
Received 9 December 2022, accepted 3 February 2023, date of publication 8 February 2023, date of current version 14 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3243245

Maintaining Stability for a Matching Problem
Under Dynamic Preference
AKHMAD ALIMUDIN 1,2, YOSHITERU ISHIDA 1, AND KOUTAROU SUZUKI 1
1Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
2Department of Multimedia Creative Technology, Politeknik Elektronika Negeri Surabaya, Surabaya 60111, Indonesia

Corresponding author: Akhmad Alimudin (akhmad.alimudin.qq@tut.ac.jp)

This work was supported in part by the Toyohashi University of Technology, and in part by the Ministry of Education, Culture, Sports,
Science and Technology - Japan.

ABSTRACT This study investigates two-sided matching and considers dynamic preference. In a stable
matching problem, dynamic preference is a situation that often happens in real-world situations where
the agent cannot express their preference with certainty. This study proposes a new concept to find stable
matching using the blocking pair perspective. A stable matching is determined by identifying a matching
by finding a matching with the minimum blocking pairs in multiple instances. In addition, the definition of
stability is extended for the stable matching problem under dynamic preference to propose three new notions
of stability. The proposed concept demonstrates more detailed information to assist in determining a stable
matching with a dynamic preference. Moreover, the experiment results show that matching with the lowest
expected value of the blocking pair gains the highest satisfaction score of agents in the market.

INDEX TERMS Stable matching, dynamic preference, blocking pair, expected value.

I. INTRODUCTION
Gale and Shapley [1] introduced the Stable Marriage Prob-
lem (SMP), the most popular two-sided matching prob-
lem. The SMP instance is I = (M ,W ,L), where M =

{m1,m2, . . . ,mn} and W = {w1,w2, . . . ,wn} denote a set
of men agents and women agents, respectively, and L is
the preference list of each agent towards the opposing side.
If a man m and a woman w are paired in matching µ, they
are called partners, and we write m = µ(w) and w = µ(m).
SMP is the one-to-one stable matching problemwith an equal
number of men and women. For n size of SMP, the number
of men equals the number of women, |M | = |W | = n.
In a classic SMP, each agent defines their preference in strict
order, requiring that they include all available members of the
opposite sex. Matching µ is considered stable if no blocking
pair (BP) is discovered. A BP comprises a man m and a
woman w who are not paired in matching µ but like each
other to their current partner. We write a ≻b c to say that
agent b prefers a to c. Therefore, m and w is a blocking pair
in matching µ if w ≻m µ(m) and m ≻w µ(w).

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

Since its introduction in 1962, numerous versions of SMP
have been introduced, such as the stable roommate prob-
lem and hospitals/residents problem [2], [3], [4], [5]. The
SMP has also been implemented to solve real-world prob-
lems. For example, the hospitals/residents problem variant is
applied to assign the residents (medical interns) to hospitals.
Recently, the SMP has been extensively used for large-scale
computer applications such as in content delivery networks
technology [6] and scheduling strategy for assigning virtual
machines (VMs) to servers [7], [8], [9].

In a real-world situation, the agent could change their
preference. The preference changes of agents can be caused
by several things, such as the lack of information about their
potential partners or certain conditions that force an agent
to change their preferences. We study the stable matching
problem under dynamic preference. In classical SMP, it is
assumed that each agent expresses their preferences with
certainty, i.e., the agents will never change their preferences.
Nowadays, preference uncertainty is the future trend and a
challenge to the stablematching problem [10], and preference
uncertainty leads to the formation of a dynamic preference.

A classical SMP instance is I = (M ,W ,L). If agents
change their preferences, this leads to SMP with dynamic
preference. Moreover, an instance of SMP with dynamic
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preference leads to the formation of a dynamic instance,
DI = (M ,W ,L1,L2, . . . ,Lk ), where k is the number of
unique preference lists that occur because of changes in agent
preferences. Thus, a set of SMP instances for SMP under
dynamic preference is DI = {I1, I2, . . . , Ik}. The following
3 × 3 SMP illustrates the problem:
Example 1: There is a set of men M = {m1,m2,m3} and

women W = {w1,w2,w3}. Suppose that agent m1 expresses
two different preferences. Consequently, these settings pro-
duce two SMP instances, as seen in Figure 1:

FIGURE 1. The 3 × 3 SMP with dynamic preference.

A related study conducted prior to this proposed a
mechanism to update stable matching when the preference
changes [11]. It is termed a short-term stability strategy since
the preference infrequently changes. However, this study
assumes that preference frequently changes, and employing a
short-term strategy might be costly when preference changes
frequently occur.

In this study, we propose a new concept to find a stable
matching under dynamic preference.We use the blocking pair
perspective to find a stable matching under dynamic prefer-
ence. The most stable matching concept [12], [13], [14], [15]
is an existing solution to solve the stable matching problem
under dynamic preference. The most stable matching concept
determines stable matching by selecting a matching with
the highest α value, where α indicates the number of stable
matchings against instances. The α value is determined by
counting the stability number of matching against available
instances. When there is no blocking pair, α is increased.
However, if at least one blocking pair is discovered, the
matching is considered unstable, and α is not increased.
The most stable concept only considers matching stability
and ignores the number of blocking pairs within an unstable
matching. However, when the matching is unstable, the num-
ber of blocking pairs may be greater than one. This motivates
the use of blocking pairs as a baseline for determining stable
matching by selecting a matching with the minimum number
of blocking pairs.

Our contributions. This study proposes a strategy to find
stable matching under dynamic preference. We introduce a
new concept to find stable matching under dynamic prefer-
ence using the blocking pair perspective. Moreover, the study
broadens the definition of stability for stable matching with

dynamic preference. Three notions of stability are introduced
for the matching problem under dynamic preference.
Definition 1: Fully stable is a criterion for a matching that

admits stability to the dynamic instance. A matching µ is
stable to ∀I ∈ DI.
Definition 2: α-most stable is a criterion for a matching

that admits stability in at least one instance, such that a
matching µ is stable to ∃I ∈ DI. α indicates the strength of
matching to all possible instances, where 1 ≤ α ≤ k. When
α = k, the matching µ admits stability in all instances which
equals to fully stable.
Definition 3: β-Least BP is matching with the minimum

blocking pairs in a dynamic preference. β indicates the num-
ber of blocking pairs for a matching µ in a dynamic instance.
When β = 0, the matching µ admits stability in all instances
which equals to fully stable.

The structure of this study is as follows: Section II contains
the relevant research for this study. Section III discusses the
proposed concept of finding stable matching under dynamic
preference. Section IV shows the relation between our new
concept and the existing concept, along with some special
preference cases. Section V discusses the implementation of
the findings in computer applications. Section VI discusses
the time complexity of our findings. Finally, VII provides the
conclusions of our work.

