioritized replay introduces bias in training since it
selects some transitions more frequently. To prevent this, the
neural network update step is changed to αwi instead of α,
where wi is defined as

wi = (
1
N
.
1
Pi
)b. (10)

The exponent b is used to control the bias correction which is
more important later during the training than at the beginning.
Therefore, b starts at a low value and gradually increases to
1 over time.

SAC is an off-policy reinforcement learning algorithm
whose objective is not only to maximize the rewards but
also to increase the entropy. Entropy is the likeliness of

the algorithm to explore new actions. A high-entropy algo-
rithm prevents premature convergence to a bad local optima
and encourages the state space exploration improving the
collected transition data. Therefore, the policy is trained to
maximize the following objective

J (θ) =
T∑
t=1

E(st ,at)∼ρπθ [r(st , at)+ αH(πθ (.|st))], (11)

where H(.) is the entropy measure, and the parameter α
represents the entropy temperature and controls the random-
ness of the policy versus the reward. In general, there are
three functions that SAC needs to learn: 1) the policy with
parameter θ , 2) soft Q-value function with parameter w, and
3) soft state value function with parameter ψ . Soft Q-value
and state value are determined, respectively, by

Q(st , at) = r(st , at)+ γEst+1∼ρπ (s)[V (st+1)], (12)

V (st) = Eat∼π [Qst ,at − αlogπ(at |st)], (13)

To obtain the soft state value function parameters, the
following mean squared error is minimized

JV (ψ)=Est∼D[
1
2
(Vψ (st)−E[Qw(st , at)−logπθ (at |st)])2],

(14)

where D is the replay buffer. The soft Q function parameters
are obtained by minimizing the soft Bellman residual

JQ(w) = E(st ,at)∼D[
1
2
(Qw(st , at)− (r(st , at)

+ γEst+1∼ρπ (s)[Vψ (st+1)]))
2], (15)

where ψ is the target value function. Finally, the policy is
optimized by minimizing the KL-divergence

Jπ (θ) = Eat∼π [logπθ (at |st)− Qw(st , at)+ logZw(st)], .

(16)

Parameter Z is the partition function to normalize the dis-
tribution. Finally, the SAC algorithm is implemented as
Algorithm 3 [34]. First, the state value function, Q-value
function, policy, target value function, and replay buffer
parameters are initialized (lines 3-4). Then, for each episode,
an action is selected by the policy and executed and the
transition is added to the buffer (lines 5-9). If it is time to
update, state value function, Q-value function, policy, and
target value function are updated using the previously intro-
duced equations (lines 10-14).

As previously mentioned, PPO is an on-policy RL algo-
rithm. It is a type of policy gradient method that was intro-
duced in 2017 [35] as an improvement over Trust Region
Policy Optimization (TRPO). PPO uses two neural networks,
an actor network whose input is the state and output is the
list of probabilities for each action, a critic network, whose
input is the state and the output is state value. The objective
function of vanilla policy gradient methods is defined as

LPG(θ) = Êt [logπθ (at |st)Ât], (17)

13718 VOLUME 11, 2023

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

Algorithm 3 Soft Actor-Critic

1 Input: Learning rate α, number of episodes N , discount
factor γ ,
batch size, environment, entropy temperature α

2 Output: Optimal policy
▷ Initialization

3 Initialize parameters θ,w, ψ, and ψ
4 Initialize replay buffer D
▷ Training

5 for Episode ∈ {1, 2, . . . ,N } do
6 for t ∈ {0, 1, ..,T − 1} do
7 Select action at using policy πθ (at |st)
8 Execute the action at and receive st+1, rt+1
9 Add transition (st , at , rt+1, st+1) into buffer D
10 for each gradient update step do
11 Update state value function with parameter ψ
12 Update Q-value function with parameter w
13 Update policy with parameter θ
14 Update target value function with parameter ψ

where LPG(θ) is the policy loss, logπθ (at |st) is the log of
probabilities from the actor network, and Ât is the advantage
function.

