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ABSTRACT Image quality assessment (IQA) algorithms aim to reproduce the human’s perception of the
image quality. The growing popularity of image enhancement, generation, and recovery models instigated
the development of many methods to assess their performance. However, most IQA solutions are designed
to predict image quality in the general domain, with the applicability to specific areas, such as medical
imaging, remaining questionable. Moreover, the selection of these IQA metrics for a specific task typically
involves intentionally induced distortions, such as manually added noise or artificial blurring; yet, the chosen
metrics are then used to judge the output of real-life computer vision models. In this work, we aspire to
fill these gaps by carrying out the most extensive IQA evaluation study for Magnetic Resonance Imaging
(MRI) to date (14,700 subjective scores). We use outputs of neural network models trained to solve problems
relevant to MRI, including image reconstruction in the scan acceleration, motion correction, and denoising.
Our emphasis is on reflecting the radiologist’s perception of the reconstructed images, gauging the most
diagnostically influential criteria for the quality of MRI scans: signal-to-noise ratio, contrast-to-noise ratio,
and the presence of artefacts. Seven trained radiologists assess these distorted images, with their verdicts
then correlated with 35 different image quality metrics (full-reference, no-reference, and distribution-based
metrics considered). The top performers – DISTS, HaarPSI, VSI, and FIDVGG16 – are found to be efficient
across three proposed quality criteria, for all considered anatomies and the target tasks.

INDEX TERMS Image quality, deep learning, metrics, reconstruction quality, MRI.

I. INTRODUCTION
Image quality assessment (IQA) is a research area occupied
with constructing accurate computational models to predict
the perception of image quality by human subjects, the ulti-
mate consumers of most image processing applications [1].

The growing popularity of image enhancement and image
generation algorithms increases the need for a quality assess-
ment of their performance. The demand has led to the abun-
dance of IQA methods emerging over the last decades. The
well-known full-reference (FR)metrics, such asMSE, PSNR,
and SSIM [2], [3], became a de-facto standard in many com-
puter vision applications. The more recent no-reference (NR)
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metrics, such as BRISQUE [4], have also found their use,
especially when the ground truth images are absent or hard to
access. Yet, another class of distribution-based metrics (DB)
earned the community’s attention, thanks to the advent of
generative adversarial networks (GANs), enabling the quality
assessment using distributions of thousands of images instead
of gauging them individually. The popular new DB IQA
methods include such metrics as Inception Score [5], FID [6],
KID [7], MSID [8], and many others. Despite being widely
used, the DBmetrics were neither included in the recent large
scale general domain reviews [9], [10], nor in the medical
ones [11].

IQA measures are applied to estimate the quality of
image processing algorithms and systems. For example, when
several image denoising and restoration algorithms are
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available to recover images distorted by blur and noise con-
tamination, a perceptual objective IQA could help pick the
one that generates the best perceptual image quality after
the restoration. To do that reliably, Image Quality Metrics
(IQMs) need to show a high correlation with the perceptual
estimates of the quality reported by human subjects for a
given image processing algorithm. However, IQA algorithms
are often evaluated on non-realistic distortions, such as added
noise or artificial blurring [9], [10], [11]. Such a discrepancy
between the synthetic evaluation and the practical use may
cause misleading results.

While most metrics are designed to predict image quality
in the general domain, Magnetic Resonance Imaging (MRI)
provides gray-scale data with the content and style noticeably
different from the natural images. Hence, the applicability of
the IQMs in the MRI domain must be validated.

Moreover, IQMs trained on natural images attempt to
describe the overall perception of the quality of an entire
scene. On the contrary, an MRI scan can be perceived as
high-quality when specific characteristics, responsible for
the scan’s value, are deemed adequate. Those are the char-
acteristics that are deemed important components of the
radiographic image quality [12], including perceived level
of noise (signal-to-noise ratio, SNR), perceived soft tissue
contrast (contrast-to-noise ratio, CNR), and the presence of
artefacts. Unfortunately, none of the previous IQM studies
considered them. Besides, these specific quality criteria are
coupled. For example, some denoising algorithms tend to
introduce additional blurring (lowering of CNR) in exchange
for increased SNR, and some motion correction approaches
tend to introduce noticeable artefacts. Therefore, a more
detailed evaluation of IQM’s ability to express separate MRI
quality criteria is required.

The remainder of this paper is structured as follows. After
discussing the related work, we describe how we generate an
image library that consists of disrupted and reference MRI
image pairs. In Section IV-A, we provide a detailed descrip-
tion of data selection, corruption, and restoration processes
that populate the image library with realistic yet diverse data.
We then use the image library to survey expert radiologists
and collect a set of labels to be then correlated with IQM
values in Section IV-C. Finally, we report and discuss the
results in Sections V and VI, where we indicate the top-
performing metrics, and provide insights about their per-
formance for different distortions, robustness to the domain
shift, anatomies, and quality criteria. Section VII concludes
the work by proposing the best IQA approaches for MRI.
Appendices include a list of abbreviations (A), reconstruc-
tion examples (B), and a screenshot of the labeling user
interface (C).
The main contributions of this paper are:

• The most extensive study of IQA in medical imaging,
in general, and in MRI, in particular (14,700 subjec-
tive scores collected). Unlike previous metric evaluation
studies, we avoid artificially added distortions and assess
the outputs of popular image restoration models instead.