II. PRELEMINARIES
A. THE STABLE MARRIAGE PROBLEM
Gale and Shapley introduced the Stable Marriage Problem
(SMP) [1]. An SMP is a two-sided matching problem in
which the number of participants on each side is equal. Each
agent’s preference is expressed in strict order. The primary
objective of the Gale-Shapley algorithm is to establish stable
pairings for all agents involved. Thematching procedure aims
to find the agent couples (sets of men and women) who meet
the specified criteria.

FIGURE 2. The illustration of a stable marriage problem.

An SMP instance of size n is I = (M ,W ,L), where M
andW are a set of men and women agents, respectively, such
that |M | = |W | = n, and L is a set of preference lists for
each agent. The preference list of an agent p is denoted by
L(p). In SMP, each agent’s preferences are strictly ordered,
indicating that each agent must include every agent available
to the opposite sex in his preferences. If an agent p is in L(q),
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p is acceptable to q. Therefore, if p can be accepted by q and
vice versa, then (p, q) is an acceptable pair.
A blocking pair determines matching stability in the SMP.

A couple (m,w) is a blocking pair for matching µ if m and w
are not a pair in µ, but m like w over µ(m) and w like m over
µ(w). Such that, (w ≻m µ(m)) ∧ (m ≻w µ(w)). A matching
is unstable if it contains at least one blocking pair; otherwise,
it is stable. The illustration of SMP is depicted in Figure 2.

B. STABLE MATCHING WITH DYNAMIC PREFERENCE
In the stable matching problem, generally, each agent
expresses a preference with certainty. However, as dis-
cussed in the introduction, sometimes in real-world situa-
tions, an agent cannot express their preference in certainty,
causing their preference to be dynamic. Consequently, a pref-
erence change in an agent may affect the stability of the
obtained matching.
Definition 4: Dynamic preference is a matching problem

preference in which the agent can express two or more differ-
ent preferences.
Definition 5: A dynamic instance is a group of sta-

ble matching problem instances generated by dynamic
preference.

A classical SMP instance is I = (M ,W ,L). In the SMP
under dynamic preference, agents can change their prefer-
ences by changing a set of preference lists L on an instance I .
An instance of SMP under dynamic preference, called a
dynamic instance, is DI = (M ,W ,L1,L2, . . . ,Lk ), where
k is the number of unique preference lists that occur due to
changes in agent preferences. Thus, a set of SMP instances
for SMP under dynamic preference is DI = {I1, I2, . . . , Ik}.
In our previous study [11], a simple approach was used

to maintain the matching stability under dynamic preference.
Assuming that preference changes do not frequently occur,
a matching is updated when a change in preference affects
the stability of the obtained stable matching. The previous
research focused onminimizing revision costs when updating
a matching. In our study, the findings show that matching can
be updated without a cyclic process. However, the previous
approach to maintain stability is the short-term strategy that
will be costly when preference changes frequently occur.

Therefore, the current study proposes a long-term stabil-
ity strategy for a matching problem under dynamic prefer-
ence. Several concepts of stability for the matching problem
with dynamic preference have been published. Some studies
[12], [13], [15], [16], [18] use themost stable approach to find
stable matching under dynamic preference. The most stable
approach means finding a matching that is most stable to all
instances of a dynamic instance. Chen et al. [13] introduce the
α-layer global stability to define the stability for a matching
problem under dynamic preference by extending the original
stability concept of SMP. To quantify the strengths of the
stability, they use α with 1 ≤ α ≤ ℓ, where ℓ is the number
of layers, which is similar to the number of instances in
a dynamic instance in this current study. In this study, the

fully stable notion is equivalent to ℓ−layer globally stable.
Furthermore, Aziz et al. [18] defined the certain stable and
possibly stable concept when a probability of preference is
given. The certain stable concept is also equivalent to the fully
stable notion of stability in this study.

The proposed concept in this study finds a stable match-
ing under dynamic preference. In contrast with the existing
concept, which counts the stability of matching against a
dynamic instance, the new concept uses the blocking pair
perspective to find a stable matching under dynamic pref-
erence. The number of blocking pairs of each matching is
quantified to determine the stable matching. In classical SMP,
matching is considered unstable if at least one blocking pair
is discovered. The blocking pair is a pair that does not sat-
isfy the offered matching combination. However, in stable
matching with dynamic preferences, obtaining a matching
with zero blocking pairs against a dynamic instance is dif-
ficult [13]. Therefore, the blocking pair is allowed in the
stable matching problem under dynamic preference. This
motivates the present study to use blocking pairs as a ref-
erence for determining stable matching. Example 3 demon-
strates the motivation behind the usage of the blocking pair
for determining stable matching under dynamic preference.
This study assumes that the probability of preference is given.
Using probability distribution of preference and the number
of blocking pairs in each matching, this study aims to find
the expected value of the blocking pair in each matching to
determine stable matching. The stable matching solution has
the minimum expected value of the number of blocking pairs.

Table 1 describes several references in line with stable
matching under dynamic preference. Several related works
used the most stable matching approach to find long-term
stability in stable matching under dynamic preference. The
stability of a matching in each instance is used as a reference
for determining stable matching in dynamic instances. In this
study, the perspective of blocking pairs is used as a reference
to find stable matching under dynamic preference. Then,
the number of blocking pairs is quantified in all available
instances to select a matching with the smallest number of
blocking pairs. Biro et al. [19] try to find the maximum
stable matching with the minimum blocking pair in the stable
matching problem with ties (SMT). However, SMT is the
restriction of the stable matching problem under dynamic
preference. Based on the knowledge of this research, there
seems to be no existing study on the stablematching problems
under dynamic preference that consider the blocking pair
approach to find a stable matching. Only Aziz et al. [12]
mention this idea in their open questions part.

C. MOST STABLE MATCHING CONCEPT
Agent preference changes are likely to occur in real-world
situations, which could be due to a lack of information from
agents about the opposite sex. The preference changes that
continue to occur will form a probability distribution of pref-
erences. Before discussing the proposed concept, the concept

VOLUME 11, 2023 24205



A. Alimudin et al.: Maintaining Stability for a Matching Problem Under Dynamic Preference

TABLE 1. Related work to stable matching under dynamic preference.

of finding stable matching using the most stable concept is
summarized. To illustrate the issue, the following 3× 3 SMP
instance is used.
Example 2: Given an SMP instance under dynamic pref-

erence, a set of men M = m1,m2,m3 and women W =

w1,w2,w3, and the two sets of preference, L1 and L2 are
depicted in Figure 3.

FIGURE 3. The 3 × 3 SMP instances with dynamic preference.

