IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 December 2022, accepted 16 January 2023, date of publication 8 February 2023, date of current version 21 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3243201

== RESEARCH ARTICLE

Experiences With Deep Learning Enhanced
Steering Mechanisms for Debugging of
Fundamental Cloud Services

ROBERT LOVAS !, ERNO RIGQ', DANIEL UNYI“2, AND BALINT GYIRES-TOTH?
Hnstitute for Computer Science and Control (SZTAKI), Eotvs Lorand Research Network (ELKH), 1111 Budapest, Hungary
2Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary

Corresponding author: Rébert Lovas (robert.lovas @sztaki.hu)

This work was supported in part by the European Union Project [collaboration between Institute for Computer Science and Control
(SZTAKI) and Budapest University of Technology and Economics (BME)] within the framework of the Artificial Intelligence National
Laboratory under Grant RRF-2.3.1-21-2022-00004; and in part by the National Research, Development and Innovation Office (NKFIH)

through Hungarian Scientific Research Fund (OTKA) under GrantK 132838. The work of Rébert Lovas was supported by the Janos Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

ABSTRACT Cloud architecture blueprints or reference architectures allow the reuse of existing knowledge
and best practices when creating new cloud native solutions. Therefore, debugging of reference architecture
candidates (or their new versions) is an extremely crucial but tedious and time-consuming task due to
the deployment of complex services in typical multi-tenant and non-deterministic environments. During
the debugging/testing/maintenance scenarios, we might be able to achieve greater levels of test coverage
(and eventually improved reliability) by modelling and verifying at least their most fundamental building
blocks and their interconnections. The main objective of our work is to integrate stochastic modelling and
verification techniques based on deep learning methods into the debugging cycle in order to handle large state
spaces more efficiently, i.e. by steering the process of traversing state space towards suspicious situations that
may result in potential bugs in the actual system with smart steering during the traversal. For this purpose,
our presented and illustrated approach combines (among others) Continuous Time Markov Chain modelling
(CTMC) techniques with deep learning methods including autoencoder, Long Short-Term Memory (LSTM)
and Graph Neural Network (GNN) models. Our experiences are summarized with widespread cloud design
patterns including load balancing and service mesh topologies. According to the results, the debugging cycle
can be partly automated through the application of deep learning methods. The autoencoders are able to
detect erroneous load balancer behaviors (anomalies) in complex configurations; the LSTMs demonstrate
implicitly some random nature of the inspected processes, and GNNs exploit the additional topology-related
information in service meshes.

INDEX TERMS Cloud computing, deep learning, software debugging, reference architecture, service mesh,
formal verification, Markov chains, autoencoder, long short-term memory, graph neural networks.

I. INTRODUCTION

A. REFERENCE ARCHITECTURES

With the spreading of cloud computing technologies, cloud
architects and software developers have been equipped with
capabilities (among others) to ingest data from heterogeneous
data sources, to perform a vast amount of analytical jobs,
and to provide rapid response at the same time, however

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

building reliable solutions that enable such advanced services
is still not a straightforward process. Cloud architecture
blueprints or reference architectures allow the reuse of
existing knowledge and best practices when creating new
solutions. There are different definitions proposed, e.g.,
[2], [3], [4], [5], [6] with the main ideas of (i) promoting
re-usability, (ii) incorporating best practices, (iii) using
high or low abstraction levels, and (iv) serving certain use
cases. However, most existing architecture blueprints are
either too abstract; not end-to-end; not vendor agnostic

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

26403

https://orcid.org/0000-0001-9409-2855
https://orcid.org/0000-0003-2557-2294
https://orcid.org/0000-0003-3264-185X

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

Cloud service
descriptors

Model generator

Requirement
specification*
-

Cloud
orchestrator tool

Simulator

Cloud
services

Debugging &

. : Model checker
steering engine

Transition graphs

Labelled
transition graphs

Potential bugs &

. ML tools
anomalies

autoencoder, LSTM, GNN

FIGURE 1. Proposed framework for debugging cycle with tools and
dataflow.

or not open-source; or some combination of the above.
For example, Microsoft Azure currently offers 769 generic
purpose reference architectures.

Moreover, one of the key reasons for applying the reference
architecture concept with advanced cloud orchestration tools
(e.g. [7]) in practice is to avoid the most common mistakes
during the design and software development phases.

B. DEBUGGING CHALLENGES

Debugging reference architecture candidates (or their new
versions) is a crucial but tedious and time-consuming task
due to the deployment of services in a typically multi-tenant
and non-deterministic environment. It poses several new
challenges since software designers and testers must face
(among others) the probe effect, the irreproducibility, the
completeness problem, and also the large state-space that has
to be handled somehow during the debugging/troubleshoot-
ing phases [8]. By modelling and verifying at least the most
fundamental building blocks, we might achieve a higher level
of coverage and thus a higher level of reliability, during the
debugging, testing and later in the maintenance scenarios.

C. PROPOSED APPROACH

In this paper three widespread and fundamental elements of
cloud reference architectures (design patterns) are studied
and modelled in detail that provide buffering, load balancing
and (micro)service mesh functionalities (see ‘Cloud service
descriptors’ in Fig. 1).

The main aim of our work is to improve the developed
debugging solution with deep learning methods (see ‘ML
tools’ in Fig. 1) to handle the large state space with a higher
level of automation, i.e. with smart steering in the traversal
of state space towards suspicious situations (potential bugs)
using autoencoders, Long Short-Term Memory (LSTM)
models, and Graph Neural Networks (GNN).

The automated generation, augmentation and labeling
of training data sets (see ‘Labelled transition graphs’ in
Fig. 1) as well as the definition of metrics and features

26404

for deep learning are crucial in using formal modelling and
verification methods, including Continuous Time Markov
Chain modelling (CTMC) techniques and the PRISM model-
checker [9]. Later, the detected suspicious situations may
steer our cloud debugger tool [8] towards the potential faults.

Il. RELATED WORKS

As cloud technologies are developing rapidly with more and
more applications migrated to cloud environments, stability
and management (orchestration) of cloud systems have
become crucial. The efficient and continuous monitoring
activities are vital to detect faults to accurately operate
cloud platforms: cloud monitoring helps to review, observe
and manage the complex, orchestrated processes of cloud
platforms [10]. However, extended monitoring may create
logs with an extremely large number of entries. That is why
such logs are difficult to process, and the identification of
actual faults on time as well as providing possible preventive
actions (before serious errors) are challenging.

The logs produced and collected by a monitoring system
could contain memory alerts, unreachable server alerts,
application performance alerts, Service-Level Agreement
(SLA) expiration and other meaningful information.

The general concept of fault is defined in the manuscript by
Farooq et al. [11] as an abnormal condition that may cause a
reduction in, or loss of, the capability of a functional unit to
perform a required function. Failures are noticeable outcomes
of faults and are related to software executions. To prevent
failures, the error behind the faults must be discovered before
failures occur. Errors are classified as network, software,
permanent, transient, intermittent in the survey written by
Kumari and Kaur [12]

Cloud monitoring helps to collect continuous data with a
large amount of information. To maintain instant and reliable
service, fault detection is important. Generally, the size of
the failure dataset is relatively small, compared to the overall
gathered logs from the cloud routine checks. That creates
adversity to extract, evaluate and correct certain faults on the
services. Based on the manuscript, written by Swetha and
Venkatesh [13], types of faults are classified and related to a
particular part of the cloud where erroneous logs are recorded.

An effective method introduced in the paper written by
Gao et al. [14] is called the autoencoder model, which is more
efficient than traditional methods of fault detection. In this
model, unsupervised learning is featured to extract essential
characteristic data. A deep autoencoder neural network was
introduced to extract erroneous data and provide predictive
output as the result of the automatic learning of fault detection
in cloud computing.

Fault detection in cloud systems is performed by using the
following approaches based on the article by Smara et al. [15].
The first one is called an intrusion or anomaly detection
system. The main focus of this type of detection is the
network or host intrusions. Anomalies are detected based
on behavior analysis. Signature-based and anomaly-based

VOLUME 11, 2023

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

IEEE Access

detection are the subgroups of intrusion detection. Signature-
based detection contains a predetermined database of already
experienced anomalies with particular priority but the
anomaly-based detection is looking for atypical patterns
inside the log data. An effective anomaly detection system
for fault-tolerant network management in cloud data centers
is presented particularly in the article by Abbasi et al. [16].
Software-defined networking provides easier administration,
network control features, and a programmable console. This
feature could be scheduled for the reading network by
subnets, and it helps to utilize the best available path in the
network and fault management of the cloud network.

In cloud computing, various statistical and ML-based
anomaly detection methods are available. The former com-
pares the statistical features of the data with the observed ideal
conditions and thus is able to detect unpredictable faults, with
limitations. ML-based methods are generally rule-based and
machine-learning based. In the rule-based approach, rules
about the data and process describing the ‘normal’ behaviour,
are hand-crafted by experts. It is similar to the statistical
approach, with more rules and more complex techniques, e.g.
fuzzy logic.

In general, error detection can be performed by using
machine learning in either a supervised or an unsupervised
manner. The ML model learns normal and anomalous
behavior from input-output pairs in the case of supervised
machine learning. Unsupervised machine learning usually
involves learning the normal distribution and detecting errors
by measuring the difference between the actual and learned
‘normal’ behavior. In a sense, this is like statistical and
rule-based approaches, but more complex representations of
high-dimensional spaces are considered and rules are learned
rather than hand-crafted. Combining the different approaches
makes them more effective. The use of hybrid methods
in cloud computing is, therefore, increasing, which merely
requires the expenditure of computational resources.