To prevent large policy updates, the policy gradient step is
restricted by rst (θ) in TRPO, defined as the probability ratio
between the action under the current policy and the action
under the previous policy

rst (θ) =
πθ (at |st)
πθold (at |st)

(18)

As a result, the objective function in TRPO is defined as

Maximize Êt [
πθ (at |st)
πθold (at |st)

Ât]

subject to Êt [KL[πθold (.|st), πθ (.|st)]] ≤ σ (19)

Similarly, to restrict the update step in PPO, clipped surro-
gate objective is defined as

LCLIP(θ) = Êt [min(rst (θ)Ât , clip(r
s
t (θ), 1− ϵ, 1+ ϵ)Ât)],

(20)

To minimize the value function error and ensure enough
exploration of the agent, the final objective function is defined
as

LCLIP+VF+S(θ) = Êt [LCLIPt (θ)− c1LVFt + c2S[πθ](st)],

(21)

where LVFt is value function error, S[πθ](st) is entropy bonus,
and c1 and c2 are hyperparameters. PPO algorithm is given
in Algorithm 4. First, the replay buffer, actor, and critic
networks are initialized (lines 3-4). Then, for N number
of episodes, each actor runs the policy for T time steps,
stores the transitions, and computes the advantage functions

(lines 5-9). Finally, for a batch of transitions every K epochs,
the objective function in Eq. (21) is optimized and the actor
and critic parameters are updated.

Algorithm 4 Proximal Policy Optimization

1 Input: Learning rate α, number of episodes N , discount
factor γ ,
batch size, environment, number of parallel agents N a

2 Output: Optimal policy
▷ Initialization

3 Initialize actor and critic networks
4 Initialize replay buffer B
▷ Training

5 for Episode ∈ {1, 2, . . . ,N } do
6 for actor ∈ {1, 2, . . . ,N a} do
7 Run policy πθold in environment for T timesteps
8 Store transitions in the replay buffer
9 Compute advantage estimates Â1, Â2, . . . , ÂT

10 Optimize LCLIP+VF+S w. r. t. θ , with K epochs and
batch sizeM ≤ NaT

11 θold ← θ

D. ACTION REDUCTION
The action space in DNR is quite large. Presented RL algo-
rithms either would not converge to the optimal solution with
such a large action space, or they would require a very long
training time and computational resources. Therefore, the
size of the action space needs to be reduced while keeping
only feasible actions.

To improve the quality of the DNR solutions found by
RL algorithms, in this study, the size of the action space is
reduced in two stages. At the first stage, random sampling is
used to define an action space for RL. Then, using the selected
actions, DQN algorithm is implemented. At the end of the
training, the agent has learned the action values. Therefore,
it is used to only select the actions with the highest q-values
to reduce the size of the action space at the second stage.

III. SIMULATION AND RESULTS
The proposed RL method is first applied to the IEEE 33-
node system and then to a 136-node distribution system to
demonstrate the scalability of the developed method. The
data and parameters used for simulations are presented in this
section, along with the obtained results.

A. EXPERIMENTAL DATA SETUP
The tuned parameters of the five described RL algorithms are
given in Table 1. Since the number and range of hyperparam-
eters for RL algorithms are very large, the hyperparameter
tunning is performed manually, by changing the value of one
hyperparameter, observing the result, and then deciding the
next value. The daily load data is generated similar to [17]
and then, considering a normal distribution and 15% standard
deviation to the generated daily IEEE 33-node and 136-node

VOLUME 11, 2023 13719

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

TABLE 1. Parameters of RL algorithms.

network loads, the load data is generated for the required
number of days. The minimum and maximum voltage limits
are considered to be 0.95 p.u. and 1.05 p.u., respectively.
Parameter C l is set to 10,000 and λ to 100,000 based on
empirical performance. The neural networks are coded using
PyTorch and in Python environment. All RL algorithms use
a four-layer neural network structure, with 1024 neurons in
the first hidden layer and 512 neurons in the second hidden
layer. NetworkX package is used as the graph analysis tool
in Algorithm 1 and the power network is modeled using
pandapower package.

Algorithm 1 finds 14,401 feasible actions for 33-node
system and 56,996 actions for the 136-node system. The
initial sampling randomly selects 300 and 1,000 actions for
the 33- and 136-node systems, respectively. After applying
the initial DQN, the convergence curve and action values for
33-node and 136-node systems are given in Fig. 2 and Fig. 3,
respectively. Among these actions, the top 80 actions with
the highest q-values are chosen as the action space for the
33-node test system and the top 400 are chosen as the action
space of the 136-node system.