The preferences in Figure 3 imply the occurrence of two
SMP instances, such that DI = I1, I2 where I1 = (M ,W ,L1)
and I2 = (M ,W ,L2). LetM1 andM2 be the stable matching
sets for I1 and I2, respectively. This setting admits three
unique matching with positive probability: µ1 = {w1 :

m1,w2 : m2,w3 : m3}, µ2 = {w1 : m2,w2 : m3,w3 : m1},
and µ3 = {w1 : m3,w2 : m2,w3 : m1}. Moreover, µ1 and
µ2 stable against I1, such that M1 = {µ1, µ2}. Whereas
I2 admits µ2 and µ3 as the stable matchings, such thatM2 =

{µ2, µ3}. To find the most stable matching, the α value is
needed for each matching. α shows their respective stability
strengths of each matching against a dynamic instance; α is
a function that contains the probability of stability for each
matching against a dynamic instance.

α(µ) =
k∑
i=1

SMi(µ) (1)

where:
• α(µ) = Number of matching µ that are stable in a
dynamic instance

• DI = a set of dynamic instance, such that I1, I2, . . . , Ik
• SMi(µ) = x | x = 1 if µ stable to Ii, otherwise x = 0
• k = cardinality of dynamic instance DI
Using (1), α forµ1,µ2, andµ3 are 1, 2, and 1, respectively.

The next step is finding thematchingwith the highest α value.
In Example 2, the α for matching µ1 and µ3 is 1, whereas

µ2 is 2 = k . It can be simply decided that µ2 is the stable
matching for the current matching problem.
The steps to find the stable matching using the most stable

concept are summarized as follows:
1) Find all stable matching for each instance
2) Check the stability of each stable matching against the

dynamic instance
3) Calculate the α of each matching using eq (1)
4) Find the matching with the highest α
The Gale-Shapley algorithm cannot generate all stable

matching of an SMP instance because it only generates the
optimal matching (man- or woman-optimal). Currently, the
most efficient algorithm to find all stable matching solutions
for a single instance is brute force [20]. Wirth’s method [21]
of trial-and-error and backtracking is a straightforward but
inefficient approach to discovering all solutions of stable
matching. Algorithm 1 shows how to find a stable matching
under dynamic preference using the most stable concept.

Algorithm 1 Finding the Most Stable Matching
Input: k = number of instances in dynamic instance n = size

of SMP
1: SMDI = array() //matchings in dynamic instance
2: for i = 1 to k do
3: allSM (Ii) //find all stable matching of instance i
4: SMDI .append(allSM (Ii))
5: end for
6: for each sm in unique(SMDI ) do
7: α← 0
8: for i = 1 to k do
9: checkStability(sm,i) //check stability of sm in i
10: if (sm is stable) then
11: α← α + 1
12: end if
13: end for
14: mostStable[sm]← α

15: end for
16: SORTDESC (mostStable[sm])

III. PROPOSED SOLUTION FOR STABLE MATCHING
UNDER DYNAMIC PREFERENCE
The previous section discussed the concept that has been
widely used to find stable matching under dynamic prefer-
ence. This section introduces a novel approach to find the
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stable matching under dynamic preference by utilizing the
blocking pair. In classical SMP, the matching is unstable
when at least one blocking pair is found. Therefore, this study
finds the minimum expected value of the blocking pair by
quantifying the blocking pair for each matching.

A. FINDING THE LEAST BLOCKING PAIR MATCHING
The proposed concept finds long-term stable matching.
In Section II-C, the stable matching under dynamic prefer-
ence based on the ‘‘stable matching’’ perspective is found
by counting the number of instances that the matching can
be stable. This section intends to find stable matching under
dynamic preference from another perspective by using the
blocking pair that identifies the stable matching from the
‘‘unstable matching’’ perspective. A matching is unstable
if at least one blocking pair is found. In unstable match-
ing, the number of blocking pairs is ≥1. Whereas in stable
matching, the number of blocking pairs is zero. The fol-
lowing example motivates the implementation of the block-
ing pair approach to find stable matching under dynamic
preference.
Example 3: Given the 3×3 SMP instance I = (M ,W ,L):

L (m1) = w3,w2,w1 L (w1) = m3,m1,m2
L (m2) = w1,w3,w2 L (w2) = m3,m2,m1
L (m3) = w3,w1,w2 L (w3) = m2,m3,m1

Given M1 = {(w1 : m1), (w2 : m3), (w3 : m2)} and
M2 = {(w1 : m2), (w2 : m3), (w3 : m1)}, both M1 and
M2 are unstable to instance I . However, the aim is to identify
the best matching among the two worst choices. Recalling the
definition of stability in the stablemarriage problem, amatch-
ing is stable if no blocking pair is found. Furthermore, the
proposed concept attempts to find the best among the worst.
Therefore, the number of blocking pairs is quantified for each
matching to determine the best matching. A matching with
the minimum number of blocking pairs is the best matching.
In Example 3, a pair (m3, w1) is the blocking pair inM1.
Whereas (m3, w1) and (m3, w3) are the blocking pairs inM2.
Because the number of blocking pairs inM1 is less than the
number of blocking pairs inM2,M1 is better thanM2 in
the instance I. Therefore, this example motivates the usage
of the blocking pair as a perspective to find stable matching in
the stable matching problem under dynamic preference.
Example 3 shows how to find the best matching among the

worst choices in a single instance by looking for matching
with the lowest number of blocking pairs. This concept is
also applied to find the matching with the minimum number
of blocking pairs in the dynamic instance. To determine the
best matching in a dynamic instance, we calculate the β

value of each matching µ. β is the cardinality of distinct BPs
in a dynamic instance and indicates the number of BPs for
matching in a dynamic instance. The BP of matching µ in
dynamic instance DI is defined as follows:

BPDI (µ) = ∪ki=1BPi(µ) = {BP1(µ) ∪ · · · ∪ BPk (µ)} (2)

β(µ) = | ∪ki=1 BPi(µ)| (3)

where: BPDI = Comprises the union of blocking pairs in
instance i. β(µ) = The number of blocking pairs in a dynamic
instance.
Matching with the smallest β is the most stable among

other matchings. Algorithm 2 shows how to find a stable
matching under dynamic preference using the least blocking
pair concept.

Algorithm 2 Finding the Least Blocking Pairs
Input: k = number of instances in dynamic instance n = size

of SMP
1: SMDI = array() //matchings in dynamic instance
2: for i = 1 to k do
3: allSM (Ii) //find all stable matching of instance i
4: SMDI .append(allSM (Ii))
5: end for
6: for each sm in unique(SMDI ) do
7: for i = 1 to k do
8: checkStability(sm,i) //check stability of sm in i
9: if (sm is unstable) then
10: BP.append(BPsmi)
11: end if
12: end for
13: BPsmDI .append(BP)
14: cBPsmDI ← count.unique(BPsmDI )
15: end for
16: SORTASC (cBPsmDI )

B. THE EXPECTED VALUE OF THE BLOCKING PAIRS
In the stable matching problem with dynamic preference,
the number of instances that appear is more than one where
each instance has a probability of occurrence. This study also
considers the probability of instances occurring. Therefore,
the stable matching with the minimum expected value of the
BP needs to be identified. To find the BP expected value for
each matching, we calculate with the following (4).