Other widely used and simple approaches are the heartbeat
and pinging methods. In the heartbeat method, a monitoring
device continuously checks the fault detector whether a fault
occurs. If the detector does not respond before timeout, the
heartbeat method considers the device erroneous. The process
is reversed in the pinging method. The fault detector sends
a message to the monitoring device to confirm the faulty
device. Both methods are used for persistent hardware fault
detection.

Zhang et al. [17] identified two main categories in cloud
fault detection: rule-based detection and detection based
on statistics. Rule-based detection methods can be based
on simple rulesets that apply to the error message and
record components, or basic decision trees can be built using
multiple rules and queries. The resemblance of previously
found faults are based on other methodologies.

Machine learning methods [17], including Neural Net-
works (NN) and Support Vector Machines (SVM) are often
used as classifiers based on input observations [18], [19],
[20], [21].

VOLUME 11, 2023

In tests conducted against topologies, routing, and traffic
that are not observed during training, it is demonstrated
that GNN models are able to provide accurate estimates
of delay and jitter [22]. Also presented in the same paper
is the potential of the model for network operation by
showing use-cases which demonstrate how it is applied for
optimizing delay/jitter routing per source/destination pair and
its generalization abilities by reasoning in topologies and
routing schemes not encountered during training.

In [23], a problem-specific action space is designed using
Deep Reinforcement Learning (Deep RL) agents and GNNs
to enable generalization. The proposed GNN-based DRL
agent is capable of learning and generalizing over arbitrary
network topologies. The DRL+GNN agent was evaluated
on 180 and 232 unseen synthetic and real-world network
topologies in a routing optimization use case in optical
networks, respectively. The results demonstrate that the
DRL+GNN agent is capable of outperforming current state-
of-the-art techniques in topologies that were not encountered
during training.

In [24], an approach is described that enables the prediction
of the most significant fault resilience behaviors at web
application-level on service mesh, starting from single service
to aggregated multi-service management, using model-based
reinforcement learning.

Karn et. al. [25] describes an automated testing and
resiliency methodology for service mesh based on monitoring
traces between microservices, various types of fault injectors
(including delay, traffic limiting, and abort), and load testing
tool. The faulty microservice link is located through dash-
boards. Three types of mechanisms are used for resilience or
correction of the fault, including scaling, failover, and circuit
breaker. This testing and resiliency setup can be used for
network troubleshooting and performance measurements for
cloud applications.

In [26], the author selected and studied several AI methods
for anomaly detection of service mesh-based applications:
Support Vector Machine (SVM), Random Forest, Convo-
lutional Neural Network (CNN) and k-means. The results
have been integrated into a holistic security and privacy
framework.

Wau et. al. [27] proposed a system to help cloud operators
to narrow down the potential causes for a given performance
issue in microservice architectures. The localized causes
are in a fine-granularity, including not only the faulty
services but also the culprit metrics that cause the service
anomaly. For this purpose, the proposed solution pinpoints
a ranked list of potential faulty services by analyzing the
service dependencies. Given a faulty service, it applies
autoencoder to its relevant performance metrics and leverages
the reconstruction errors to rank the metrics. The evaluation
showed that their approach can identify the culprit services
and metrics with high precision.

Table 1 compares the selected related results according
to (i) their supported architecture level, (ii) the selected
approach, (iii) the major applied methods, (iv) the main focus

26405

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

TABLE 1. Comparison of selected related works. (ML: Machine learning).

reference architecture level | approach applied methods focus area fault injection
Gao [14] system ML autoencoder generic manual

Smara [15] component self-fault detection | verification (model checker) component safety manual

Abbasi [16] network level SDN SLA violation detection network manual

P. Zhang [17] system ML support vector machine (SVM) generic N/A

Tamura [18] big data system ML clustering (k-means) SW reliability assessment | N/A

Wang [19] web apps ML feature selection (ReliefF / SVM-RFE) generic manual

P. Zhang [20] system ML SVM and decision tree generic N/A

X. Zhang [21] | network level ML weighted one-class SVM (WOCSVM) network manual

Rusek [22] network level ML GNNs network N/A

Almasan [23] network level ML GNNs and deep RL network N/A

Meng [24] service mesh ML/stoch. models reinforcement learning, CTMC network semi-automated
Karn [25] service mesh automated testing rule based error detection network semi-automated
Tomas [26] service mesh ML rand. forest, k-means, SVM, CNN security manual

Wu [27] service mesh ML autoencoder SLA manual

Lovas et. al. multi-level ML/stoch. models autoencoder, LSTM, GNN, MDP/CTMC | generic automated [8]

area of the research, (v) and the method for fault injection.
The literature review leverages partly on [28].

Our approach extends the results of the major related works
in several areas including:

« the inspection of cloud architectures at multi-level (from
network/component level to services meshes),

o the application of various deep learning methods
(autoencoders, LSTMs and GNNss),

« the extensive use of formal modelling e.g. with Markov
Decision Process,

« a more generic focus addressing not only the erroneous
behaviour of components but the overall reliability
(SLA) of the service mesh,

« the active steering of a cloud debugger tool towards the
suspicious situations (SLA breach or other failures).

We already proposed a novel cloud debugger method and
a framework [8] for this purpose (see ‘Debugging & steering
engine’ in Figure 1) that not only monitors but also actively
controls the cloud-based processes leveraging on the so-
called macrostep [29] based execution. The approach allows
the rule-based evaluation by each macrostep, i.e. by each
collective breakpoint set in the execution tree.

Ill. MODELING: PRIMITIVES OF CLOUD REFERENCE
ARCHITECTURES
A. FRAMEWORK
The selection of a suitable modelling framework started
with the evaluation of various discrete event simulators.
From a broad variety of available tools, the de facto cloud
simulation toolkit, CloudSim [30] together with its several
derivatives [31], as well as more generic frameworks like
JaamSim [32] and SimPy [33] were selected for further
review on the basis of available features, recent activity
on tool development, availability of documentation and
licensing factors.

None of the tools above seemed feasible to describe
correlations between intra-application state changes and
inter-application communication events in a level of detail

26406

that would be sufficient for the targeted cloud service
modelling and simulation use cases.

Network event simulation frameworks, like ns-3 [34] and
even IP network emulation tools like IMUNES [35] were also
considered but we recognized some challenges to describe
and simulate stateful cloud services in a sufficient level of
detail.

Since the direct support of high level cloud modelling
and the simulation of primitives in our specific scenario
are hard to manage in a single modelling framework, the
modelling requirements were narrowed down to include just a
predefined set of application and communication primitives
that were considered to be both observable and describable
using existing modelling paradigms [36].

A new selection of formal application modelling and
verification tools were evaluated based on lessons learned in
the course of previous attempts.

Frameworks for modelling parallel software and hardware
applications promised a desirable level of abstraction by
enabling the description of systems using pseudo code - an
approach more friendly to software and systems engineers.
For this purpose, TLA+ [37] and its algorithm description
language, PlusCal [38] were evaluated in more detail.

Another area of research was focusing on probabilistic
model checking applications. From the selection of available
frameworks, the PRISM model checker [9] was selected
based on its ability to describe, simulate and formally validate
models set up in the form of discrete-time Markov chains
(DTMC:s) or Markov decision processes (MDPs).

Ultimately, the PRISM framework was selected as the
project’s choice for modelling cloud based services for the
purpose of simulation and validation. The choice is based
on the simultaneous availability of non-deterministic and
probabilistic transitions in MDPs - a feature enabling better
description of partially observable error conditions in the
context of cloud applications.

The current simulation framework primarily takes advan-
tage of the following PRISM tooling and formal language
features:

VOLUME 11, 2023

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

IEEE Access

[P —1B —{C]|

FIGURE 2. Producer (P) and Consumer (C) with Buffer (B).

« Self-supporting modules providing means for definition
and parallel composition of behavioural patterns in
different cloud application modules.

o Actions for defining synchronization points between
different modules.

o Explicit labeling features of interest in a model,
providing ease of tracking behaviour changes in a cloud
application.

o Cloning of similar model elements (module renaming)
enabling a lower grade of redundancy in model descrip-
tors.

o Constants enabling parametric generation of a large
number of modeled application scenarios.

o Validation of manually crafted or generated cloud
application models.

o Constrained or unconstrained path simulation of state
transitions in a cloud application model.

o Formal checking of models against various properties
described as various probabilistic linear temporal logical
expressions, such as PCTL [39] - a feature including
precise numeric calculation of probabilistic values
experienced in application error states.

o Exporting model validation, composition, simulation
and checking results in various data formats for further
processing.

B. BASELINE MODEL: PRODUCER-CONSUMER

As we described in the related works section, one of the
most promising and advanced approaches to debugging is
when software developers apply active control during the
debugging phase, i.e. trying not only to replay but also to
enforce different (timing) conditions onto the investigated
set of processes (services) in the dynamically changing and
non-deterministic environment. The literature [40] illustrated
its basic principles and mechanism with the well-known
Producer-Consumer problem and its implementation in the
P-GRADE programming environment using an inner Buffer
process with a circular puffer, message passing paradigm
and synchronous communication primitives. The illustration
described a typical bug, when the two branches of a
conditional (if-then-else) construct have been accidentally
swapped and led to an erroneous situation, which was dis-
covered during the macrostep based debugging by traversing
and investigating the possible state space of the problem.

In our research this example (see Figure 2) has been
taken to build the first PRISM models and perform the
first experiments. After defining the constants (such as the
buffer size) along with the various probabilities of generating,
receiving, serving or consuming an item, the model describes
the behaviour of each process with modules: (i) producer,
(i1) buffer, and (iii) consumer.