The assessment is based on proposed three criteria and
allows us tomake profound conclusions onwhat modern
metrics can capture and when exactly they should be
used.

• To the best of our knowledge, we provide the first thor-
ough study of the application of DBmetrics for objective
IQA of both natural and medical images. We evaluate
their performance and show when they give advantage
over the common FR and NR metrics. We study the
robustness of metrics’ performance across these two
vastly different domains and show that the best perform-
ing IQMs produce valuable results even when the data
distribution drastically changes.

II. RELATED WORK
The evaluation of metrics for IQA in the domain of natu-
ral images started from the early task-specific works that
considered FR methods to characterize color displays and
half-toning optimization methods [13].

More recent task-specific studies explored IQA for the
images of scanned documents [14] and screen content [15].
Likewise, fused images [16], smartphone photographs [17],
remote sensing data [18], and climate patterns [19] demanded
the development of targeted IQA approaches. Historically,
many of these works have been focusing on the quality
degradation caused by the compression algorithms [19], [20],
[21], [22], with relatively small datasets appearing publicly
for the IQ evaluation. However, the small dataset size and
the excessive re-use of the same test sets have led to the
promotion of the IQMs poorly generalizable to the unseen
distortions.

This was recognized as a major problem, stimulating the
emergence of large-scale studies [9], [23]. Among the large-
scale evaluations, the majority compared multiple FR met-
rics, ranging from just a handful [24], [25], [26], [27] to
several dozens [9], [28] of IQMs analyzed on popular
datasets.

The medical domain stands out from the others by a special
sense of what is deemed informative and acceptable in the
images [29]. Resulting from years of training and practice,
the perception of medical scan quality by adept radiologists
relies on a meticulous list of anatomy-specific requirements,
on their familiarity with particular imaging hardware, and
even on their intuition.

Given the majority of IQMs were not designed for the
healthcare domain, some recent works were dedicated to
the niche. One small-scale study considered a connection of
IQA of natural and medical images via SNR estimation [30].
Others assessed common FR IQMs using non-expert
raters [31], [32]. Sufficient for the general audience, these
methods proved incapable of reflecting the fine-tuned percep-
tion of the radiologists [33].

Expert raters were then engaged in [11] and [34]. The
former studied only IQMs from the SSIM family and the latter
assessed 10 FR IQMs, reporting that VIF [35], FSIM [36],
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and NQM [37] yield the highest correlation with the radiolo-
gists’ opinions.

On the other hand, Crow et al. argue that NR IQA are
preferable for assessing medical images because there may
be no perfect reference image in the real-world medical imag-
ing [38]. To address this issue, several recent studies also pro-
pose new NR IQMs for MRI image quality assessment [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48]. The recent
survey [49] overviewsMRI-specific IQMs and concludes that
the number of available metrics is relatively low and that their
development is hindered by the lack of publicly available
datasets. Also, none of these newmetrics have an open-source
implementation, making verification of the claimed results
problematic.

III. IMAGE QUALITY METRICS CONSIDERED
In this work, we evaluate the most widely used and publicly
available general-purpose FR, NR, and DB IQMs to find
the best algorithms for the quality assessment on arguably
the most important MRI-related image-to-image tasks: scan
acceleration, motion correction, and denoising. Instead of
modeling the disrupted images, we use outputs of trained
neural networks and compare them with the clean reference
images from the fastMRI dataset.

Our study includes the following 35 metrics: 17 Full-
Reference IQMs (PSNR, SSIM [2], MS-SSIM [50], IW-
SSIM [51], VIF [35], GMSD [52], MS-GMSD [53],
FSIM [36], VSI [54], MDSI [55], HaarPSI [56], Con-
tent and Style Perceptual Scores [57], LPIPS [58],
DISTS [59], PieAPP [60], DSS [61]), 3 No-Reference
IQMs (BRISQUE [4], PaQ-2-PiQ [62], MetaIQA [63]),
and 15 Distribution-Based IQMs (KID [7], FID [6],
GS [64], Inception Score (IS) [5], MSID [8], all implemented
with three different feature extractors: Inception Net [65],
VGG16, and VGG19 [66]). For brevity of the presentation,
we will showcase only the analysis of the best perform-
ing four metrics, in the order of their ranking: VSI [54],
HaarPSI [56], DISTS [59], and FIDVGG16 [6]. All metrics
were re-implemented in Python to enable a fair comparison,
with the PyTorch Image Quality (PIQ) [67] chosen as the
base library for implementing all metrics. The resulting
implementations were verified to be consistent with the
original implementations proposed by the authors of each
metric.

Noteworthy, in our survey, we dismissed some recent
results reported for the PIPAL dataset [68] during
the 2021 NTIRE challenge [69], because the winners [70],
[71], [72] released no official implementations or model
weights at the time of our experiments.

For the comparison, we collect 14,700 ratings from
7 trained radiologists to evaluate the quality of reconstructed
images based on three main criteria of quality: perceived
level of noise (SNR), perceived soft tissue contrast (CNR),
and the presence of artefacts, making this work the most
comprehensive study of MRI image quality assessment to
date.