EV (µ) =
k∑
i=1

#(BP(µ)|Ii)P(Ii) (4)

where:
EV (µ) = Expected value of the number of blocking pairs

of matching µ in dynamic instance.
#(BP(µ)|Ii) = number of blocking pairs in µ in instance i
P(Ii) = Probability of Instance i
k = number of instances in dynamic instance
The steps to find stable matching by finding the expected

value of the BP is summarized as follows:
1) Find all stable matching for each instance
2) For each instance, find the blocking pairs of a matching

in the dynamic instance
3) Calculate the expected value of the blocking pairs (EV)

for each matching using eq. (4)
4) Find the matching with the minimum expected value of

the blocking pair

VOLUME 11, 2023 24207



A. Alimudin et al.: Maintaining Stability for a Matching Problem Under Dynamic Preference

FIGURE 4. The 3 × 3 SMP instances with dynamic preferences with a
probability of instance.

Example 4: Consider the stable matching problem under
dynamic preference example depicted in Figure 4.
This setting admits four unique matching with positive

probability: µ1 = {w1 : m2,w2 : m1,w3 : m3}, µ2 =

{w1 : m3,w2 : m1,w3 : m2}, µ3 = {w1 : m1,w2 : m3,

w3 : m2}, and µ4 = {w1 : m2,w2 : m3,w3 : m1}. Moreover,
µ1 and µ2 are stable against I1 such thatM1 = {µ1, µ2}.
Whereas I2 admits µ3 and µ4 as the stable matchings, such
thatM2 = {µ3, µ4}. There is no stable matching that can be
stable to all instances. Therefore, the next step is to quantify
the number of blocking pairs for each matching, as shown
in Table 2.

TABLE 2. Quantifying the number of blocking pairs for each matching.

Now, the BP expected value for each matching can be
found using eq. 4. The expected value of the blocking pair
for µ1, µ2, µ3, and µ4 are 0.6, 0.6, 0.4, and 0.8, respectively.
Because the matching with the minimum expected value of
the blocking pair isµ3, it is the stable matching for the current
stable matching problem. If the previous mechanism is used
in finding the α for each matching, all the corresponding α

values will be 1.

IV. STABILITY NOTIONS FOR MATCHING PROBLEM
UNDER DYNAMIC PREFERENCE
In a stable matching problem with dynamic preference, it is
difficult to satisfy the classical SMP stability definition,
where BPs are not allowed in a matching. Moreover, as the
dimensions of the instance become more expansive, multiple
instances stability need to be considered wherein a match-
ing might be stable in one instance but unstable in other.
Amatching with fully stable character means it can satisfy the
classical stability definition since it does not admit any BP in
a dynamic instance. A fully stable matching means α = k ,
where k is the number of instances in a dynamic instance.
A fully stable matching also means matching with β = 0,
a fully stable matching admits no BP in all instances.

In classical SMP, the definition of stability is determined by
the existence of a BP in a matching. If one BP is found, the

matchingµ is unstable. Otherwise, it is stable. An instance of
classic SMP is I = (M ,W ,L), and the matching stability is
tied only to a single instance. In this study, a stable matching
with dynamic preference is discussed. Therefore, an SMP
with dynamic preference is DI = (M ,W ,L1,L2, . . . ,Lk ).
Thus, it can be written as DI = {I1, I2, . . . , Ik}. Stable
matching under dynamic preference considers not only the
stability of matching on a single instance but also the stability
of matching against multiple instances. As discussed earlier,
two approaches to find a stable matching under dynamic
preference are presented in this study. While the existing
approach finds the most stable matching to the dynamic
instance, the proposed approach finds a matching with the
minimum blocking pairs.

In the most stable concept, as explained in Chapter II-C,
the value of α indicates the strength of matching in a dynamic
instance. To find α, the number of stability is counted for each
matching against all instances. In quantifying the stability
number, the classical SMP definition is referenced where
matching is unstable if at least one blocking pair is found.
To determine the α value of each matching, the number of
stable matching for all instances is counted. As discussed in
Chapter III-A, the proposed approach calculates the number
of BPs for each matching in a dynamic instance.

The most stable concept and the proposed least BP concept
depend on the existence of a BP to determine the stable
matching. In the most stable concept, the BP is used to
determine the stability for each instance to find α. Whereas
for the least BP concept, the number of BPs is quantified to
determine β.

Given an SMP instance, I = (M ,W ,L) and µ, a matching
µ is stable if the number of blocking pairs is zero. For
the SMP under dynamic preference, the instance is DI =
(M ,W ,L1,L2, . . . ,Lk ) or DI = {I1, I2, . . . , Ik}. We have
the probability distribution of preference in the SMP with
dynamic preference. In this study, we define the stability of
matching based on the most stable matching and the expected
value of the number of BPs. BP is a key factor for the two
approaches used in this study. The matrix notation illustrates
the relationship between the two approaches for determining
stable matching under dynamic preference.

µ =

I1 I2 · · · Ik[ ]
BP1 BP2 · · · BPk
P1 P2 · · · Pk

(5)

where:
µ = matching of dynamic instance
I = an instance of dynamic instance
P = Probability instance occurs
BP = a set of blocking pairs of matching µ in an instance
k = number of instances in dynamic instance
In the most stable matching approach, the best matching

is determined by finding the value of α for each obtained
matching where the one with the highest α value is the stable
matching solution. To find the α of matching µ, the matrix
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notation is utilized (5).

α(µ) =
k∑
i=1

SMi(µ) (6)

where: SMi = x|x = 0 if |BPi| > 0, otherwise x = 1.
In the least BP approach, the intent is to find the match-

ing with minimum BP. Therefore, the number of BP in the
dynamic instance is quantified by finding the β of matching
µ, where β is the cardinality of blocking pairs for matching
µ in the dynamic instance DI .

β(µ) = | ∪ki=1 BPi(µ)| (7)

This section discusses the relationship between the pro-
posed concept and the existing concept to find stable match-
ing. The results show that α (6) and β (7) can be found using
the matrix notation (5). In the most stable matching concept,
α indicates the strength of matching in the dynamic instance,
where 1 ≤ α ≤ k . The value of α is obtained by counting
the instances where a matching can be stable. When α = k ,
a matching is stable in all instances. Whereas α = 1 means
the matching is only stable in a single instance among all
instances.