VOLUME 11, 2023

The behaviour of the producer is modelled in the following
way:

module producer

p: [0..N];

[producing] p>=0 & p<N — mu:(p’=p+1);
endmodule

where ‘p’ refers to the produced items (maximum is ‘N’).
According to the sole defined command, this module is able
to produce a new item by updating ‘p’ with ‘mu’ probability
in a synchronized action with the ‘buffer’ module (labelled as
‘producing’) once the defined guard is satisfied.

As the next step, we described the buffering mechanism
with another PRISM module:

module buffer
b: [0..BS];
serving: bool init false;

// normal condition
[producing] b>0 & b<BS & !serving —>epsilon:(b’=b+1);

[con_ready]b>0 & b<BS & !serving —>lambda:(serving '=true);

// buffer is EMPTY
[producing] b=0 & !serving —> epsilon:(b’=b+1);

/! buffer is FULL
[con_ready] b=BS & !serving —> lambda:(serving '=true);

// buffer is serving the consumer
[consuming] serving & b>0 —> (serving '=false)&(b’=b—1);

endmodule

where ‘b’ refers to the buffered items (maximum is ‘BS’),
and ‘serving’ indicates if the ‘buffer’ module is occupied with
serving the consumer. The internal logic and commands of
the ‘buffer’ module are separated into 4 groups according to
the current state of the buffer: (i) normal, i.e. there are some
items in the buffer, (ii) buffer is empty, (iii) buffer is full, (iv)
serving, i.e. occupied with the consumer.

In normal conditions the ‘buffer’ module either fetches the
item from the producer through the ‘producing’ synchronized
action with epsilon probability and updates ‘b’, or waits
for the consumer to be ready and switches to the serving
state with lambda probability. Obliviously, once the buffer is
empty or full, only one of these synchronized commands is
allowed as the module description shows. During the serving
phase, the guard only allows performing the ‘consuming’
synchronised action with the consumer module that updates
‘b’ and the serving status as well.

As the last step, the behaviour of the consumer can be
described as:

module consumer

c: [0..N];

getting: bool init false;

[con_ready] ¢>=0 & c<N & !getting —>gamma:(getting =true);
[consuming] getting & c<N—>1:(getting '=false)&(c’=c+1);
endmodule

where ‘c’ refers to the consumed items (maximum is ‘N’),
and ‘getting’ indicates if the consumer module is occupied

26407

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

3
@ - p
E -y
£ 5
¥ serving
4 - -
—+ getting
3 —d —t
/ /
/ /
2 1 —

N]
/S A 7
a
50 75 100 125 150 175 200 225 250 275

Time

FIGURE 3. Producer-Consumer modelling: typical path of simulation in
PRISM.

with getting an item from the ‘buffer’ module. According to
the first command, the consumer module notifies the buffer
module about its readiness to receive an item with gamma
probability, and also updates the ‘getting’ status if the guards
allow this synchronized ‘con_ready’ action with the buffer
module. In the ‘getting’ phase, the consumer module is able to
get the item from the buffer module through the ‘consuming’
synchronized action, which switches back from the ‘getting’
phase and also updates ‘c’.

Figure 3 illustrates a typical path of the simulation where
N=10, and BS=3.

The labelling is also supported in PRISM: the ‘nolostmes-
sage’ global property was evaluated by each simulation step
successfully in order to verify the most crucial requirement
of the model, i.e. the already produced but still unconsumed
items are stored in the buffer:

label

"nolostmessage" = (b=p—c);

Similarly to the original work [40], we injected one error
manually in the implementation and its model.

// normal condition with bug: %%xSWAPPING UPDATES::xx

[producing] b>0 & b<BS & !serving —>lambda:(serving '=true)|;

[con_ready] b>0 & b<BS & !serving —>epsilon:(b’=b+1);

The behaviour of the buffer has become faulty because it
switches to the serving state instead of receiving an item in
the first command. On the other hand, the buffer module tries
to start receiving an item from the producer instead of serving
the consumer in the next command.

The simulation of the faulty model and the evaluation of
state labels on Figure 4 indicate clearly the states (e.g. in steps
#2 and #5) where the ‘nolostmessage’ global property is
breached. The simulation and evaluation have even detected
later a deadlock situation (step #8).

C. LOAD BALANCING DESIGN PATTERN WITH MULTIPLE
SOURCES AND CASCADING

Load balancing is one of the most fundamental elements
of cloud-based reference architectures; all cloud computing
platforms support this functionality in some way. However,

26408

Automaic exploration
G simuiate
Steps ¥ |20
Backtracking
&3 Backtrack
Steps >

o 3| [state tabels | Pathformuiae || Pathinformation
Moduell.|_Rate | Upsate | | | g

&7 deadlock
#| |3 nolostmessage

[¥] Generate time automatically

Path

consumer |

Step | mime | producer | buffer
7

|
| Time P | seving | c getting |

b
0 0 0 false
4.93595 1 1
4.95379 2

[
\
[producing] |
\
[producing] 35.8045 2 | tue
\
\
\
\
\

[con_ready] true

41.0998 2
64.4666 3
66.2867 1
66.8911 4

[con_ready] true
[producing]

#
0
1
2
3
[consuming] 4 39.9857 1
5
6
[consuming] 7
B

\
\
\
\
fase | 1 false
\
\
| 2 false
\

{producing]

FIGURE 4. Producer-Consumer modelling: typical path of simulation with
errors in PRISM.

C |—{LB C |

C LB C |

FIGURE 5. Load balancers in a cascaded topology.

load balancing and the unpredictable routing of requests are
also a major source of observability difficulties in complex
systems. Therefore, modelling and active controlling of load
balancers play a crucial role in our research agenda.

Load balancers (LB) might be considered as the extension
of the Producer-Consumer problem by adding multiple
consumers (see boxes labelled by ‘C’ in Fig. 5).

In such generalisation, several load balancing policies can
be taken into account. One of the typical policies we followed
is when the worker (or consumer) is able to process one
request (or a certain number of requests) at once. In this case,
the previously introduced model for Producer-Consumer can
be extended with multiple consumers. Major changes must
be applied particularly in the logic of the ‘buffer’ module,
including the multiplication of synchronization actions orig-
inally labelled by ‘con_ready’ (see below) and ‘consuming’,
and extending the guards to cover the interactions with all
consumers.

[con_readyl] b>0 & b<BS & !servingl & !serving2 —> ...
[con_ready2] b>0 & b<BS & !servingl & !serving2 — ...

In order to simulate cloud systems with a higher level
of complexity, multiple producers have also been added
(cloned) to the original model (see boxes labelled by
‘P> in Fig. 5) using the module renaming functionality
of the PRISM language (see below). The buffer module
has also been extended to receive the produced items

VOLUME 11, 2023

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

IEEE Access

—-p getting1 2
13 -—p2 -3
—+p3 —=getting13
12 b —+c1
1" —+-servingl s getting2!
serving2 -=-c22
10 . g3~ getting
—*cl €23
] = gettingl —+ getting23
—-c2
8 & getting2
; 7 —-f2
K] c3
3 = getting3
| —+f3
5 1Y b1
4 s e
—+ servine 12
. LD B
11T 1] mlE
2 TH v+ g:
x 7] 111 T
1 H [‘ T IPH HH‘ I I - serving23
. , OO 0TI
0 50 100 150 200 250 300 350 400 450 500 550 |t osttnalt
Time 12

FIGURE 6. Typical path simulation of a cascaded load balancer.

with more synchronized actions labelled originally by
‘producing’.

module producer2
[p=p2, producing
endmodule

producer
producing2 |

module producer3
[p=p3, producing
endmodule

producer
producing3]

As the next step, our model was elaborated further and
extended by cascading, i.e. any consumer can be defined as
a producer (see boxes labelled by ‘C’ in Fig. 5). In this case,
the consumed item is forwarded to another buffer with a pre-
defined probability.

This work leveraged the module renaming functionality of
the PRISM language to keep the description of the model
at a moderate level. As a result, we were able to scale up
our modelling capabilities, and observe larger state spaces of
more complex systems (see Figure 6).

Similarly to the previous manual error injection, we have
swapped two updates, resulting in the breaches of the global
predicate at several states (see Figure 7).

The global property can be defined in the following way:

label "nolostmessage" = ((b=p+p2+p3—cl—c2—3) &
(bl=f2—cll—cl2—c13) & (b2=f3-—c21-c22-c23));

where ‘f2° and ‘f3’ refer to the numbers of forwarded
items.

In order to enrich the possible supported use cases, a set of
new LB modules have been elaborated by implementing the
following strategies: (i) round robin, (ii) random, (iii) least
request, (iv) user defined.

For illustration purposes, Figure 8 shows a typical
execution of the PRISM model of the ‘least request’ policy
with 4 consumers.

We have analysed the complexity of modelling by adding
more LBs for a complex service (S[3..6]) and more items
to the consumer (Q=10,50,100). The number of states
and transitions of the generated state transition graph are
summarized in Figure 9.

VOLUME 11, 2023

Step | mime | producer | producer2 | producers |

Modueflacti.| # | Tme) | p | 2 | p3 | b
[producing] 1 |er7179 1 1
[conready3] 2 |77.8772

[consuming3] 3 |79.3152 o
[forwarding3] 4 105.569
[con_ready2t] 5 |12068
[consuming2t 6 | 120.761

[producing] 7 |153.079 2 1
[con_readyl] 8 |157.101 2
[oon_ready3] 9 |157.718

[consuming3] 10 |157.807 1
[producing3]| 11 |150.77 1 2
[producing2]| 12 |162.792 1 3
[producing3] 13 | 165.456 2
[consuming?] 14 |165.851 2
[producing] 15 |166.322 3 3
[producing] 16 |166.779 4 4
[con_ready3] 17 |160.911

[consuming3] 18 |171.399 3
[producing3]| 19 |172.864 3 4
[con_ready3] 20 |177.658

[consuming3] 21 179.268 3
[producing3]| 22 |179.755 4
forwardingd] 23 |206.556

FIGURE 7. Typical path fragment of a cascaded load balancer with errors
(only green rows/steps satisfy the ‘nolostmessage’ global property).