IV. MEDICAL EVALUATION
The key goal of this study is to evaluate popular selected
IQMs on MRI data. Previous works [11], [34] evaluated the
ability of certain IQMs to assess overall quality of data after to
various types of artificial distortions.1 However, in practice,
the overall image quality (IQ) rating may be insufficient due
to its ambiguity: e.g., one could not truly interpret the reasons
for poor or good scoring. At the same time, asking themedical
experts these general questions may be challenging because
of many factors, ranging from the specifics of certain clinical
workflows to personal preferences.

In this work, we aspire to solve these problems by propos-
ing the following study. First, we evaluate IQMs with regard
to their ability to reflect radiologists’ perception of the quality
of distorted images, comparing them to the fully-sampled
artifact-free ones. We range the metrics based on three IQ cri-
teria that are crucial for making clinical decisions: perceived
level of noise (SNR), perceived level of contrast (CNR),
and the presence of artefacts. Second, instead of corrupt-
ing images with artificial perturbations, for the first time in
the community, we validate these metrics using the actual
outputs of deep learning networks trained to solve common
MRI-related tasks. As such, the artefacts originate from the
imperfect solutions to the common real-world problems of
motion correction, scan acceleration, and denoising.

A group of trained radiologists rated the quality of distorted
images compared to the clean reference images on a scale
from 1 to 4 for the three IQ criteria. Unlike the five-point
Likert scale, the simplified scale balances the descriptive-
ness of the score with the noise in the votes of the radiol-
ogists. Our mock experiments showed that the respondents
considered the selection between too many options difficult,
with the five-point scale having a diluted difference between
the options; whereas, the three-point scale was deemed
insufficient.

After the evaluation, the aggregated results were compared
with the values of selected IQA algorithms to identify the top
performers – the metrics that correlate the highest with the
radiologists’ votes.

A. IMAGE LIBRARY GENERATION
As a data source, we use the largest publicly available repos-
itory of raw multi-coil MRI k-space data – the FastMRI
dataset, containing the knee and the brain scans [73], [74].
The knee subset of FastMRI contains 1,500 fully sampled
MRIs acquired with a 2D protocol in the coronal direction
with 15 channel knee coil array on 3 and 1.5 Tesla Siemens
MRI machines. The data consists of approximately equal
number of scans acquired using the proton density weight-
ing with (PDFS) and without (PD) fat suppression pulse
sequences with the pixel size of 0.5 mm × 0.5 mm and the
slice sickness of 3 mm.

1These artificial distortions, e.g., blurring or JPEG artefacts, are rarely
encountered or even impossible in MRI practice.
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FIGURE 1. Distortions introduced to initial artefact-free scans during training and inference. Using the raw k-space data of the reference images,
we undersample them with the acceleration factor of 4, impose rigid motion of a moderate amplitude, and introduce mild Gaussian noise. Note how the
distortions differ from those in the Natural Images, on which the common IQMs were developed. We adjusted brightness for viewer’s convenience.

The knee subset is divided into 4 categories: train
(973 volumes), validation (199 volumes), test (118 volumes),
and challenge (104 volumes). Only the multi-coil scans were
selected for this study, omitting the single-coil data.

The brain subset includes 6,970 1.5 and 3 Tesla scans
collected on Siemens machines using T1, T1 post-contrast,
T2, and FLAIR acquisitions. Unlike the knee subset, this data
are of a wide variety of reconstruction matrix sizes. For the
purpose of de-identification, authors of the dataset limited the
data to only 2D axial images, and replaced k-space slices ⪆
5 mm below the orbital rim with zero matrices. The brain
subset is divided into 6 categories: train (4,469 volumes),
validation (1,378 volumes), test 4× (281 volumes), test
8× (277 volumes), challenge 4× (303 volumes), and chal-
lenge 8× (262 volumes).

Starting with the clean knee and brain data, we first gen-
erate images corrupted with three types of distortions: scan
acceleration, motion, and noise. The examples of the dis-
torted images are presented in Fig. 1. After that, we train
two reconstruction models for each type of distortions using
PyTorch [75]. The first model is trained until the valida-
tion loss is stabilized. The second model is trained for
half as long to purposely produce imperfect reconstructions,
oftentimes encountered in practice. Examples of corrupted
images and the corresponding reconstructions can be found
in Appendix B. The reduced training time was a conscious
choice, enabling the model to produce some visible recon-
struction errors. More specifically, we interrupted the training
when the 90% of the loss plateau is reached, which allows
for good performing models with imperfections we wanted
to test for.2 Finally, we use the trained models to reconstruct
the corrupted images in the validation subset of the FastMRI,
from which we generate the labeling dataset.

1) SCAN ACCELERATION
Scan-acceleration data are generated from the ground truth
images by undersampling the k-space data. To train the
model, we selected only T1 weighted scans (T1, T1-PRE
and T1-POST) from the train category of the FastMRI brain
data. The same subset of data was used for training of motion
correction and denoising models. The k-space data were sub-
sampled using a Cartesian mask, where k-space lines are set

2It is a standard way to broaden the image distribution from which the
samples are drawn for evaluation and voting (e.g., see [76]).

to zero in the phase encoding direction. The sampled lines are
selected randomly, with the total sampling density depending
on the chosen acceleration rate. Following the data generation
process from the FastMRI challenge [73], all masks are fully
sampled in the central area of k-space (the low frequencies).
For the 4× accelerated scans, this corresponds to 8%, and
for the 8× acceleration, it equals to 4%. Besides making
the reconstruction problem easier to solve, such lines allow
computing the low-pass filtered versions of the images for
assessing the coil sensitivity maps.