In contrast to the most stable concept, which counts the
number of stable matchings and selects the one with the
largest α, our proposed concept counts the number of block-
ing pairs that cause instability of matching on the dynamic
instance. Further, we select a matching with the minimum
number of the blocking pair as the solution of the stable
matching under dynamic preference. For example, when all
provided matchings have the same stability score (α), and
none of the matchings has an α = k . Our concept offers a
solution by choosing the matching with the minimum number
of the blocking pair.

A. SPECIAL CASE OF PREFERENCE: DYNAMIC
PREFERENCE ON ONE SIDE
This section considers some special preference cases for the
stable matching problem under dynamic preference which
can arise in real-world scenarios. Consider the special case
where the dynamic preference only occurs on one side. For
example, matching between the servers and containers in a
data center. It is reasonable to assume that the server eval-
uates its potential client by resource usage behavior, which
dynamically changes, thereby having a dynamic preference.
In contrast, containers evaluate the servers based on the server
specification, which is static specification.

Given an SMP instance of size n with dynamic prefer-
ence I = (M ,W ,L), where M = {m1,m2, . . . ,mn} and
W = {w1,w2, . . . ,wn}, assume a woman agent expresses
two different preferences I = (M ,W ,L1,L2), such that
DI = {I1, I2}.
Theorem 1: Under the assumption that the men’s prefer-

ence is static, if the first option of each man is distinct, man-
optimal matching is fully-stable and always exists.

Proof: If the men’s preference is static, and the first
option of M is distinct, all men agents have their first option
by applying man as a proposer (man-optimal). Even if the
women change their preference, all men agents can still have
their first choice of thewoman. Thus, theman-optimalmatch-
ing is fully stable and always exists. □
Corollary 1: Given n-size SMP with a dynamic preference

on one side, if the men’s preference is cyclic, man-optimal is
fully-stable and always exists.

Proof: In Theorem 1, if the men’s preference has the
distinct first option, then fully stable always exists. The cyclic
preference also has a similar pattern to Theorem 1, which also
has a distinct first preference option. Therefore, the cyclic
preference of men will generate man-optimal matching as a
fully-stable characteristic of matching. □
Theorem 2: Under the assumption that the men’s prefer-

ence is static, if women’s preference is dynamic, α(µm−opt ) ≥
α(µw−opt ).

Proof: Assume both sides of agents express a dis-
tinct first choice of preference, thus, there will be at
least two different stable matching, man-optimal stable
matching (µm−opt ) and woman-optimal stable matching
(µw−opt ). Without loss of generality, assume a woman
agent, say w1 changes her preference k times. Then Li =
{L1,L2, . . . ,Lk} and k instances, where i = 1, 2, . . . , k .
Based on Theorem 1, (µm−opt ) remain stable to Li, however,
(µw−opt ) is not necessarily stable to Li since w1 changes
her preference. Since µm−opt is obviously stable to Li and
µm−opt is not necessarily stable to Li, then α(µm−opt ) ≥
α(µw−opt ). □
When the Theorem 2 state holds, there is no need to find

all the stable matching for each instance. By referring to
Theorem 2, only the Gale-Shapley algorithm is used, where
a man is a proposer when the men’s preferences are static;
likewise, we can use a woman as a proposer when women’s
preferences are static. In addition, if Theorem 1 holds, rather
than checking all instances, the only one that needs to be
found is a man-optimal stable matching in a single instance.
Theorem 3: Given matching µ1 is stable to instance I1,

under the assumption that the men’s preference is static,
if agent w1 changes her preference, the possible set of block-
ing pairs that will appear is BP = {(w1,M \ µ1(w1))}.

Proof: Without loss of generality, it is assumed that
w1 expresses m different preferences. Then the dynamic
instance is DI = {I1, . . . , Im}. If matching µ1 is sta-
ble in instance I1, assume agent w1 is paired with agent
m1 in matching µ1, then (w1,m1) = (w1, µ1(w1)),
µ1 = {(w1, µ1(w1)), (w2, µ1(w2)), . . . , (wn, µ1(wn))}. How-
ever, if preference of w1 is changed in instance I2, such that
L1(w1) ̸= L2(w1), then W ′ ≡ W \ w1 wherein W ′ =
{w2, . . . ,wn}, and M ′ ≡ M \ µ1(w1), such that M ′ =
{µ1(w2), . . . , µ1(wn)}. Then µ1 may not be stable against I2.
When w1 changes her preference, the possibilities are as
follows:

Case 1: (µ1(w1) ≻wi M
′). If µ1(w1) is the first choice of

w1, then w1 cannot form a blocking pair.
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Case 2: (M ′ ≻wi µ1(w1)) If w1 prefers another man
rather than her current partner, then w1 could possibly form
a blocking pair with the man in M ′. The other women in W ′

will not form a blocking pair since they and their respective
partners do not change their preferences. □
Corollary 2: Given the n-size of SMPwith dynamic prefer-

ence, if the preference of each man (m) in menM is static, and
women’s preference is dynamic, then βmax = (n× number of
dynamic agents) - number of dynamic agents.

Proof: Based on Theorem 3, if agentw1 has the dynamic
preference, the possible blocking pairs in matching µ is the
combination of w1 and the member of M , (w1, M ). The
maximum combination is the number of dynamic agents
multiplied by the members of the opposite side. Because
the current pair (w1, µ(w1)) cannot be a blocking pair of
itself. The maximum number of blocking pairs is βmax =

(n × number of dynamic agents) - number of dynamic
agents. □

B. RELATION OF DYNAMIC PREFERENCE AND
STABLE MATCHING WITH TIES
In stable matching research, many extensions have been dis-
cussed [5]. One widely known variant of the stable matching
problem is StableMatching with Ties (SMT) [22]. Under cer-
tain conditions, the stable matching problem under dynamic
preference can form a preference with ties. In SMT, an agent
can express two or more agents with equal positions in the
agent’s preference. That is, SMT is a restriction of the stable
matching problem under dynamic preference. If agent wx
and wy are in the same position of mz’s preference, then
wx =mz wy. In SMT, there are three notations of stability:
weakly stable, strongly stable, and super stable matching. For
weakly stable matching, a blocking pair of matching µ is
defined as a pair (m,w) such that µ(m) ̸= w, w ≻m µ(m)
and m ≻w µ(w). For strongly stable matching, (x, y) is a
blocking pair of matching µ if µ(x) ̸= y, y ≻x µ(x) and
x ≽y µ(y). Finally, for super stable matching, (m,w) is said
to be a blocking pair of matching µ if µ(m) ̸= w, w ≽m µ(m)
and m ≽w µ(w). Consider the following example.
Example 5: The 3× 3 SMP instance with ties

L (m1) = (w3,w2) ,w1 L (w1) = m3,m1,m2

L (m2) = w1,w3,w2 L (w2) = m3,m2,m1

L (m3) = w3,w1,w2 L (w3) = m2,m3,m1
In Example 5, m1 expresses the preference with tie,

where w3 and w2 m1 are in the same position. These
preference settings can be broken down into the stable
matching problem under dynamic preference to obtain two
SMP instances as shown in Figure 5. Each instance has a
probability distribution in a stable matching problem with
dynamic preference. However, the SMT stated that an agent
might express two or more agents with an equal position
in his/her preference. This means each instance must have
an equal probability. In Example 5, I1 and I2 must have
the same probability of occurrence, where the probability
I1 = I2 = 0.5.