B. 33-NODE TEST SYSTEM
The 33-node test system is depicted in Fig. 4. It is assumed
that all lines can be opened and closed using switches and the
dashed lines are initially open.

FIGURE 2. 30-step moving average of daily rewards and action values for
33-node system with 300 actions.

FIGURE 3. 30-step moving average of average daily rewards and action
values for 136-node system with 1000 actions.

FIGURE 4. 33-node test system.

Average daily rewards and their moving averages for the
five RL algorithms are illustrated in Fig. 5 and Fig. 6, respec-
tively. As can be seen, SAC has the fastest convergence.
However, the final obtained rewards are lower compared to
DQN and dueling DQN. DQN and dueling DQN have very
similar performance and PPO has the weakest performance
among these algorithms.

Since in on-policy RL algorithms the agent uses the same
behavior and target policy, these algorithms are more likely
to become trapped in a local minimum. As a result, PPO,
which is the only on-policy algorithm in this study, has the
worst performance among other algorithms. Policy gradient
methods such as SAC and PPO search directly for the optimal
policy instead of estimating the action-value. These methods
require fresh samples from the environment obtained with
the current policy. However, value methods such as DQN can
take advantage of the old data obtained from an older policy
stored in the memory. Therefore, policy methods usually
require more interaction with the environment to reach the

13720 VOLUME 11, 2023

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

FIGURE 5. Average daily rewards for 33-node system during training
using five RL algorithms.

FIGURE 6. 60-step moving average of daily rewards for 33-node system
using five RL algorithms.

FIGURE 7. Average daily rewards for 136-node system during training
using five RL algorithms.

most optimal solution. On the other hand, since they search
directly for the optimal policy, they might converge faster.

C. 136-NODE TEST SYSTEM
The 136-node distribution system has a relatively complex
structure, as depicted in Fig. 9. The average daily rewards
and their moving averages for the 136-node system are shown
in Fig. 7 and Fig. 8, respectively. Similar to the 33-node
system, SAC has the fastest convergence. However, the final
obtained rewards are lower compared to DQN and DQNwith
prioritized experience replay which obtain similar rewards
at the end of the training. However, DQN with prioritized
experience replay converges slightly faster. By comparison to
the 33-node system, it can be seen that for larger systems, the
prioritized experience replay is more effective and converges
faster.

D. COMPARISON OF RESULTS
Table 2 shows the network loss after a single-hour DNR
using each of the five RL algorithms, the SOE method [17],

FIGURE 8. 60-step moving average of daily rewards for 136-node system
using five RL algorithms.

TABLE 2. System loss obtained by single-hour DNR.

TABLE 3. Execution time comparison.

genetic algorithm (GA) [36], adaptive ant colony optimiza-
tion (AACO) method [37], and cuckoo search algorithm
(CSA) [38] from the literature. Among the compared algo-
rithms, DQN attains the lowest network loss, outperforming
other publishedmethods. It can also be inferred that theDQN-
based action reduction approach was effective and that the
resulting action space was sufficient to reduce the system
loss in the DQN, Dueling DQN, and SAC algorithms. It can
be concluded that, in terms of stability and optimality, DQN
is the best-performing algorithm. In terms of convergence
speed, SAC performs the best.

The computational times of the RL methods are compared
against SOE, AACO, and mathematical programming (MP)
methods (including mixed-integer linear and mixed-integer
nonlinear programming) [17] in Table 3. As it can be inferred
from this table, RLmethods are at least eight times faster than
SOE, AACO, and MP methods for the 136-node system. The
computational speed of the RL algorithms is even more signi-
fied as the size of the system grows. However, RL algorithms

VOLUME 11, 2023 13721

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

FIGURE 9. 136-node test system.

can have a very long training time, as presented in the same
table.

IV. CONCLUSION
In this paper, the DNR problem is formulated as a Markov
decision process to implement and compare five RL algo-
rithms, including DQN, dueling DQN, DQN with prioritized
experience replay, SAC, and PPO. The proposed RL-based
approach was applied to the 33- and 136-node test systems.
The results showed that among these algorithms, SAC had the
fastest convergence, while DQN performed best in terms of
stability and optimality. In addition, a new DQN-based action
reduction method was developed to reduce the size of the
action space. The effectiveness of the new reduction approach
was tested by comparing the pre- and post-sampling results as
well as the results from the literature.