100
—*-request
75 -q
mald!
3 —-r2
g 50 -3
r4
25 - served1
-¥-served2
: £y, | | o
0 10 20 30 40 50 60 70 80 90

Time

FIGURE 8. Typical path simulation of a load balancer with ‘least request’
policy.

Service Size | Message Size | States |Transitions
Q=10 161 370

$=3 Q=50 28278 70584
Q=100 186 428 471 825

Q=10 241 650

S$=4 Q=50 42 401 123419
Q=100 279 601 823 406

Q=10 385 1208

S$=5 Q=50 67 841 227722
Q=100 447361 | 1516 667

Q=10 641 2274

S=6 Q=50 113454 432 818
Q=100 746 654 | 2874455

FIGURE 9. Complexity: size of state transition graphs in various LB
configurations.

D. COMPLEX CLOUD ARCHITECTURES (REST-BASED)

In order to generalize our models at a higher level of abstrac-
tion, we started to investigate various approaches to describe
cloud use cases. As an increasing trend, modern cloud
applications often utilize a microservice-based architectural
pattern also known as a service mesh [41].

26409

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

A
<<TriggeringClientStrategy>>

o
&
(g

o

h !
@
=] \ ®
<<SimpleServerStrategy>> “,'\
»

EELNE:]
$
7

D C
<<SimpleServerStrategy>> <<SimpleServerStrategy>>

FIGURE 10. Simple service mesh application topology.

In a service mesh, most application functions are imple-
mented as a loosely coupled set of minimalistic web services.
The mesh networking component provides various aspects
supporting intra-application integration, most prominently
the interception and routing of requests between components.
In such environments, stateless web service components,
utilizing feasible protocols like REST [42] are preferred.

Based on these premises, a model of a simplified service
mesh application was devised. The model consists of
RESTful service nodes that form a dependency relationship
in a form of a directed acyclic graph (DAG). In the model,
the root node is considered to trigger requests to its direct
descendants, selecting from each with a predefined level of
probability. Intermediary nodes are passively listening for
requests from their parent nodes; upon receiving a request
from a parent node, it is relayed to a selected child node
(again, with predefined probability). Finally, the leaf nodes
are tasked with answering all incoming requests with either
an “ok” (HTTP 2xx) or a “‘server failure”” (HTTP 5xx), with
a predefined failure probability rate. Receiving a reply with
a failure state triggers a repeated relay mechanism with a
predefined number of retries on each intermediary node as
well as the root node.

Figure 10 illustrates a simple RESTful service mesh
application with a root node (A), an intermediary node
(B) and two leaf nodes (C) and (D). Node labels are
also representing the strategy of the given node, where
< TriggeringClientStrategy>>> is the active strategy of the root
node, while «SimpleServerStrategy>>> is a passive strategy
either relaying or directly answering requests. Edge labels
are representing REST operations and respective weights for
probability calculation.

Based on this approach, a REST modelling framework
with a simple domain specific language (DSL) able to define
RESTful application models was devised in the Python
programming language. The sample application above is
defined by the following DSL snippet:

26410

A_C_GET_send_retry1

A_G_GET_send_retry2

s
~Se, oeﬁ""
= e e

A_C_GET recy_retryl
A_C_GET_send %
4.
“CGgy.
~feg
A_C_GET recv

A_C_GET_recv_retry2

s

| A-G-GET-req

$
xxg dses 130 O ¥ I
s o

H -
7 s
" =
H ~ogy, -5
'57‘ =N S
d :
< sy A_B_GET_recy
law\ure
o -~
& b 4 v
X oF b o
3 & X w5 >
] W Yy g
g & = '@
5 o ! A_B_GET send f
i i !
5
1 ¥
A=8-GET.req
b 4 - A_B_GET_send_retry1
b s
% o
\’% f;’

A_B_GET_send_retry2

FIGURE 11. Internal state machine representation of node (A).

RestModel ()

= m.add_node(‘‘A’’, TriggeringClientStrategy)
= m.add_node(‘‘B’’, SimpleServerStrategy)

= m.add_node(‘‘C’’, SimpleServerStrategy)

= m.add_node(‘‘D’’, SimpleServerStrategy)
.add_flow(a, b, priority=1)

.add_flow(a, ¢, priority=3)

.add_flow (b, ¢)

.add_flow (b, d)

82388388003

Based on the DSL above, the modelling framework
generates probabilistic state machines for each node, based
on its strategy, as well as incoming and outgoing REST flows
at that node.

Figure 11 illustrates the internal representation of node
(A) with an initial state of “polling”, several states represent-
ing communication actions between the nodes and a return
path to either a “failure” state or directly to the initial state.
The “failure” state is visited when the number of retries
is exhausted for the node without being able to receive an
“ok” (2xx) response. This process is formally described as
Algorithm 1.

At this point the DSL model is transcribed to a respective
PRISM model by generating module descriptions for all
nodes. Following successful validation, RESTful communi-
cation flows with arbitrary lengths can be simulated.

The probability of overall application failure can also be
expressed by checking the numerical value for the expression
Puax =NF < NAgaiture], Where Agipyre is the “failure” state
of the root node (A) and N is the number of model transitions
measured from the initial “polling” state. This property is
closely related to application availability for a given time
period of N.

VOLUME 11, 2023

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

IEEE Access

Algorithm 1 Algorithm for PRISM Model Generation

Input: N[{ns,nl, pf, F[{fl,d,t, p}]1}]: set of REST nodes N
with associated strategies ns, probability of node failure
pf, labels nl and associated set of flows F with their
labels f1, directions d, targets ¢ and probabilities p

Output: M: set of probabilistic state machine representa-
tions for all nodes in N

Initialization:

1. M < [{empty}] {}

2: for all N do

3: if N[ns] == triggering then

4: for all F|d = out as F,,; do

5: M[N] += reQ(Fout[ﬂ] — Foult, P])

6: end for

7. elseif N[ns] == serving then

8: for all F|d == in as Fj, do

9: if 3F,,; : N € Fy,[t] then
10: MIN] += req(Fou[fl] — Foult, p])
11 M[N] += respao(Finlfl] < Foult, p)
12: MIN] += respsu(Finlfl] < Fourlt, p])
13: else
14: MIN1 += respa(Finlfl] < N[1 — pf1)
15 MIN1 += respsu(Finlfl] < NIpf1)
16: end if
17: end for
18: endif
19: end for

20: return M

WY
0.05

004

003

002
o1 I
0.00 —T — —T— ——

e B T S B o T T T T T, BT = T < B =]
L I B B T B I I I B]
case_no

FIGURE 12. Application error probabilities (SLA) for different topologies.

Experimental data involving the generation of cloud
application models in the form of random DAG topologies
with all other model parameters intact yields significantly
different values for P, as described above. Due to its
resemblance to application availability, a central component
of Service Level Agreements, this quality-like property
will be referred to as SLA for the purpose of this paper.
Figure 12 illustrates SLA values for 20 different REST
application models (cases) with identical parameters, but
different internal topologies.

VOLUME 11, 2023

TABLE 2. Sample model path simulation data (PRISM export file).

step | action p | b | serving | ¢ | getting
0 - 0 | 0 | false 0 | false
1 [producing] 1 1 | false 0 | false
2 [con_ready] 1 2 | false 0 | true
3 [producing] 2 | 2 | true 0 | true
4 [consuming] | 2 1 false 1 | false
5 [con_ready] 2 | 2 | false 1 | true
6 [producing] 3| 2 | true 1 | true
7 [consuming] | 3 1 false 2 | false
8 [con_ready] 3 | 2 | false 2 | true
9 [producing] 4 | 2 | true 2 | true
10 [consuming] | 4 1 false 3 | false
11 [producing] 5|11 | true 3 | false

IV. DETECTION OF ERRONEOUS STATES

A. TRAINING DATA GENERATION

Data sets for the first experiments on the baseline buffer
producer-consumer model (described in Section III-B) were
generated by instrumenting manually crafted PRISM model
definition files with substitution points for parameters N
(number of items in the buffer), BS (buffer size) and u
(probability of item generation by the producer).

The resulting model templates were instantiated with
sweeping ranges BS[3..24], N[10..80] and M[%--%] for both
error injected (deadlocked) and error-free models.

For each set of parameters a set of 100 random path
simulations were generated and exported in tabular format for
the purpose of further analysis. Table 2 illustrates contents
of one path simulation data unit with action representing
synchronization points between modules, columns p, b and
c representing internal states of the model as integer values,
serving and getting are values for labels representing logical
expressions describing overall module intents.

Based on more complex, load-balanced and cascading
producer-consumer models (described in Section III-C),
a new collection of training data sets were generated using
similar methods as before.

Data sets consisting of 100 simulation paths were gener-
ated for load-balanced models with different combinations
for 1, 2 and 3 producers and consumers in both error-injected
and error-free variations with parameter ranges N[10..80]
and BS[3..40].

An addition of data sets with 100 simulation paths were
generated for even more complex cascaded models with
3 producers and 3 consumers in both error-injected and error-
free variations with parameter ranges N[5..20] and BS[3..10].

At this point, the number of path simulations in the
training data sets have reached 13.300 with a total of
1.127.556 events.