FIGURE 5. Transformation of SMP with a tie to SMP under dynamic
preference.

Theorem 4: Fully stable of stable matching with dynamic
preference is strongly stable of stable matching with ties.

Proof: Amatching µ in stable matching under dynamic
preference is fully stable unless a couple (x, y) is found such
thatµ(x) ̸= y, y ≻x µ(x) and x ≻y µ(y) to ∃I ∈ DI . Consider
the definition of strongly stable in stable matching with ties
and fully stable in stable matching under dynamic preference.
The blocking pair of strongly stable matching is (x, y) such
that µ(x) ̸= y, y ≻x µ(x) and x ≽y µ(y), or (x, y) such that
µ(x) ̸= y, y ≻x µ(x) and x ≻y µ(y) or x =y µ(y).
Based on the definitions of both stability notions, the The-

orem statement is true. □
Theorem 5: Given an SMP Instance I = (M ,W ,L) with

a stable matching µ, suppose agent m expresses dynamic
preference and forms a tie. If µ(m) is not tied, then strongly
stable exists.

Proof: Without loss of generality, suppose agent
m1 changes his preference. There is a dynamic prefer-
ence due to m1 changing his preference, such that DI =
(M ,W ,L1,L2), where L1 ̸= L2. If µ(m1) is not tied, there
are two possibilities of m1’s new preference.
Case 1: The women who are better than µ(m1) in m1’s

preference, say W ’, form a tie. This condition will not form
a blocking pair becauseW ’ prefers other men over m1.

Case 2: The women who are worst than µ(m1) in m1’s
preference, say W ’’, form a tie. This condition will not form
a blocking pair because m1 prefers µ(m1) over W ’’. □

V. APPLICATION OF STABLE MATCHING WITH
DYNAMIC PREFERENCE
The stable matching problem has been implemented exten-
sively to solve real-world problems. For example, the hospi-
tals/residents problem variant is employed to assign residents
(intern medical students) to hospitals. The stable matching
problem is widely implemented in computer applications.
For example, stable matching is implemented on a wireless
network technology to gain a more efficient allocation of
resources [23], [24]. Research in this area [25], [26] uses
stable matching to migrate virtual machines (VMs) between
servers in the data center. The objective is to improve energy
efficiency in the data center while maintaining the virtual
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machines’ quality of service. Furthermore, other studies
[7], [8], [27] uses stable matching to deploy containers on
the server by implementing the hospitals/ residents problem
to improve the power efficiency of servers. The Akamai
engineers use a stable marriage problem to assign users to
servers in content delivery networks [28], wherein the stable
matching algorithm helps to balance the loads within server
clusters. However, all mentioned references still use the static
data of containers or VMs resource utilization to define the
agent’s preferences, i.e., they do not consider the dynamic
resource usage that affects the preferences. For example, the
resource usage of a VM at different times, such as during
the day and night, might be different. In this study, a stable
matching problem with dynamic preferences is applied for
the job scheduling of containers and servers.

FIGURE 6. Illustration of job scheduling between servers and containers.

Figure 6 illustrates the job scheduling problem between
servers and containers in a data center. It is a job assignment
that involves two groups of agents consisting of a set of
containers and a set of servers. Virtualization technology
scheduling has several objectives, such as increasing the
availability of containers or reducing the power consumption
in a data center. Therefore, a data center manager may use
the optimization technique to solve this scheduling problem
to maximize the company profit or optimize the application
availability. However, job scheduling involves a collection of
containers and servers, each of which has a different profile
and preferences for the other side. For example, a container
requires a server with high-speed CPU and internet connec-
tion, while another requires a large memory or storage capac-
ity. On the servers, each wants to maximize their resources
to optimize the company’s benefit. Using the optimization
technique, conflicts of interest between agents are resolved
arbitrarily so that not all agents are satisfied with the results
obtained. For instance, some containers may be dissatisfied
with the outcome if server resource utilization is optimized.
This is because optimization only works to achieve group
goals but ignores each individual’s wishes.

In the job scheduling problem, it is essential to main-
tain stability between the containers and servers. Stability is
important to minimize the cost of re-matching or re-pairing
between containers and servers. When an agent decides to
change the partner, this entails costs that need to spend, such

as migration, reconfiguration, and downtime of the applica-
tion while performing the migration.

1) STABLE MATCHING PROBLEM MODEL
A traditional SMP is a two-sided matching problem based
on the one-to-one model, meaning that one male agent can
pair with one female agent and vice versa. In the contain-
ers and server scheduling problems, the hospitals/residents
problem [4], [29] is employed, which is a two-sided matching
problem for a many-to-one model in which one hospital may
couple with one or more residents (medical interns). In the
current problem, a server acts as a resource provider, whereas
a container acts as a resource consumer. We provide a formal
definition of the problem. An instance of the problem is
I = (S,C,L,Q), where S and C denote a set of servers and
containers, respectively. A set of servers S = {s1, s2, . . . , sm}
and containers C = {c1, c2, . . . , cn}. Each server sj ∈ S
has a positive integer of quota value denoted by Q(sj), where
Q(sj) ≥ 1. Each container ci ∈ C has a preference list L
where containers rank each member of S. The preference of
agent ci is denoted as L(ci). Likewise, server sj ∈ S also has
a preference list where the server ranks each member of C .

In this implementation, a server’s resource specifications,
such as CPU and memory, are persistently defined; this indi-
cates that server resources remain static. Whereas for con-
tainers, resource usage fluctuates dynamically in response to
the amount of computation and requests made by applications
within the container. In the stable matching problem, each
agent defines the order of preference for the opposite side.
A container defines the preference order based on the server’s
specifications. At the same time, the server also defines the
order of preference based on the resource utilization of con-
tainers. Based on the agent’s characteristics, the container’s
preference for the server is static because the resources pro-
vided by the server are fixed. At the same time, the server’s
preference for containers is dynamic because resource uti-
lization changes dynamically. Since the resource utilization
of containers dynamically changes, the problem is defined as
a stable matching problem under dynamic preference. Since
the containers’ preferences are static, Theorem 2 is employed
to solve the problem.

2) THE PREFERENCE RULE OF SERVERS TO CONTAINERS
It is typical for a company to maximize its profit. The data
center company can increase profits by improving the power
efficiency of each server in the data center. Thus, servers tend
to select containers that increase their resource utilization
rate. To determine a server’s preference, a server prefers a
container that requires as many resources as possible; the
greater a server’s utility, the greater its potential profit.