To compensate for the undersampling, we used the
2019 FastMRI challengewinnerAdaptive-CS-Netmodel [77].
Based on the Iterative Shrinkage-Thresholding Algorithm
(ISTA) [78], this model consists of several trainable convo-
lutional multi-scale transform blocks between which several
prior knowledge-based computations are implemented. For
scalability reasons and without substantially impacting the
reconstruction results, in this study, we trained a simplified
light-weight version of the Adaptive-CS-Net model. The
resulting model consists of only 10 trainable blocks and 267k
parameters. Unlike the full Adaptive-CS-Net model with
three MRI-specific physics-inspired priors, the simplified
version has only one prior module between the reconstruction
blocks – the soft data consistency step. Specifically, the
update for the block Bi+1 in the simplified Adaptive-CS-Net
model is defined as follows:

Bi+1(xi) = xi + Ûi(soft(Ui(xi, ei), λs,fs )) , (1)

where xi denotes the i-th estimate of reconstruction, U and Û
are the multi-scale transform and its inverse that consist of 2D
convolutions and a nonlinearity in the form of Leaky-ReLU.
The feature maps produced at the different scales are thresh-
olded using the soft-max function soft(·),3 parameterized by a
learned parameter λs,fs for each feature channel fs and scale s.
In Eq. 1, the soft data consistency step ei is defined as follows:

ei = F−1(MFxi −My), (2)

where F and F−1 denote Fourier transform and its inverse,
My is the data measured with the sampling maskM .
We trained the simplified Adaptive-CS-Net model using

RMSprop optimizer [79] to minimize L1 loss function
between the reconstruction estimate and the ground truth
image obtained from the fully sampled data. We used a

3Defined as soft(u, λ) = max(|u| − λ, 0) ·
u
|u| .
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FIGURE 2. Formation of Labeling and Re-labeling datasets for annotation (left) and the content of each group of images for the medical evaluation and
labeling by radiologists in the Labeling dataset (right). Starting from the clean validation data, we first generate corrupted data with the acceleration
artefacts, the motion artefacts, and the Gaussian noise. Then, we reconstruct the corrupted data using trained neural network models and randomly
select scans to form labeling and re-labeling pairs for the experts to grade.

step-wise learning rate decay of 10−4 and the batch size
of 8 to reconstruct the data for various acceleration factors
(from 2× to 8×).

2) MOTION CORRECTION
The in-plane motion artefacts, including rigid translation and
rotation, were introduced into the Fourier-transformed data
following the procedure described in [80]. For each input
image, the assumed echo-train length of the turbo spin-echo
readout was chosen randomly in the 8—32 range. Similarly,
the assumed extent of zero-padding in k-space was chosen
randomly in the range of 0–100. The motion trajectories
(translation/rotation vectors as a function of scan time) were
generated randomly to simulate the realistic artefacts. In this
study we utilized the protocol for ‘‘sudden motion’’ simula-
tion. Here, the subject is assumed to lie still for a large part
of the examination, until a swift translation or rotation of the
head occurs. The time point of the sudden motion was taken
randomly as a fraction of the total scan time in the range
of one-third to seven-eighths. The maximum magnitude of
the motion was chosen randomly from the range of [1], [4]
pixels for the translation and [0.5,4.0] degrees for the rotation
artefacts. The center of rotation was also varied randomly in
the range of [0,100] pixels in each direction. These parameter
ranges were selected empirically to generate a large variety of
realistic artefacts and were used consistently in the training
and in the validation runs.

To compensate for the motion artefacts of various extent,
we trained U-Net models [81] with 209k parameters. While
more advanced architectures exist, we found the basic U-Net
to be more than sufficient for the scope of the proposed IQA
study, as it is enough to capture imperfections which are often
generated by deep learning models.

The model received the motion corrupted data as the input
and learned to predict the motion artefacts in a residual man-
ner, i.e., the output of the model was a predicted image of
motion in the input data. The model was trained to minimise
L1 loss between the ground-truth and the predicted resid-
ual with Adam [82] optimizer using the step-wise learning
rate decay of 10−4 and the batch size of 8. Preserving the
same nature of artefacts, we trained our models for a range
of amplification factors (from 1 to 3). For that, through-
out the training, the motion amplitude was scaled by the

amplification factor, yielding a consistently diverse appear-
ance of the motion artefacts that could be met in practice.

3) DENOISING
In our study, noisy magnitude images are generated from the
complex k-space data with the Gaussian distribution taken as
the representative noise model. Below, the standard deviation
of the Gaussian noise is reported for a region of interest in
the background of the magnitude image, as proposed in [83].
The parameters of the noise distribution for each volume are
drawn from the last slice of this volume. Then, the Gaussian
noise with the estimated distribution parameters is generated,
scaled by an amplification factor, and added to all images
of the volume. We used the amplification factor of 2 for the
training and the amplification factors of 1, 2, and 3 for the
test data generation to enrich the variety of the tested image
qualities in the resulting dataset.