It is also important to note that the training data set is
purely synthetic (based on model generation and simulation),
therefore no additional efforts for reducing noise were
necessary. This statement also stands true for the entire scope
of the work.

B. AUTOENCODERS
The autoencoder is an artificial neural network in which
the output is derived from the input. In general, input and

26411

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

output are the same, and the neural network is subject
to some constraints. The input space X is encoded first
into a latent space, Z, by the encoder Ej X -
Z, where Z typically meets some constraints (e.g. lower
dimension). Z is then decoded into X with the decoder
Dy : Z — X, while minimizing the error L(9, ¢) =
Ex~pun [d (x, Do (Ep(x)))]. referred to as reconstruction
loss. Both X and Z are Euclidean space, and ¢ and 6 are the
trainable parameters of the encoder and decoder, respectively.
In case of regression type problems, the reconstruction loss
is mostly L2-loss: L(0, ¢) = % SN, |xi — Do (Eg (x1)) H;
For classification type problems, cross-entropy is applied
most: L6, ¢) = —ILV Zivzl Hpi log Dg (E¢ (p,-)) , where
pi are one-hot encoded categorical variables. Autoencoders
come in many variants, with different input and output data
engineering, encoder and decoder structures, and bottleneck
constraints. There are a wide variety of applications for
autoencoders, including machine translation [43], audio and
image generation [44], [45], predictive maintenance and
cybersecurity [46], just to name a few.

Autoencoders can be applied effectively in the detection
of anomalies (as is done in many predictive maintenance and
cybersecurity applications). The occurrence of anomalies is
rare, and these phenomena do not form part of the main
process. Therefore, in the dataset, anomalies comprise only
a small proportion of the data (e.g. less than 1%, typically,
otherwise the process would be too malfunctioning). Since
neural networks are not effective at learning underrepresented
samples from data, these anomalies are very difficult to
model, explicitly. Alternatively, when an autoencoder is
trained using such data, it learns the distribution of the
normal behavior. In other scenarios normal behaviour can be
recorded, without any errors. So, in both cases, it is capable
of reconstructing the input of data from the output of normal
behavior. A well-trained autoencoder will not be able to
reconstruct anomalies if the data contains any - therefore, the
reconstruction error will be higher.

C. APPLICATION OF AUTOENCODERS FOR

ERROR DETECTION

We performed autoencoder-supported error detection in the
Producer-Consumer design pattern with gradually increasing
complexity: (i) single producer - single consumer, (ii) single
producer - three consumers (realising the load balancing
design pattern), (iii) three producers - three consumers.
In these configurations, producer(s) and consumer(s) were
connected by a ‘buffer’ module. We considered each time step
in the simulation as a data point, with features representing
the number of items in the individual modules. For instance,
in a single producer - three consumers configuration, we can
define 5 features: ‘p’ is the number of items produced by
the producer, ‘b’ is the number of items in the buffer, and
‘cl’, ‘c2’, ‘c3’ are the number of items consumed by each
consumer. The number of produced items was set to 10, and
the buffer size was set to either 3 or 5.

26412

Tanh

FIGURE 13. Layers of the proposed autoencoder for error state detection.

We also experimented with a cascaded architecture,
a hierarchical configuration in which producers and end
consumers are connected by three buffers (i.e. the load
balancers) and intermediate consumers. Our approach was
the same as for the simpler models: each time step in the
simulation was considered as a data point, and features
represented modules: 3 producers, 3 buffers, 2 intermediate
consumers, and 7 end consumers (see Figure 5). Intermediate
consumers forward the consumed items with a predefined
probability. We also used the number of forwarded items by
the 2 intermediate consumers as features, leading to a total of
17 features. The number of produced items was set to either
10 or 20, and the buffer size was set to 10.

In all 4 cases, we generated 200 error-free simulations,
and another 200 error-injected simulations (see sections I1I-B
and II1-C). We used the 200 error-free simulations to train a
simple autoencoder, with the following layers: {Linear} —
{Tanh} — {Linear} (see Figure 13). For the 3 simpler
models, latent space had one fewer dimension than input
space, and for the cascaded architecture, we decreased the
number of dimensions by 3.

We trained the autoencoder for 100 epochs, with mini-
batches of 100 data points. We optimized the network
parameters using Adam [47] with a learning rate of 0.001 and
mean-squared error (MSE) as loss function. The autoencoder
was tested on the 200 error-injected simulations, in which
some of the states are erroneous and are guaranteed to run
towards deadlock. In the erroneous states, the no-lost message
property is not satisfied. For the 3 simpler models, this means
b # > ;pi — > ;ci, and for the cascaded architecture, this
means (b # pl +p2+p3—cl —c2—c3)|(b]l #f2—cll —
c12 — c13)|(b2 # f3 — 21 — 22 — 23).

D. RESULTS

In all 4 cases, the autoencoder successfully recognized
all the erroneous states by producing significantly larger
reconstruction error. Figure 14) is based on a simulation
of the three producer - three consumer configuration, but
the behaviour is the same for the other 3 configurations we
experimented with. The autoencoder trained exclusively on
simulations with error-free states.

As it can be seen in Figure 14), when the no-lost message
property is not satisfied (denoted by F) during the similation
steps (see the horizontal axis), the loss is orders of magnitude
larger than for error-free states (denoted by T). Therefore,
by selecting a threshold value (e.g. MSE=0.2), it can be
employed as a trustworthy classifier, deciding whether a step
in our simulation is loaded with error.

VOLUME 11, 2023

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

IEEE Access

e e I
= o o

mean-squared error (MSE)

TTTTTERERFRFFFERETTTTT I T TREFFFFFFRFFFFFFRTTTRERETTTTT T TTTTITTTTTTITTITTITITITIR
Is the no-lost message property satisfied?

FIGURE 14. Reconstruction loss of the trained autoencoder.

V. STEERING TOWARDS ERRONEOUS STATES

A. GENERATION OF TRAINING DATASET

The experiments in this section are based on the same data
sets that are described in Section IV-A.

B. LONG SHORT-TERM MEMORY

Long Short-Term Memory (LSTM) [48] are among the
frequently used sequential deep learning models, besides
convolutional neural networks [49] and transformers [50].
An LSTM is a recurrent neural network with an internal
memory. In the inner memory, there is no operation that
can lead to vanishing gradients. The memory is controlled
by a gating mechanism, realized as trainable parameters and
sigmoid activation functions. The gating mechanism and the
inner memory can be described with the following equations:

il‘ =0 (xtUi+h,_1Wi)
ﬁ =0 (x,Uf + htlef)
Oy =0 (.XtU0+ht_1W0)
Cl = tanh (x, Ug + h,,1Wg)

Ct :ﬁ * Ct—l +lt *Ct
hl‘ = tanh (Ct) * Ot (1)

where U and W are matrices, and i;, f; and o; are the
input matrix, output matrix, input, forget and output gates,
correspondingly. C; represents the inner memory, and /; is the
hidden state. There are a large number of variants of LSTM,
including multi-scale approaches [51], [52], [53], [54]
and introducing advancements of deep learning [55], [56].
LSTMs have been widely applied in various fields, including
speech synthesis [57], financial analysis [58] and weather
forecast [59], just to name a few.

C. APPLICATION OF LSTMs FOR ADVANCED STEERING

First, we investigated our baseline model created for the
producer-consumer problem with one injected error (see
Section III-B) and its execution paths. According to gener-
ation of transition graph and simulations with PRISM, the

VOLUME 11, 2023

deadlock situations were always predicted in advance by
the periodical appearance(s) of the unsatisfied ‘nolostmes-
sage’ global property when a ‘con_ready’ action had been
completed. Two types of deadlocks can be categorized:
Deadlock#1 and Deadlock#2.

In the case of Deadlock#l1, there is only one item in
the ‘buffer’ module, and it tries to fetch an item from the
‘producer’ module via the ‘producing’ synchronized action.
The deadlock will occur because the ‘buffer’ module is
in the ‘serving’ state but the ‘consumer’ module is not in
the ‘getting’ state (see Figure 4). In general, the number
of ‘producing’ actions must be greater than the number of
‘con_ready’ actions by 2 to reach this deadlock situation. The
S1 steering rule is straightforward: always prefer ‘producing’
action instead of ‘con_ready’, i.e. trying to make the buffer
empty with more produced items. In other words, always try
to avoid the breaching of the global property, since it happens
as the result of ‘con_ready’ action.

In the case of Deadlock#2, there are two items in the
‘buffer’ module, and the ‘consumer’ module makes an
attempt to notify the ‘buffer’ module about its readiness
to receive an item, while the producer has completed the
production of all items (i.e. p=N). The deadlock will occur
because the ‘buffer’ module is not in the ‘serving’ state but
the ‘consumer’ module is in the ‘getting’ state. In general,
the number of ‘producing’ actions can not be greater than the
number of ‘con_ready’ actions by 2 to reach this deadlock
situation. The SR2 steering rule can be defined as (contrary
to SR1) always preferring ‘con_ready’ action instead of
‘producing’, i.e. trying to keep the buffer full with more
consuming. In other words, always try to breach the global
property, since it happens as the result of ‘con_ready’ action.

Since the steering rules SR1 and SR2 are the opposite of
each other, the automated generation of such type of steering
policies using deep learning methods is challenging. On the
other hand, the length of the routes to deadlock situations is
quite limited, which may cause further difficulties.

In order to make an attempt to overcome these obstacles,
we investigated the models with higher complexity, with
more consumers/producers (see Section III-C) and focused
on the prediction of the ‘nolostmessage’ property (instead of
the deadlock) with following preliminary results.