Future studies will focus on developing new action space
sampling methods for RL and performing sensitivity analysis
for various action space selections. In addition, various objec-
tives for the RL agent will be defined and tested. Finally, the
effectiveness of the proposed method for increasing electric
vehicle penetration will be investigated.

REFERENCES
[1] N. Gholizadeh and P. Musilek, ‘‘Distributed learning applications in power

systems: A review of methods, gaps, and challenges,’’ Energies, vol. 14,
no. 12, p. 3654, Jun. 2021.

[2] T. Yang, Y. Guo, L. Deng, H. Sun, andW.Wu, ‘‘A linear branch flowmodel
for radial distribution networks and its application to reactive power opti-
mization and network reconfiguration,’’ IEEE Trans. Smart Grid, vol. 12,
no. 3, pp. 2027–2036, May 2021.

[3] W. Zheng, W. Huang, D. J. Hill, and Y. Hou, ‘‘An adaptive distributionally
robust model for three-phase distribution network reconfiguration,’’ IEEE
Trans. Smart Grid, vol. 12, no. 2, pp. 1224–1237, Mar. 2021.

[4] E. Quintana and E. Inga, ‘‘Optimal reconfiguration of electrical distribution
system using heuristic methods with geopositioning constraints,’’ Ener-
gies, vol. 15, no. 15, p. 5317, Jul. 2022.

[5] H. Ahmadi and J. R. Marti, ‘‘Distribution system optimization based on a
linear power-flow formulation,’’ IEEE Trans. Power Del., vol. 30, no. 1,
pp. 25–33, Feb. 2015.

[6] Q. Chen, W. Wang, H. Wang, J. Wu, and J. Wang, ‘‘An improved beetle
swarm algorithm based on social learning for a game model of mul-
tiobjective distribution network reconfiguration,’’ IEEE Access, vol. 8,
pp. 200932–200952, 2020.

[7] Q. Chen, W. Wang, H. Wang, J. Wu, X. Li, and J. Lan, ‘‘A social beetle
swarm algorithm based on grey target decision-making for a multiobjective
distribution network reconfiguration considering partition of time inter-
vals,’’ IEEE Access, vol. 8, pp. 204987–205013, 2020.

[8] J. Wang, W. Wang, Z. Yuan, H. Wang, and J. Wu, ‘‘A Chaos disturbed
beetle antennae search algorithm for a multiobjective distribution network
reconfiguration considering the variation of load and DG,’’ IEEE Access,
vol. 8, pp. 97392–97407, 2020.

[9] J. Wang, W. Wang, H. Wang, and H. Zuo, ‘‘Dynamic reconfiguration of
multiobjective distribution networks considering DG and EVs based on
a novel LDBAS algorithm,’’ IEEE Access, vol. 8, pp. 216873–216893,
2020.

[10] T. Zhong, H.-T. Zhang, Y. Li, L. Liu, and R. Lu, ‘‘Bayesian learning-based
multi-objective distribution power network reconfiguration,’’ IEEE Trans.
Smart Grid, vol. 12, no. 2, pp. 1174–1184, Mar. 2020.

[11] A. Kavousi-Fard, T. Niknam, and M. Fotuhi-Firuzabad, ‘‘A novel stochas-
tic framework based on cloud theory and θ -modified bat algorithm to solve
the distribution feeder reconfiguration,’’ IEEE Trans. Smart Grid, vol. 7,
no. 2, pp. 740–750, Jun. 2016.

[12] P. Akaber, B. Moussa, M. Debbabi, and C. Assi, ‘‘Automated post-
failure service restoration in smart grid through network reconfiguration
in the presence of energy storage systems,’’ IEEE Syst. J., vol. 13, no. 3,
pp. 3358–3367, Sep. 2019.

13722 VOLUME 11, 2023

N. Gholizadeh et al.: Comparative Study of RL Algorithms for DNR With Deep Q-Learning-Based Action Sampling

[13] A. Zhou, H. Zhai, M. Yang, and Y. Lin, ‘‘Three-phase unbalanced
distribution network dynamic reconfiguration: A distributionally robust
approach,’’ IEEE Trans. Smart Grid, vol. 13, no. 3, pp. 2063–2074,
May 2022.