To compute the denoised images, we trained DnCNN
models [84] with 556k parameters on the brain multi-coil
train data using the RMSprop optimizer [79] and a step-wise
learning rate decay of 10−4 with the batch size of 8. Similarly
to the other tasks considered herein, we are not looking for
the most powerful denoising algorithms but consider a very
commonplace model DnCNN instead, merely to rank the
modern IQA metrics for the specific task of denoising.

4) FINAL DATASET FOR LABELING
We started the formation of the labeling dataset from
the clean volumes from the validation subsets of brain
and knee FastMRI datasets; hence, these scans were not
used to train the artefacts correction models. In total,
both validation subsets contain 1,577 volumes, resulting in
28,977 images: 199 knee volumes with 7,135 slices and
1,378 brain volumeswith 21,842 slices. In each brain volume,
the lower 2 and top 3 slices were discarded to restrict the
analysis to clinically relevant parts of the scan. In each knee
volume, the first 3 slices were discarded for the same reason.
To limit the number of data points and decrease the over-
all variability of data types, we selected only T1-weighted
(T1, T1-PRE andT1-POST) brain volumes and proton-density
weighted without fat suppression (PD) knee volumes.

The data generation pipeline is summarized in Fig. 2.
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Using the selected subset of clean validation data, we sim-
ulated images for the reconstruction:

• For the scan acceleration task, we simulated acceleration
artefacts for undersampling rates of 2×, 4×, and 6×,
following the data generation process from the FastMRI
challenge;

• For the motion correction task, we simulated motion
artefacts of three different strengths using the rigid
motion simulation framework described above;

• For the denoising task, we simulated Gaussian noise
with amplification factors of 1, 2 and 3 using the noise
generation procedure described above.

After that, all generated corrupted data were reconstructed
using the reconstruction models trained for the corresponding
tasks. Note that we deliberately generated a fraction of data
with parameters different from the ones used to train the
reconstruction models.We found this approach yields various
levels of artefacts typically appearing after the reconstruction
process.

From the large pool of reconstructed images, we select
100 pairs of images (clean - reconstructed) for each task (scan
acceleration, motion correction, denoising) and each anatomy
(knee, brain), evenly distributing the data to represent each
reconstruction parameter (e.g., the acceleration rate for the
scan acceleration task). This strategy results in the labeling
dataset of 600 pairs of images in total (3 tasks× 2 anatomies).

To reach the goal labeling dataset size, we utilized the
following data selection procedure:

1) Compute values of IQMs for all reconstructed images
(for NR IQMs) or image pairs (for FR IQMs);

2) Normalize each IQM value to [0, 1];
3) Compute variance between IQM values for all items;
4) Sort all items by the value of variance;
5) Select 25% of data for each task-anatomy combination

from the data items with the highest variance, assuming
that itemswith the biggest disagreement between IQMs
are the most informative;

6) Select the rest 75% of data pseudo-randomly (preserve
distribution of reconstruction parameters) to avoid
introducing any bias from the variance computation.

Lastly, we deliberately duplicated 100 of the 600 prepared
items for the purpose of verification of radiologists’ self-
consistency, resulting in 700 image pairs to be labelled by
each radiologist.

B. EXPERIMENT SETUP
Within the paradigm of the model observer framework [85],
the quality of a medical image can be defined as how well a
clinical task (e.g., diagnostics) can be performed on it [86].
This means that the perfect MRI IQM would be some task-
based score, such as the diagnostic accuracy. However, such
a metric is difficult to implement due to a great diversity of
diagnostic outcomes that radiologists deal with in practice.
Because of that, the convention is to use a subjective estima-
tion of the overall diagnostic value instead [11].

However, we argue that a single score is not sufficient to
reflect the abundance of anatomies, pathologies, and artefac-
tual cases that the radiologists work with. Instead, we pro-
pose to subdivide the score of the overall diagnostic quality
into three main criteria that can be important for a clinical
practitioner to make their decision: i) perceived level of noise,
ii) perceived level of soft-tissue contrast, and iii) presence of
artefacts.

1) SUBJECTIVE EVALUATION
Seven trained radiologists with 7 to 20 years of experience
took part in this study. The participants were asked to score
pairs of reconstructed-reference images using three main
IQ criteria. For each image pair and each criterion,
radiologists scored the perceived diagnostic quality of the
reconstructed image compared to the ground-truth using a
four-point scale: not acceptable (1), weakly acceptable (2),
rather acceptable (3), and fully acceptable (4). The four-point
scale was selected over the five-point Likert scale, previously
used in [11].

Each participant performed the labeling individually using
a dedicated instance of the Label Studio [89] software acces-
sible via a web interface. The experts were asked to make all
judgments about the image quality with regard to a particular
diagnostic task that they would normally perform in their
practice (e.g., the ability to discriminate relevant tissues, the
confidence in using the image to detect a pathology, etc.).
The interface provided additional functionality of scaling
(zooming) the images to closer mimic the real-life workflow.
The pairs of images were displayed in a random order until
all pairs were labelled. Participants had an opportunity to
re-label the pairs they have already scored at any point until
the experiment is finished.