We framed steering as a binary classification task, such that
our goal is to predict whether the next state is erroneous or
not, based on the previous states in the simulation. We used
the cascaded architecture with 17 features described in the
previous section. The simulations were split into disjoint
sequences of length 11, using the first 10 states as a time
series in the train set (10-by-17 matrices). We used the
11-th state to determine the label corresponding to each time
series, by calculating whether it is erroneous using the no-lost
message property:

b #pl+p2+p3—cl—c2—-c3)|bl #f2—cll —
c12 — c13)|(b2 #f3 — 21 — 22 — 23)

In the final data set, 147 sequences were erroneous and
354 sequences were error-free. We split the data set randomly

26413

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

into train, validation and test sets, with respective lengths 301,
100 and 100. We trained the following neural network on the
train set: {LSTM} — {Tanh} — {Linear} — {Sigmoid}.
Different hidden layer sizes (from 2 to 17) and batch sizes
were studied. We optimized the network parameters using
Adam [47] with a learning rate of 0.001 and binary cross-
entropy (BCE) as loss function.

D. RESULTS

Finally, the trained model reached ~ 70% accuracy, which
is the proportion of the error-free states, by consistently
predicting zeros.

We tried to counterbalance this effect by giving more
weight to the negative samples in BCE. Weighting resulted in
a few nonzero predictions (some of which were correct), but
our model was still unable to learn properly the state changes
which led to erroneous states. This can be attributed to the
nature of our simulator: among the possible state transitions,
it selects the next state by probability, not based on learnable
rules.

VI. SERVICE-LEVEL AGREEMENT (SLA) PREDICTION

A. GENERATION OF TRAINING DATASET

In order to improve experiments further towards increasingly
realistic situations, training data sets were generated based on
the RESTful service mesh modelling approach (described in
Section III-D).

Several cases containing simulation data sets were gener-
ated for different architecture topologies (based on random
DAG:s).

With static model parameters of the probability of failure
at the leaf nodes (P = 0.1) and the number of request
retries in the case of error (N,eies = 1) 100 different service
mesh models (simulation cases) were generated consisting of
a different number of RESTful nodes in the range of [15..30]
with a total of 400 service mesh graphs for the whole data set.

For each case a graph description in Graph Exchange
XML Format [60] was generated, together with a number
of data sets containing path simulations with a length of
[10.000..20.000], based on the respective model. A simpli-
fied graph description from the generated set is partially
presented below for illustration purposes:

<gexf version="1.2">

<graph defaultedgetype="directed">
<nodes>

<node id="0"
<node id="1"
<node id="2"
[...]

<node id="12"
<node id="13"
<node id="14"
</nodes>
<edges>

<edge source="0"

label="0" />
label="1" />
label="2" />

label="12" />

label="13" />
label="14" />

target="2" id="0" />

26414

<edge source="1"
<edge source="1"
[...]

<edge source="12"
<edge source="12"
<edge source="13"
</edges>

</graph>

</gexf>

target="8" id="1" />
target="7" id="2" />

target="6" id="11" />
target="11" 1d="12" />
target="3" id="13" />

The method for path simulation is the same as described
in Section IV-A. The primary difference is that service mesh
models are experiencing a cyclic behaviour, therefore no
clear termination condition for simulations can be defined.
As a result, path simulations with arbitrary lengths can
be generated, while the total number of path simulations
becomes an irrelevant property. The total number of resulting
events in all data sets have reached 19.554.187.

Another distinguished property of the data sets described
in this section is the lack of error-injected and error-free
variations. As all service models are formally verified to
be free of deadlocks, thus another property feasible for
classification was to be selected. For this purpose the precise
value of SLA (as described in Section III-D) was calculated
by formal verification of the generated models and included
in each generated service mesh case.

B. GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) are frequently used to model
real-world networks, defined as a set of interactions between
a set of objects. Examples include fake news detection [61],
estimated time of arrival prediction [62], and automated
drug design [63]. Each data point is a node in the network,
and beyond its feature vector, it is also associated with
an adjacency vector, representing the connections with the
other data points (nodes). Feature vectors are collected into
a feature matrix X € RN*F and adjacency vectors into
an adjacency matrix A € RV*N where F and N denote
the number of features and the number of data points,
respectively. Since real-world networks are usually very
sparse, only a small fraction of A’s entries are non-zero. GNN
layers are optimized such that they can effectively manipulate
these very sparse matrices [64]. A GNN contains one or more
message passing layers, which aggregate information in each
of its neighbourhoods:

xi=¢ | xi, @ 0 (xi,xj)

JEN ()

where € is a differentiable, permutation invariant function,
e.g. sum, mean or max, and ¢ and 6 are differentiable
functions, e.g. MLPs. In our paper, we used a simple
but expressive message passing layer, called the graph

VOLUME 11, 2023

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

IEEE Access

GraphlSO

Tanh

BatchNorm

GraphlSO

Tanh

3

MeanPool

Linear

Tanh

BatchNorm

FIGURE 15. Layers of the proposed neural network for SLA estimation.

isomorphism layer [65]:

xi=¢|x+ Z X
JeN ()

C. APPLICATION OF GNNs FOR SLA PREDICTION

SLA prediction is a graph-level regression task. We consid-
ered nodes of the service meshes as data points, associated
with 6 features (number of sent/received GET requests,
number of sent/received HTTP 2xx responses, and number of
sent/received HTTP 5xx responses). Features from the data
set were counted over the whole simulation and divided by
the length of the simulation. We split the dataset randomly
into train and test set, containing 80% and 20% of the service
meshes, respectively. Our goal was to fit a function f such
that for any input pair (x;, g;), its output y; is as close to the
ground-truth SLA value y; as possible, in terms of squared
error (3 — yi)*.

For this purpose, we proposed a graph neural network
with the following layers: {Graphlso} — {Tanh} —
{BatchNorm} — {Graphlso} — {Tanh} — {BatchNorm}
— {MeanPool} — {Linear} — {Tanh} — {Linear}, as it
can be seen in Fig. 15.

Each hidden layer had dimensionality 8. We trained
the neural network for 400 epochs, with mini-batches of
10 service meshes. We optimized the network parameters
using Adam [47] with a learning rate of 0.01 and mean-
squared error (MSE) as loss function.

D. RESULTS

Our learning curve indicated a successful training pro-
cess (see Figure 16), and we achieved 4 - 1073 loss on both
the train and the test set.

We also tracked the absolute error between the output and
the ground-truth SLA values during the training, which is a
more meaningful metric in terms of interpretability. The mean
absolute error of the trained neural network was 0.004 for
both the train and the test set (see Figure 17).

We also considered an alternative task in which our goal
was to separate service meshes with larger-than-zero SLA
from the ones with zero SLA. Using the same graph neural
network and training settings, we performed this binary
classification task with 100% accuracy. We suspected that
perfect accuracy can be bound to a simple property of the

VOLUME 11, 2023

—— train MSE
test MSE
1073
) |
= LR
g
k] TR T
|1‘l,r“‘ ml I’F r\lliw “F.‘} Ilw |
10-4 Lo o, H : “
" *A,‘lh‘!-‘ ',‘ Ll' [/ “
i
0 200 400 600 800 1000

number of epochs

FIGURE 16. Learning curve for SLA prediction (number of epochs vs.
mean-squared error).

w
o

N
wv

N
o

Jury
v

=
[=}

wv

percentage in each error range

0.00 0.01 0.02 0.03 0.04
absolute error

o

FIGURE 17. Histogram of absolute errors between predicted and
ground-truth SLA values.

generated graphs. Since faults are generated by leaf nodes,
the closer the leaf nodes are to the root node, the less
fault tolerance can the intermediate nodes provide. So we
investigated the distance between the root node and the
nearest leaf nodes, and concluded that in graphs with nonzero
SLA value, this distance is always 1 or 2. Our GNN was
successful in recognizing and exploiting this property.

VII. DISCUSSION AND CONCLUSION

For cloud developers to build reliable services, reference
architectures are essential (see Section I). According to the
literature, several approaches are introduced for detecting
faults focusing on a reduced set of functionalities (e.g.
networking or security) by applying a certain set of methods
(including machine learning and stochastic modelling) at a
well-defined abstraction level (e.g. service mesh or system)
as we discussed in Section II.

This paper introduces and demonstrates a feasible generic
approach to debug cloud reference architecture candidates
in a more automated manner and with less effort even
in a dynamic and non-deterministic cloud environment
combining a wide set of advanced modelling, debugging
and machine learning methods. The selected modelling
framework, the PRISM language and model checker has been
proven to be an appropriate tool to handle relatively large
state spaces, and generate the necessary training datasets

26415

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

incrementally for our experiments and scenarios starting
from a simple producer-consumer problem, and ending with
complex service meshes (see Section III).

The automatic generation of PRISM models for complex
use cases may help significantly accelerate the generation of
possible paths in the state space by simulations, contrary to
running the deployed services in a real cloud environment
(see Sections IV-A, V-A, and VI-A).

The automated identification of suspicious states in the
generated state space was performed either through manually
defined rules (global predicates) or through deep learn-
ing methods (autoencoder), as described in Section IV-B.
With autoencoder we achieved promising results during
the analysis of cascaded load balancers. We introduced
autoencoders to learn the distribution of the normal
behaviour. Tests were carried out in four incremental steps.
In all four steps, the normal behaviour were able to
be clearly separated from erroneous behaviour, based on
the reconstruction loss. l.e. erroneous behaviour can be
reproduced by the autoencoder much worse than normal
behaviour. Consequently, it appears that the learned latent
vectors of normal and erroneous behavior are significantly
different when generated by the bottleneck layer of the
autoencoder.