[14] X. Cao, J. Wang, J. Wang, and B. Zeng, ‘‘A risk-averse conic model for
networked microgrids planning with reconfiguration and reorganizations,’’
IEEE Trans. Smart Grid, vol. 11, no. 1, pp. 696–709, Jan. 2020.

[15] Y. Song, Y. Zheng, T. Liu, S. Lei, and J. D. Hill, ‘‘A new formulation
of distribution network reconfiguration for reducing the voltage volatility
induced by distributed generation,’’ IEEE Trans. Power Syst., vol. 35, no. 1,
pp. 496–507, Jan. 2020.

[16] H. Hong, Z. Hu, R. Guo, J. Ma, and J. Tian, ‘‘Directed graph-based
distribution network reconfiguration for operation mode adjustment and
service restoration considering distributed generation,’’ J. Mod. Power
Syst. Clean Energy, vol. 5, no. 1, pp. 142–149, Jan. 2017.

[17] J. Zhan, W. Liu, C. Y. Chung, and J. Yang, ‘‘Switch opening and exchange
method for stochastic distribution network reconfiguration,’’ IEEE Trans.
Smart Grid, vol. 11, no. 4, pp. 2995–3007, Jul. 2020.

[18] R. K. Mishra and K. S. Swarup, ‘‘Adaptive weight-based self reconfigu-
ration of smart distribution network with intelligent agents,’’ IEEE Trans.
Emerg. Topics Comput. Intell., vol. 2, no. 6, pp. 464–472, Dec. 2018.

[19] N. Xia, J. Deng, T. Zheng, H. Zhang, J. Wang, S. Peng, and L. Cheng,
‘‘Fuzzy logic based network reconfiguration strategy during power system
restoration,’’ IEEE Syst. J., vol. 16, no. 3, pp. 4735–4743, Sep. 2022.

[20] Z. Liu, Y. Liu, G. Qu, X.Wang, and X.Wang, ‘‘Intra-day dynamic network
reconfiguration based on probability analysis considering the deployment
of remote control switches,’’ IEEE Access, vol. 7, pp. 145272–145281,
2019.

[21] T. V. Tran, B.-H. Truong, T. P. Nguyen, T. A. Nguyen, T. L. Duong,
and D. N. Vo, ‘‘Reconfiguration of distribution networks with distributed
generations using an improved neural network algorithm,’’ IEEE Access,
vol. 9, pp. 165618–165647, 2021.

[22] W. Huang,W. Zheng, and D. J. Hill, ‘‘Distribution network reconfiguration
for short-term voltage stability enhancement: An efficient deep learn-
ing approach,’’ IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 5385–5395,
Nov. 2021.

[23] N. Liu, C. Li, L. Chen, and J. Wang, ‘‘Hybrid data-driven and model-based
distribution network reconfiguration with lossless model reduction,’’ IEEE
Trans. Ind. Informat., vol. 18, no. 5, pp. 2943–2954, May 2022.

[24] X. Ji, Z. Yin, Y. Zhang, B. Xu, and Q. Liu, ‘‘Real-time autonomous
dynamic reconfiguration based on deep learning algorithm for distribution
network,’’ Electr. Power Syst. Res., vol. 195, Jun. 2021, Art. no. 107132.

[25] Y. Gao, B. Foggo, and N. Yu, ‘‘A physically inspired data-driven model
for electricity theft detection with smart meter data,’’ IEEE Trans. Ind.
Informat., vol. 15, no. 9, pp. 5076–5088, Sep. 2019.

[26] R. A. Pegado and Y. P. M. Rodriguez, ‘‘Distribution network reconfigura-
tion with the OpenDSS using improved binary particle swarm optimiza-
tion,’’ IEEE Latin Amer. Trans., vol. 16, no. 6, pp. 1677–1683, Jun. 2018.

[27] C. Huang, H. Zhang, L. Wang, X. Luo, and Y. Song, ‘‘Mixed deep rein-
forcement learning considering discrete-continuous hybrid action space
for smart home energy management,’’ J. Mod. Power Syst. Clean Energy,
vol. 10, no. 3, pp. 743–754, 2022.