During the main part of the experiment, each participant
labelled 600 pairs of images based on the 3 quality criteria,
resulting in 4,200 annotated pairs and 12,600 labels in total.
The results of the main labeling session were used for further
evaluation of the IQMs. After finishing the main part of the
experiment, the participants were asked to additionally label
100 randomly selected pairs from the same dataset, yielding
additional 2,100 labels. The results of this additional re-
labeling were used to evaluate the self-consistency of each
annotator.

2) METRICS COMPUTATION
Unlike FR and NR IQMs, designed to compute an image-
wise distance, the DB metrics compare distributions of sets
of images. This makes them less practical for traditional IQA,
the goal of which is to compute a score for a given image
pair. Moreover, the need to have sets of images hinders the
vote-based evaluation via the mean subjective opinion scores.

To address these problems, we adopt a different way of
computing the DB IQMs. Instead of extracting features from
the whole images, we crop them into overlapping tiles of size
96 × 96 with stride = 32. This pre-processing allows us to
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FIGURE 3. Performance of IQMs on different MRI tasks and on Natural Images (NI), compared by their correlation with the expert votes
(SRCC values, left) and sorted top-to-bottom by their rank (right). The ordering reflects the performance on the MRI data only. The same
color-coding is used in both plots. NI-generic scores are the average between TID2013 [87] and KADID-10k [88] datasets. Note higher
correlation of IQMs on NI and poor translation of ranking to MRI domain. Refer to data in Table 1 for numerical values.

treat each pair of images as a pair of distributions of tiles,
enabling further comparison. The other stages of computing
the DB IQMs are kept intact.

C. DATA ANALYSIS
Here, we adapt the analysis of the scoring data proposed
in [24] to the multiple IQ criteria. The voting scores for
each scoring criteria are not analyzed in their raw format.
Instead, they are converted to z-scores (averaged and re-
scaled from 0 to 100 for each radiologist to account for their
different scoring):

znmk = (Dnmk − µmk )/σmk , (3)

whereµmk and σmk are themean and the standard deviation of
the difference scores of the mth radiologist on the k th scoring
criteria, and Dnmk are the difference scores for nth degraded
image defined as follows:

Dnmk = smk,ref − snmk . (4)

In Eq. (4), smk,ref is the raw score of the mth radiologist on
the k th scoring criteria for the reference image corresponding
to the nth degraded image, and snmk is the raw score of the
mth radiologist on the nth degraded image on the k th scoring

criteria. Note that in this study, the radiologists were asked
to perform pair-wise comparison between degraded and ref-
erence images. Hence, it is possible to treat the raw labeling
scores as the difference scores Dnmk .
After standardizing the expert votes by Eq. (3), their cor-

relation statistics with each IQM were computed in the form
of SRCC and KRCC coefficients, defined as follows:

SRCC = 1 −
6

∑n
i=1 d

2
i

n(n2 − 1)
, (5)

where di is the difference between the i-th image’s ranks in
the objective and the subjective ratings and n is the number
of observations.

KRCC =
2

n(n− 1)

∑
i<j

sign(xi − xj) sign(yi − yj) , (6)

where (x1, y1), . . . , (xn, yn) are the observations: the objective
and the subjective score pairs.

We use SRCC as the main measure of an IQM perfor-
mance, due to the non-linear relationship between the sub-
jective and the objective scores.4

4The non-linear relationship is evident in Fig. 4 below.
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The sizes of each batch of data are described in Fig. 2
(right).

A non-linear regression was performed on the IQM scores
according to the quality Q to fit the subjective votes:

Q(x) = β1

(
1
2

−
1

1 + exp(β2(x − β3))

)
+ β4x + β5, (7)

where x are the original IQM scores and β1, . . . , β5 are the
fitting coefficients.

V. RESULTS
Figs. 3 and 4 and Table 1 summarize the correlation study
between the radiologists’ scores and the IQM values for the
three proposed evaluation criteria. The figures also show the
results for the natural image domain. Top 4 performers in
each category are marked in bold. The best and the worst
examples of the reconstructions, as judged by different met-
rics, are presented in Fig. 5, and the aggregate scores for the
top-performing metrics in each application in Fig. 6.

VI. DISCUSSION
The visual inspection of the outputs of the models in Fig. 5
makes it evident how the top metrics are superior in reflect-
ing the actual reconstruction quality over the conventional
PSNR and SSIM. The latter are known to misjudge shifts
of brightness or a blur, indicating high quality for the bad
images, whereas the more advanced FR and DB IQMs cor-
relate with the visual perception and the subjective scores
ably. Henceforth, out of the 35 metrics considered, we only
discuss the best ones, according to their rank in the correlation
study (VSI, HaarPSI, DISTS, FIDVGG16) and the widely used
PSNR and SSIM.

As the key observation in the first systematic study of
the DB metrics, we affirm that the choice of the feature
extractor plays a crucial role. In particular, the correlation
scores show that the Inception-based features are almost
always worse than those from VGG16 (except for the MSID
metric). Moreover, we see that, despite having been designed
for the evaluation of realism of generative models data, FID
shows competitive SRCC scores, thus, becoming a new rec-
ommended metric for the MRI image assessment tasks.