In this study, CPU and memory usage of the con-
tainer are used to determine the preference ranking. Using
the Euclidean distance formula, the similarity between the
resource capacity provided by the server and the resources
utilized by the containers is determined (see Table 3).
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Since the container resource utilization is dynamically
changed, the dynamic preference of the server is defined for
a periodic time. Two daily preferences, for day and night
utilization, over the course of seven days are generated for
the simulation.

3) THE PREFERENCE RULE OF CONTAINERS TO SERVERS
In this simulation, we define the container’s preference based
on the similarity between the container’s initial resource
requests and the server’s resource capacity. It is assumed that
containers have defined their initial resource requests. For
this simulation, the average resource usage data (CPU and
memory) is used for one week. Therefore, the containers’
preferences remain static. The distance between the initial
CPU request and the servers’ resource capacity is calculated
to determine the containers’ preference.

A. EVALUATION SCENARIO
For the simulation scenario, it is necessary to make clear
assumptions first. In this evaluation scenario, a company that
manages its private data center is assumed. We have five
servers with various resource specifications (see Table 3)
and 50 containers containing web applications with different
resource needs. This simulation assumes that the data cen-
ter model is a shared resource, where each container must
determine its minimal resource requests. If the container’s
resource utilization exceeds theminimum request, a burstable
scheme will be applied, i.e., the containers are allowed to use
the remaining resources of the server if available. Table 3
shows the servers’ specifications for this simulation. More-
over, we define the servers’ quota for container placement.

TABLE 3. Servers’ resource specification and quota for containers.

For the simulation scenario, 50 web page applications
that perform CPU and memory-intensive computations to
simulate load in the cluster were deployed. The Locust load
testing framework was used to generate load traffic on each
container with varying behavior as experimental data. The
resource usage of the containers are generated for seven days.
Each server’s CPU usage was recorded for the evaluation
scenarios to evaluate each server’s power consumption. In this
experiment, we obtained seven different server-to-container
preferences.While the preference of the container-to-server is
static. Thus, we have a dynamic instance consisting of seven
instances, with the probability of each being 1

7 .

B. EVALUATION OF AGENT SATISFACTION
In this section, we evaluate the results of experiments by
calculating the agent’s satisfaction score. As demonstrated

TABLE 4. The score of α, β, and the blocking pair expected value of
obtained matchings.

in Table 4, seven unique matchings occurred during the
experiment.

As seen in Table 4, the seven matchings obtained have the
same α value of 1, which means that all matchings are only
stable against a single instance. When we use the most stable
concept, it will be challenging to determine which match-
ing will be selected, and we can only determine the stable
matching by choosing randomly. Furthermore, using the least
blocking pair concept, several variants of the β value of the
matching are obtained, where µ1 is the matching with the
minimum total number of blocking pairs. In this experiment,
we consider the probability of the instance and calculate the
expected value of the blocking pair on the dynamic instance.
As shown in Table 4, µ2 has the lowest expected value of the
number of blocking pairs.

Xu et al. [25] analyze their work by calculating the satisfac-
tion level of VMs and servers. In this study, we also analyze
the satisfaction level of matching by using the satisfaction
score of each matching in a dynamic instance. The satisfac-
tion score reflects the level to which each agent on the market
is satisfied with the acquired matching based on their defined
preferences.

First, we introduce some notations to obtain the satisfaction
score of matching in a dynamic instance. Given a set of
containers C = {c1, c2, . . . , cn} and a set of servers S =
{s1, s2, . . . , sm}. Container-server matching is a many-to-one
stable matching problem where a server can pair with more
than one container. Whereas a container is only paired with a
server. We define the satisfaction score of a server as follows.

sat(s) =
∑
c∈µ(s)

n− R(c) (8)

where R(c) denotes the rank given by s to c in s’s preference,
n is the cardinality of a set of container C , and c is the
containers paired with s. Since a container can only pair with
a server, the satisfaction score of the container is as follows.

sat(c) = m− R(µ(c)) (9)

where R(µ(c)) denotes the rank given by c to µ(c) in c’s
preference, and m is the cardinality of a set of server S. The
satisfaction of matching µ is then the sum of the score of all
involved agents.

sat(µ) =
∑
s∈S

sat(s)+
∑
c∈C

sat(c) (10)
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Since this study considers a stablematching under dynamic
preference, the total satisfaction score in the dynamic instance
is needed. The satisfaction score of matching in the stable
matching problem under dynamic preferencemight not be the
same for every instance. Moreover, a potential blocking pair
might occur in some instances. Therefore, we must consider
the blocking pair occurrence to find the satisfaction score
of stable matching under dynamic preference. In a stable
matching under dynamic preference, a set of blocking pair
BP = {bp1, . . . , bpj}may occur. A pair (sx , cy) is said to be a
blocking pair in matching µ if they are not partners in µ, but
sx prefers cy to µ(sx) and cy prefers sx to µ(cy). A matching
is stable if no blocking pair is found, such as BP = {}.
If there is a set of blocking pair BP = {bp1, . . . , bpj} in

matching µ, we need to calculate the score of the blocking
pair before finding the satisfaction score.

BPscore(µ) =
∑
bp∈BP

(m− Rbp(s))+ (n− Rbp(c)) (11)

where Rbp(s) denotes the rank of blocking agent s in bp(s)’s
preference, and Rbp(c) denotes the rank of blocking agent c in
bp(c)’s preference. Thus, the satisfaction score of matchingµ

is as follows.

sat(µ) =
∑
s∈S

sat(s)+
∑
c∈C

sat(c)− BPscore(µ) (12)

To obtain the satisfaction score of matching µ in the
dynamic example DI = {I1, I2, . . . , Ik}, the average satis-
faction score of matching µ in DI is calculated.

satDI (µ) =

∑k
i=1(sati(µ))

k
(13)

where k is the number of instances in a dynamic instance DI .
Table 5 shows the agent’s satisfaction score for eachmatch-

ing. The results show that µ2 has the highest satisfaction
score. In contrast, µ6 is the matching with the lowest score
among the others. Based on the results in Tables 4 and 5,
we select µ2 as the solution for the problem because µ2 has
the lowest expected value of the number of blocking pairs,
and µ2 also gains the highest satisfaction score among other
matchings.

TABLE 5. Agent satisfaction score against obtained matching.

C. TRADE-OFF ANALYSIS
Stable matching is utilized in this study to enhance energy
efficiency while maintaining container and server satisfac-
tion. This section evaluates the servers’ power consumption

for each matching. Several studies show a linear relationship
between power consumption and CPU usage of comput-
ers [26], [30], [31]. According to these studies, the average
power consumption of an idle server is 70% of a fully uti-
lized server. Thus, the power consumption P(S) formula is
described as follows:

P(S) = Pmax × (0.7+ (0.3× U (CPU ))) (14)

where:
P(S) = Power consumption of server S in Watt per

hour (Wh)
Pmax =Maximum power of server in Watt per hour (Wh)
U (CPU ) = % CPU usage of server

TABLE 6. Total servers power consumption.