[28] O. B. Kundačina, P. M. Vidović, and M. R. Petković, ‘‘Solving dynamic
distribution network reconfiguration using deep reinforcement learning,’’
Electr. Eng., vol. 104, no. 3, pp. 1487–1501, Jun. 2022.

[29] B. Wang, H. Zhu, H. Xu, Y. Bao, and H. Di, ‘‘Distribution network recon-
figuration based on NoisyNet deep Q-learning network,’’ IEEE Access,
vol. 9, pp. 90358–90365, 2021.

[30] S. H. Oh, Y. T. Yoon, and S. W. Kim, ‘‘Online reconfiguration scheme
of self-sufficient distribution network based on a reinforcement learning
approach,’’ Appl. Energy, vol. 280, Dec. 2020, Art. no. 115900.

[31] Y. Gao, W. Wang, J. Shi, and N. Yu, ‘‘Batch-constrained reinforcement
learning for dynamic distribution network reconfiguration,’’ IEEE Trans.
Smart Grid, vol. 11, no. 6, pp. 5357–5369, Nov. 2020.

[32] Z. Wang, T. Schaul, M. Hessel, H. V. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn., 2015, pp. 1995–2003.

[33] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[36] J. C. Cebrian and N. Kagan, ‘‘Reconfiguration of distribution networks
to minimize loss and disruption costs using genetic algorithms,’’ Electr.
Power Syst. Res., vol. 80, no. 1, pp. 53–62, Jan. 2010.

[37] A. Swarnkar, N. Gupta, and K. R. Niazi, ‘‘Adapted ant colony optimization
for efficient reconfiguration of balanced and unbalanced distribution sys-
tems for loss minimization,’’ Swarm Evol. Comput., vol. 1, pp. 129–137,
Sep. 2011.

[38] T. T. Nguyen and A. V. Truong, ‘‘Distribution network reconfiguration for
power loss minimization and voltage profile improvement using cuckoo
search algorithm,’’ Int. J. Elect. Power Energy Syst., vol. 68, pp. 233–242,
Jun. 2015.

NASTARAN GHOLIZADEH received the B.Sc.
degree from the University of Tabriz, Iran, in 2017,
and the M.Sc. degree from the Amirkabir Uni-
versity of Technology, in 2019. She is currently
pursuing the Ph.D. degree in software engineer-
ing and intelligent systems with the University of
Alberta. Her research interests include machine
learning applications in power systems, reinforce-
ment learning for grid control, and optimization of
power systems.

NAZLI KAZEMI (Graduate Student Member,
IEEE) received the B.Sc. degree in electrical and
computer engineering from the Iran University of
Science and Technology, Tehran, Iran, in 2018, and
the M.Sc. degree in electrical and computer engi-
neering from the University of Alberta, Edmon-
ton, AB, Canada, in 2020, where she is currently
pursuing the Ph.D. degree with the Electrical and
Computer Engineering Department. Her research
interests include applications of machine learning

in sensors, renewable energy systems, environmental sensing, monitoring,
modeling, microwave active sensors, metamaterials, and biosensors.

PETR MUSILEK (SeniorMember, IEEE) received
the Ing. degree (Hons.) in electrical engineer-
ing and the Ph.D. degree in cybernetics from
Military Academy, Brno, Czech Republic, in
1991 and 1995, respectively. In 1995, he was
appointed as the Head of the Computer Appli-
cations Group, Institute of Informatics, Military
Medical Academy, Hradec Králové, Czech Repub-
lic. From 1997 to 1999, he was a NATO Science
Fellow with the Intelligent Systems Research Lab-

oratory, University of Saskatchewan, Canada. In 1999, he joined the Depart-
ment of Electrical andComputer Engineering, University ofAlberta, Canada,
where he is currently a Full Professor. Since 2016, he has been working as
the Director of the Computer Engineering Program and the Associate Chair
(Undergraduate). He is also the Associate Chair (Research and Planning).
His research interests include artificial intelligence and energy systems.
He developed a number of innovative solutions in the areas of renewable
energy systems, smart grids, wireless sensor networks, and environmental
monitoring and modeling.

VOLUME 11, 2023 13723