The non-linear relationship between the subjective and the
objective scores, seen in Fig. 4, portrays intricate behavior
with evident dependence on the anatomy and the target task,
as well as a clear clustering of the points, instrumental for
selecting a proper metric in a particular application. Notable
are the generally lower IQM correlation scores when the
difficulty of the reconstruction routine increases (compare
trends in the scan acceleration data to those in the more
complex denoising and the motion correction models). Also,
the evaluation values for the knee reconstruction are generi-
cally lower, which could be caused by the greater variety of
anatomical structures present in the knee data, as well as the
more strict pertinent medical evaluation criteria [33].

Fig. 6 aggregates the outcomes per each task, anatomy,
and evaluation criteria studied in our work, with the relation

TABLE 1. SRCC values of all 35 metrics on Natural and MRI Data.
Top 4 performers in all categories are marked in bold.
∗ denotes values taken directly from [90].

between the subjective and the objective scores highlighting
the differences in the average performance of the top metrics.
Notably, these selected IQMs have the highest correlation
with expert judgment in the scan acceleration task. However,
all metrics equally struggle reflecting the opinion of the radi-
ologists in denoising and, sometimes, in motion correction
tasks, especially on brain data. We also observe that some
metrics perform consistently in terms of all three evaluation
criteria and all tasks for given anatomy. For instance, GMSD
and DISTS, despite not being of the highest SRCC rank
overall, still show consistently high correlation scores on
knee data, which proffers both of them as universal choices
for the IQA in orthopedic applications. On the other hand,
HaarPSI consistently rates the highest for both anatomies in
the scan acceleration task, an instrumental fact to know when
a single machine is used to scan various body parts or when
the pertinent cross-anatomy inference [91] is performed.

VOLUME 11, 2023 14161



S. Kastryulin et al.: Image Quality Assessment for Magnetic Resonance Imaging

FIGURE 4. Relationship between processed subjective scores and IQM values for 3 evaluation criteria, 3 target tasks, and 2 anatomies (600 annotated
image pairs in total). The solid lines are fits, plotted using the non-linear regression (7) on the subsets of images split by the tasks. The top 4 metrics
(along with PSNR and SSIM, as the most commonplace) are shown in the decreasing order left to right, using SRCC to gauge the performance.

FIGURE 5. The best and the worst reconstruction-reference pairs according to different metrics (their values are shown in yellow). Note how the
top 4 metrics (first four columns) reflect the actual reconstruction quality better than PSNR and SSIM (which are prone to misjudging a simple
shift of brightness or a blur). The brightness is adjusted for viewer’s convenience.

A. NATURAL vs. MRI IMAGES
A frequent IQA-related question is how generalizable are
the performance benchmarks across different datasets and
image domains. To study that, we analyzed the applicability

of all 35 IQMs considered herein both in the MRI and the
natural image (NI) domains (Table 1). For the latter, the
popular TID2013 [87] and KADID-10k [88] datasets of NIs
were used. Fig. 3 illustrates the effect of the shift between
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FIGURE 6. Aggregate relationship between the objective and the
subjective scores for 3 evaluation criteria (rows), 2 anatomies (columns),
and 3 tasks: scan acceleration ( ), denoising ( ), and motion correction ( ).
The IQMs are ordered by decreasing average SRCC for the artefacts
criterion on the brain data. This order is kept throughout all results for
consistency. Note the tendency of the metrics to perform poorly in some
task-anatomy combinations, e.g., in denoising the brain data.

FIGURE 7. Correlation between the subjective scores in labeling and
re-labeling sessions on the same data, with each column/color
corresponding to an individual radiologist. This plot shows scoring
self-consistency of the experts and the average time spent labeling one
pair of images. Apparently, the time spent on labeling is not the major
factor affecting the self-consistency of experienced radiologists.

the NI and the MRI domains, featuring an expected drop
of the correlation values for most metrics.5 However, the
domain shift affects the ranks of the IQMs differently. Some
top NI metrics, such as MDSI and MS-GMSD, naturally
take lower standings in the MRI domain; however, others,
such as HaarPSI and VSI, remain well-correlated with the
radiologists’ perception of quality. Further examples of IQMs
robust to the domain shift are DISTS and FIDVGG16.

B. LABELING DISCREPANCIES AND SELF-CONSISTENCY
STUDY
Another IQA-related question encountered in survey-based
studies is the trustworthiness of the votes themselves. Given

5Not surprising, given these IQMs were designed for NI in the first place.

FIGURE 8. Pair-wise Spearman’s rank correlation coefficient between
z-scores from seven radiologists participating in the survey. According
to [92], this pattern corresponds to a strong agreement between the
experts.

that only reputable radiologists were engaged in our labeling
routine, we have no grounds for doubting their annotations as
far as the domain knowledge is concerned. Therefore, feasible
discrepancies among their votes can be assumed to originate
either from such factors as the study design, its duration,
and fatigue, or from a previous experience which sometimes
forms a posteriori intuition and, allegedly, influences the
experts to make decisions different from the others.