Table 6 shows the total power consumption of servers for
each matching. The results show that µ6 is the matching
with the lowest power consumption compared to the others.
However, considering the results in Table 5, µ6 is the match-
ing with the lowest satisfaction score among the others. The
purpose of implementing stable matching in this application
is to obtain energy efficiency while maintaining agent satis-
faction. In this experiment, we consider the trade-off between
power consumption and the satisfaction score of agents in the
market. Despite the fact that µ2’s power efficiency is not the
best among the others, µ2’s power consumption is still lower
than the average power consumption, andµ2 gains the highest
satisfaction rating among the others.

Figure 7 shows the trade-off between the total server’s
power consumption and the satisfaction score of agents in
the market. µ6 is the most energy-efficient (the least power
consumption) compared to other matchings. However,µ6 has
the lowest satisfaction score compared to different matchings.
Conversely, µ2 has the highest satisfaction score of agents,
despite not being superior in terms of energy efficiency.
Considering the trade-off between energy efficiency and the
satisfaction score of agents, µ2 can be selected as a matching
solution for this problem.

VI. DISCUSSION
A. TIME COMPLEXITY
This section discusses the computational cost of finding sta-
ble matching under dynamic preference. Algorithm 1 dis-
covers stable matching under dynamic preference using the
most stable matching approach. There are two main loops in
Algorithm 1. The first is a single loop used to discover all
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FIGURE 7. Trade-off diagram between the total server’s power
consumption and the agents’ satisfaction score. The color of the circle
represents green energy.

stable matchings of each instance. Within the loop is a func-
tion that identifies all stable matchings for every instance i.
The brute-force technique was utilized to discover all stable
matching on a given instance. Function allSM (Ii) is used
to discover all stable matching of each instance i, which
requires O(n!) to find all combinations and O(n2) time to
verify whether each matching is stable against an instance i.
Therefore, the time required to complete the first loop is
O(n! · n2). The second loop verifies the stability of a found
matching over k instances in which the checkStability func-
tion is used to check the stability of a matching in an instance,
requiring O(n2) time [3]. Assuming the maximum number of
unique stable matchings is n!, the time required to check all
matchings and determine the α value is O(k · n! · n2). The
matching with the highest α value is selected in the final step.
Hence, the time required to find a stable matching with the
most stable approach is O(k · n! · n2).
Following the most stable matching concept, the least

blocking pair concept (Algorithm 2) also requiresO(k ·n!·n2)
time to find a stable matching. The cost of achieving stable
matching is extremely high due to the necessity of finding
all stable matchings for each instance, regardless of whether
the most stable matching or least blocking pair concept is
employed. However, in the special case preference outlined
in Section IV-A, a stable matching can be found in less time.
In Theorem 1 conditions, the Gale-Shapley algorithm is only
employed once; hence the time required to discover a stable
matching solution is O(n2). Meanwhile, the cost to find a
stable matching that satisfies the constraints of Theorem 2
is O(k · n2). The constraints in Theorem 2 employ the Gale-
Shapley algorithm in k times, where k represents the number
of instances contained in the dynamic instance.

B. STRATEGIES TO MAINTAIN THE STABILITY OF
MATCHING WITH DYNAMIC PREFERENCE
We discussed stable matching with dynamic preferences in
the previous sections. In several studies, the most stable
concept is widely used to find stable matching under dynamic
preference, which finds a matching that is the most stable for

all instances. However, this study proposes a different concept
where the number of blocking pairs is counted.

The most stable and proposed concepts are similar in deter-
mining stable matching. Both concepts observe the presence
of blocking pairs in a matching. We select the matching with
the highest α in the most stable concept to solve the problem.
The α is obtained by counting the number of stable instances
to a matching. If the matching is stable against an instance,
the α value increases. If at least one blocking pair is found, the
matching is counted as unstable, and the α is not increasing.
However, the number of the blocking pair in the unstable
matching could be more than one pair. In contrast to the most
stable concept, the blocking pair perspective is proposed in
this study to determine stable matching. The number of BPs
from the unstable matching is counted, and matching with the
minimum number of BPs is selected.

In the most stable matching concept, obtaining α = k is
difficult even for k = 2 [13]. Our proposed concept helps
determine the stable matching under dynamic preference in
more detail. For example, when we are provided with the
worst option of matchings, where α < k and all matchings
have the same score of α, our proposed concept selects the
matching with the minimum blocking pair as the solution to
the problem.

During the implementation of our findings in Section V,
we show how to find amatching solution for the container and
server scheduling problem. Our findings help to determine
the matching solution in more detail. The matching with
the minimum expected value of the blocking pairs gains the
highest satisfaction score of agents in the market. However,
the trade-off between power efficiency and the satisfaction
score is worth considering to define the matching solution.

VII. CONCLUSION
We propose a new concept to find stable matching under
dynamic preference. The strategy employs the blocking
pair to determine stable matching when dynamic preference
occurs. In stablematchingwith dynamic preference, theworst
possible matching options may be provided, such as that all
the obtained matchings are only stable to a single instance,
where α = 1. The proposed strategy assists in determining
the stable matching under dynamic preference by choosing
the best among the worst options. In addition, the expected
value (EV ) of blocking pairs is calculated to obtain more
detailed results by considering the preference probability.

Moreover, we implement stable matching under dynamic
preference for the job scheduling problem between servers
and containers in a data center. Our findings help to determine
the matching solution in more detail. The matching with
the minimum expected value of the blocking pairs gains the
highest satisfaction score of agents in the market. However,
the trade-off between energy efficiency and the agents’ satis-
faction is considered in selecting the matching solution.

Our study considers stable matching with dynamic pref-
erence. In real-world applications, many constraints may
lead to a new variant of stable matching with the dynamic
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conditions, such as considering dynamic quotas in many-to-
one stable matching (hospitals/residents problem). The hos-
pitals/residents problem instance is I = (H ,R,L, q), where
H and R denote a set of hospitals and residents, respectively.
L denotes the preference of each agent, and q represents the
quota of each hospital. In the hospitals/residents problem,
the quota on the hospital also determines the stability of a
matching. When the quota on an instance changes, getting
a stable matching in the dynamic instance becomes diffi-
cult. For example, there were two hospitals/residents problem
instances, I1 and I2, with the same preference. The µ1 is
a matching that is stable in I1. If the quotas (q) of I1 and
I2 were different, it would be difficult to maintain the stability
of µ1 against I2, even if the preference of I1 and I2 were the
same.
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