Concerning LSTM (see Sections V-B), the experiments
indirectly approved the nature of the simulation, namely, that
the next state is generated in a quasi-random way (based
on predefined probabilities). Therefore, LSTM network was
unable to identify a pattern in it.

By modelling and verifying our targeted scenarios,
we achieved a higher level of test coverage, even the SLA
prediction became feasible by applying GNN models (see
Sections VI-B). According to our experiments, we were able
to train the graph neural network with very low error, and
it performed similarly on the hold-out test set for complex
service mesh architectures. Thus, the GNNs were able to
exploit the additional information provided by the structure of
the analyzed graph. The results were further strengthened by a
binary classification task, whereas GNNs were able to exploit
general properties of the graph to achieve a 100% accuracy
rate.

Integrating stochastic modelling and verification tech-
niques with deep learning methods allow us to steer the
traversal of state space toward suspicious situations that
might contribute to potential cloud system failures in real
cloud systems. Such simulation paths to suspicious situations
can form an input (i.e. feed) a cloud debugger tool to make an
attempt to reproduce the failure in the real cloud environment
(see Section I-C) with active control (steering) [8].

There is a good possibility that the predictors and
classifiers developed for reference architectures will be
widely applicable to real cloud systems, with adjustments or
by combining simulation and real data and models.

The following URL contains supplementary materi-
als, including the dataset: https://github.com/
BME-SmartLab/cloud-deep-debug

26416

VIIl. FUTURE WORKS
Considering the research achievements presented, autoen-
coder and GNN-related results may be applied in practice
in the most straightforward manner. For production-level
models, further research and development are required,
including optimization of hyperparameters, latency, and
throughput, as well as the introduction of an inference server.

Furthermore, it would be helpful to examine the explica-
bility of the models using SHAP (Shapley Additive exPla-
nations) value [66] or layer-wise relevance propagation [67],
which will assist in understanding the inner mechanisms of
the decision making process.

Our research agenda includes further elaboration of cloud
design patterns, such as autoscaling with a variety of policies.

Analysis and prediction based on the combination of event
simulation data in correlation with service mesh topology is
further to be explored for the purpose of providing practical
steering hints for the cloud debugger. The factor of partial
observability of service meshes (black box vs. white box),
as well as more sophisticated node behaviour strategies would
introduce additional real-world properties in our modelling
efforts.

The experimental integration of the presented results with
a cloud debugger tool [8] is in progress that will provide
significant help to cloud service and reference architecture
developers.

ACKNOWLEDGMENT

The work reported in this paper, carried out as a collaboration
between SZTAKI and BME, has been partly supported
by the the European Union project RRF-2.3.1-21-2022-
00004 within the framework of the Artificial Intelligence
National Laboratory. This work was partially funded by
the National Research, Development and Innovation Office
(NKFIH) under OTKA Grant Agreement No. K 132838. The
presented work of R. Lovas was also supported by the Janos
Bolyai Research Scholarship of the Hungarian Academy
of Sciences. On behalf of the ‘MILAB - SmartLab’ cloud
project, we are grateful for the possibility to use ELKH Cloud
[1] which helped us achieve the results published in this paper.

REFERENCES

[1] M. Héder, E. Rigd, D. Medgyesi, R. Lovas, S. Tenczer, F. Toérok, A. Farkas,
M. Emédi, J. Kadlecsik, G. Mezo, A. Pintér, and P. Kacsuk, “The past,
present and future of the ELKH cloud,” Informdciés Tarsadalom, vol. 22,
no. 2, p. 128, Aug. 2022.

P. Pidkkonen and D. Pakkala, <‘Reference architecture and classification of
technologies, products and services for big data systems,” Big Data Res.,
vol. 2, no. 4, pp. 166—186, Dec. 2015.

[3] A. C. Marosi, M. Emodi, A. Farkas, R. Lovas, R. Beregi, G. Pedone,
B. Nemeth, and P. Gaspar, “Toward reference architectures: A cloud-
agnostic data analytics platform empowering autonomous systems,” IEEE
Access, vol. 10, pp. 60658-60673, 2022.

Microsoft Azure Documentation Reference Architectures. Accessed:
Feb. 20, 2022. [Online]. Available: https://docs.microsoft.com/en-
us/azure/architecture/browse/

The TOGAF Standard, Version 9.2 Overview. Accessed: Feb. 12, 2022.
[Online]. Available: https://www.opengroup.org/togaf

What is a Reference Architecture?—Enterprise it Definitions. Accessed:
Feb. 20, 2022. [Online]. Available: https://www.hpe.com/us/en/what-
is/reference-architecture.html

2

—

[4

=

[5

[t

[6

—

VOLUME 11, 2023

https://github.com/BME-SmartLab/cloud-deep-debug
https://github.com/BME-SmartLab/cloud-deep-debug

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

IEEE Access

[71

[8]

[91

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Ullah, H. Dagdeviren, R. C. Ariyattu, J. DesLauriers, T. Kiss, and
J. Bowden, “MiCADO-edge: Towards an application-level orchestrator for
the cloud-to-edge computing continuum,” J. Grid Comput., vol. 19, no. 4,
p. 47, Dec. 2021.

B. Ligetfalvi, M. Emddi, J. Kovdcs, and R. Lovas, “Fundamentals of a
novel debugging mechanism for orchestrated cloud infrastructures with
macrosteps and active control,” Electronics, vol. 10, no. 24, p. 3108,
Dec. 2021.

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd Int. Conf. Comput.
Aided Verification (Lecture Notes in Computer Science), vol. 6806. Berlin,
Germany: Springer, 2011, pp. 585-591.

G. Aceto, A. Botta, W. de Donato, and A. Pescape, ‘“Cloud monitoring:
Definitions, issues and future directions,” in Proc. IEEE Ist Int. Conf.
Cloud Netw. (CLOUDNET), Nov. 2012, pp. 63-67.

S. U. Farooq, S. Quadri, and N. Ahmad, ‘“Metrics, models and
measurements in software reliability,” in Proc. IEEE 10th Int. Symp. Appl.
Mach. Intell. Informat. (SAMI), Jan. 2012, pp. 441-449.

P. Kumari and P. Kaur, “A survey of fault tolerance in cloud computing,”
J. King Saud Univ.-Comput. Inf. Sci., vol. 33, no. 10, pp. 1159-1176, 2021.
S. Swetha and S. K. Venkatesh, “‘Fault detection and prediction in cloud
computing,” Int. J. Trend Sci. Res. Develop., vol. 2, no. 12, p. 24, 2018.
W. Gao and Y. Zhu, “A cloud computing fault detection method based on
deep learning,” J. Comput. Commun., vol. 5, no. 12, pp. 24-34, 2017.

M. Smara, M. Aliouat, A.-S.-K. Pathan, and Z. Aliouat, “Acceptance test
for fault detection in component-based cloud computing and systems,”
Future Gener. Comput. Syst., vol. 70, pp. 74-93, May 2017.

A. A. Abbasi, S. Shamshirband, M. A. A. Al-Qaness, A. Abbasi,
N. T. AL-Jallad, and A. Mosavi, ‘“Resource-aware network topology
management framework,” Acta Polytechnica Hungarica, vol. 17, no. 4,
pp. 89-101, 2020.

P. Zhang, S. Shu, and M. Zhou, “An online fault detection model and
strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom. Sinica,
vol. 5, no. 2, pp. 445-456, Mar. 2018.

Y. Tamura, Y. Nobukawa, and S. Yamada, “A method of reliability
assessment based on neural network and fault data clustering for cloud
with big data,” in Proc. 2nd Int. Conf. Inf. Sci. Secur. (ICISS), Dec. 2015,
pp. 1-4.

T. Wang, W. Zhang, J. Wei, and H. Zhong, “Fault detection for cloud
computing systems with correlation analysis,” in Proc. IFIP/IEEE Int.
Symp. Integr. Netw. Manage. (IM), May 2015, pp. 652-658.

P. Zhang, S. Shu, and M. Zhou, “Adaptive and dynamic adjustment of fault
detection cycles in cloud computing,” IEEE Trans. Ind. Informat., vol. 17,
no. 1, pp. 20-30, Jan. 2021.

X.Zhang and Y. Zhuang, “A fault detection algorithm for cloud computing
using QPSO-based weighted one-class support vector machine,” in Proc.
Int. Conf. Algorithms Archit. Parallel Process., Cham, Switzerland:
Springer, 2019, pp. 286-304.

K. Rusek, J. Sudrez-Varela, A. Mestres, P. Barlet-Ros, and
A. Cabellos-Aparicio, “Unveiling the potential of graph neural networks
for network modeling and optimization in SDN,” in Proc. ACM Symp.
SDN Res., Apr. 2019, pp. 140-151.

P. Almasan, J. Sudrez-Varela, K. Rusek, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Deep reinforcement learning meets graph neural networks:
Exploring a routing optimization use case,” Comput. Commun., vol. 196,
pp. 184-194, Dec. 2022.

F. Meng, L. Jagadeesan, and M. Thottan, “Model-based reinforcement
learning for service mesh fault resiliency in a web application-level,” 2021,
arXiv:2110.13621.

R. R. Karn, R. Das, D. R. Pant, J. Heikkonen, and R. Kanth, “Automated
testing and resilience of Microservice’s network-link using istio service
mesh,” in Proc. 31st Conf. Open Innov. Assoc. (FRUCT), Apr. 2022,
pp. 79-88.