While the latter is too subjective and difficult to regulate,
the former could be controlled. We put effort to simplify
the user experience and allowed the radiologists to approach
the labeling assignment in batches at their own pace (see
Appendix C). The average lead time spent labeling a pair
of images,6 an arguable indicator of the scrupulousness of
an annotator, is plotted in Fig. 7, where we also summarize
the results of the self-consistency study. The study reports
WeightedCohen’sKappa scores, computed between the votes
provided in the main and in the additional re-labeling exper-
iments on the same data. Interestingly, there is no significant
correlation between self-consistency and the labeling time,
placing other factors mentioned above, such as individual
experience, at the forefront.

We also opted for evaluating the agreement between the
radiologists’ opinions by assessing the monotonic correlation
between the z-scores computed earlier, which should account
for the individual scoring preferences. The SRCC correlation
values, shown in Fig. 8, never drop below 0.50, with a mean
of 0.55 and a median of 0.53 (corresponds to strong relation-
ship between variables).

In Fig. 7, the Weighted Cohen’s Kappa values correspond
to moderate to substantial consistency of scoring (according
to [93]). And, according to [92], the SRCC range in Fig. 8
corresponds to a strong agreement. Given the sufficiently

6We discarded 5% of the shortest and the longest lead times to account for
erroneous clicks and breaks between the labeling sessions.
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TABLE 2. List of Abbreviations.

trustworthy labeling, the spread of the correlation scores for
the modern IQA metrics in Fig. 6, and the non-trivial corre-
lation patterns in Fig. 4, one can conclude that the optimal
MRI metric is yet to be devised.

Besides a blunt umbrella metric aggregating the
top-performing predictions (e.g., those of VSI, HaarPSI,
DISTS, and FIDVGG16), the future effort should be dedicated
to additional forays into modeling MRI-specific perception
of the radiologists and to interpreting their assessment using
formalized rules taken from the medical textbooks. Such
interpretatable metrics will be especially in demand, given
the recent appearance of the MRI sampling approaches
aimed towards optimizing downstream tasks [94], including
the recently annotated FastMRI dataset [95]. Another line
of future work could be ‘borrowed’ from the NI domain,
where the abundance of data has led to the emergence of
several NR IQMs. Although, in our study, all such metrics
(classic BRISQUE [4] and the more recent PaQ-2-PiQ [62]

FIGURE 9. Examples of corrupted images used as inputs to the
reconstruction models (left column), the reconstruction results (middle
column), and the artefact-free reference images (right column). Examples
with medium strength corruptions are displayed to showcase possible
imperfect reconstruction results.

and MetaIQA [63]) showed equally mediocre performance
compared to the other IQMs, we believe their value in the
MRI domain is bound to improve with the growth of available
data.

VII. CONCLUSION
This manuscript reports the most extensive study of the image
quality metrics for Magnetic Resonance Imaging to date,
evaluating 35 modern metrics and using 14,700 subjective
votes from experienced radiologists.
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FIGURE 10. Web interface of the Label Studio software released to the expert radiologists to perform the labeling. The participants
selected their answers using the proposed scale from 1 to 4, rating the images based on each proposed IQA criteria.

The applicability of full-reference, no-reference, and
distribution-based metrics is discussed from the standpoint
of MRI-specific image reconstruction tasks (scan accelera-
tion, denoising, and motion correction). Unlike previous IQA
studies analyzing IQMs with manual distortions, we use the
outputs of neural network models trained to perform these
particular tasks, enabling a realistic evaluation. Different
from the natural images, the MRI scans are proposed to
be assessed according to the most diagnostically influential
criteria for the quality of MRI scans: signal-to-noise ratio,
contrast-to-noise ratio, and the presence of artefacts.

The top performers – DISTS, HaarPSI, VSI, and
FIDVGG16 – are found to be efficient across three proposed
quality criteria, for all considered anatomies and the target
tasks.

APPENDIX A
ABBREVIATIONS
A list of abbreviations is provided in Table 2.

APPENDIX B
RECONSTRUCTION EXAMPLES
During the labeling experiment, experts were asked to label
pairs of images. Each pair contained a low-quality image
placed side-by-side with a corresponding high-quality refer-
ence. Each low-quality image was obtained by, first, corrupt-
ing the corresponding reference and, then, by reconstructing
it with the models trained to solve one of the tasks described
in the main text (scan acceleration, motion compensation,
or denoising). Fig. 9 showcases typical pairs of images used
in the experiment. The following corruption parameters were
used to generate the images: acceleration factor of 4, motion
amplification factor of 0.6, noise amplification factor of 2.
These parameters correspond tomedium strength corruptions,
showcasing possible imperfect reconstruction results.

APPENDIX C
LABELING USER INTERFACE
During the labeling experiment, the participants were asked
to score pairs of reconstructed-reference images presented to
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them side-by-side in a web interface of the Label Studio [89].
The web interface is shown in Fig. 10.
The labeling was done using three main IQ criteria: the

presence of artefacts, the perceived level of noise, and the
perceived level of soft-tissue contrast. The participants were
able to select their answers using the mouse pointer or some
keys on the keyboard. During the quality assessment process,
the participants were able to zoom images, re-label previously
labeled examples, pause and divide their evaluation session
into as many labeling rounds as they wished. All labeling
results were continuously saved on a remote server to elimi-
nate the possibility of data loss. After the complete labeling
process, the participants were offered the last chance to fix
the scoring of the borderline examples.
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