P. R. B. N. Tomds, “Using machine learning (ML) for anomaly
detection over traffic present in service mesh architectures,” Ph.D. thesis,
Dept. Inform. Eng., Fac. Sci. Technol., Univ. Coimbra, Coimbra,
Portugal, 2022. [Online]. Available: https://estudogeral.uc.pt/bitstream/
10316/102166/4/PedroRafaelBarataNinharelhosTom%c3%als.pdf

L. Wu, J. Bogatinovski, S. Nedelkoski, J. Tordsson, and O. Kao,
“Performance diagnosis in cloud microservices using deep learning,” in
Proc. Int. Conf. Service-Oriented Comput., H. Hacid, F. Outay, H.-Y. Paik,
A. Alloum, M. Petrocchi, M. R. Bouadjenek, A. Beheshti, X. Liu, and
A. Maaradji, Eds. Cham, Switzerland: Springer, 2021, pp. 85-96.

VOLUME 11, 2023

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

(43]

(44]

[45]

(46]

(47]

(48]

(49]

(50]

[51]

F. Asadova, G. Kertesz, R. Lovas, and S. Szenasi, ‘‘Fault detection in GPU-
enabled cloud systems—An overview,” in Proc. IEEE 20th Jubilee World
Symp. Appl. Mach. Intell. Informat. (SAMI), Mar. 2022, pp. 317-322.

P. Kacsuk, “Systematic macrostep debugging of message passing parallel
programs,” Future Gener. Comput. Syst., vol. 16, no. 6, pp. 609-624,
Apr. 2000.

R. N. Calheiros, R. Ranjan, C. A. De Rose, and R. Buyya, “CloudSim:
A novel framework for modeling and simulation of cloud computing
infrastructures and services,” 2009, arXiv:0903.2525.

N. Mansouri, R. Ghafari, and B. M. H. Zade, “Cloud computing
simulators: A comprehensive review,” Simul. Model. Pract. Theory,
vol. 104, Nov. 2020, Art. no. 102144.

D. H. King and S. H. Harrison, “‘JaamSim’ open-source simulation soft-
ware,” in Proc. Grand Challenges Modeling Simulation Conf., (GCMS),
Vista, CA, USA: Society for Modeling & Simulation International,
Jul. 2013, pp. 1-6.

N. Matloff, “Introduction to discrete-event simulation and the simpy
language,” Dept. Comput. Sci., Davis, CA, USA, Jan. 2008, vol. 2.
[Online]. Available: https://web.cs.ucdavis.edu/~matloff/matloff/public_
html/156/PLN/DESimIntro.pdf

G. F. Riley and T. R. Henderson, “The Ns-3 network simulator,” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Giines, and
J. Gross, Eds. Berlin, Germany: Springer, 2010, pp. 15-34.

IMUNES IP Network Emulator/Simulator. Accessed: Sep. 28, 2022.
[Online]. Available: http://imunes.net/

A. Bergmayr, U. Breitenbiicher, N. Ferry, A. Rossini, A. Solberg,
M. Wimmer, G. Kappel, and F. Leymann, “A systematic review of cloud
modeling languages,” ACM Comput. Surv., vol. 51, no. 1, pp. 1-38,
Feb. 2018.

L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Boston, MA, USA: Addison-Wesley,
2002.

L. Lamport, “The PlusCal algorithm language,” in Proc. Int. Collog.
Theor. Aspects Comput. Cham, Switzerland: Springer, 2009, pp. 36—60.
A. Bianco and L. D. Alfaro, “Model checking of probabilistic and
nondeterministic systems,” in Proc. Int. Conf. Found. Softw. Technol.
Theor. Comput. Sci. Cham, Switzerland: Springer, 1995, pp. 499-513.

J. Kovacs, G. Kusper, R. Lovas, and W. Schreiner, “‘Integrating temporal
assertions into a parallel debugger,” in Euro-Par 2002 Parallel Processing,
B. Monien and R. Feldmann, Eds. Berlin, Germany: Springer, 2002,
pp. 113-120.

W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, ‘“Service mesh:
Challenges, state of the art, and future research opportunities,” in
Proc. IEEE Int. Conf. Service-Oriented Syst. Eng. (SOSE), Apr. 2019,
pp. 122-1225.

L. Richardson and S. Ruby, RESTful Web Services. Sebastopol, CA, USA:
O’Reilly Media, 2008.

M. Xu Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster,
L. Jones, N. Parmar, M. Schuster, Z. Chen, Y. Wu, and M. Hughes,
“The best of both worlds: Combining recent advances in neural machine
translation,” 2018, arXiv:1804.09849.

X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder,” in Proc. Interspeech, Aug. 2013,
pp. 436-440.

W. Xu, K. Shawn, and G. Wang, “‘Adversarially approximated autoencoder
for image generation and manipulation,” IEEE Trans. Multimedia, vol. 21,
no. 9, pp. 2387-2396, Sep. 2019.

X. Bampoula, G. Siaterlis, N. Nikolakis, and K. Alexopoulos, “A deep
learning model for predictive maintenance in cyber-physical production
systems using LSTM autoencoders,” Sensors, vol. 21, no. 3, p. 972,
Feb. 2021.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal
convolutional networks for action segmentation and detection,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 156-165.

B. Tang and D. S. Matteson, “Probabilistic transformer for time series
analysis,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 23592-23608.

J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork RNN,”
2014, arXiv:1402.3511.

26417

IEEE Access

R. Lovas et al.: Experiences With Deep Learning Enhanced Steering Mechanisms for Debugging of Fundamental Cloud Services

[52] D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased LSTM: Accelerating recurrent
network training for long or event-based sequences,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 3882-3890.

[53] J.Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent neural
networks,” 2016, arXiv:1609.01704.

[54] S.Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville,
and Y. Bengio, “SampleRNN: An unconditional End-to-End neural audio
generation model,” 2016, arXiv:1612.07837.

[55] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
LSTM language models,” 2017, arXiv:1708.02182.

[56] S. Merity, ““Single headed attention RNN: Stop thinking with your head,”
2019, arXiv:1911.11423.

[57] H. Zen, “Acoustic modeling in statistical parametric speech synthesis—
From HMM to LSTM-RNN,” in Proc. MLSLP, 2015, pp. 1-10.

[58] Y. Baek and H. Y. Kim, “ModAugNet: A new forecasting framework for
stock market index value with an overfitting prevention LSTM module and
a prediction LSTM module,” Expert Syst. Appl., vol. 113, pp. 457-480,
Dec. 2018.

[59] Z. Karevan and J. A. K. Suykens, “Transductive LSTM for time-series
prediction: An application to weather forecasting,” Neural Netw., vol. 125,
pp. 1-9, May 2020.

[60] GEXF File Format. Accessed: Sep. 28, 2022. [Online]. Available:
https://gexf.net/

[61] F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein, ‘‘Fake
news detection on social media using geometric deep learning,” 2019,
arXiv:1902.06673.

[62] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez,
M. Nunkesser, S. Lee, X. Guo, B. Wiltshire, P. W. Battaglia, V. Gupta,
A.Li, Z. Xu, A. Sanchez-Gonzalez, Y. Li, and P. Velickovic, “ETA
prediction with graph neural networks in Google maps,” in Proc. 30th ACM
Int. Conf. Inf. Knowl. Manage., Oct. 2021, pp. 3767-3776.

[63] J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng, “Graph neural
networks for automated de novo drug design,” Drug Discovery Today,
vol. 26, no. 6, pp. 1382-1393, Jun. 2021.

[64] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch geometric,” 2019, arXiv:1903.02428.

[65] K.Xu, W.Hu,J. Leskovec, and S. Jegelka, ““‘How powerful are graph neural
networks?”” 2018, arXiv:1810.00826.

[66] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proc. Adv. Neural Inf. Process. Syst., 1. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2017,
pp. 4765-4774.

[67] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Miiller,
Explainable Al: Interpreting, Explaining and Visualizing Deep Learning,
vol. 11700. Springer, 2019.

ROBERT LOVAS received the Ph.D. degree in
informatics from the Budapest University of Tech-
nology and Economics (BME). He is the Deputy
Director at the Institute for Computer Science
and Control (SZTAKI), Eotvos Lorand Research
Network (ELKH). He is a Habilitated Associate
Professor and the Founder of the Institute for
Cyber-Physical Systems at the John von Neumann
Faculty of Informatics, Obuda University, and a
member of the Committee on Information Science
at the Hungarian Academy of Sciences. His research and development
experience in wide range of application fields of distributed and parallel,
systems has been gained in various global, EU and national collaborations
with academic organizations, universities, and enterprises focusing on com-
putational chemistry, numerical meteorological modelling, bioinformatics,
agriculture, connected cars, and Industry 4.0. He has been coordinating EU
FP7/H2020 projects, and the ELKH Cloud research infrastructure. His latest
cloud, big data, IoT and Al-related research achievements contribute to the
recently launched Artificial Intelligence and Autonomous Systems National
Laboratories.

26418

ERNO RIGO received his MSc degree in systems
engineering from the Budapest University of Tech-
nology and Economics (BME). He is the Head of
the Department of Network Security and Internet
Technologies at the Institute for Computer Science
and Control (SZTAKI), Eotvos Lorand Research
Network (ELKH). He is an Assistant Lecturer
at the Institute for Cyber-Physical Systems at
the John von Neumann Faculty of Informatics,
Obuda University, where he is also a Ph.D. student.
As an ISACA Certified Information Systems Auditor (CISA) and ISC2
Certified Information Systems Security Professional (CISSP), his Ph.D.
research is focused on security evaluation of dynamic cloud infrastructures.
He is responsible for system design, implementation and day to day
operation of the ELKH Cloud research infrastructure. His cloud and security
related research achievements contribute to the recently launched Artificial
Intelligence and Autonomous Systems National Laboratories.

DANIEL UNYI received the M.Sc. degree in
biomedical engineering (Hons.) in 2021. His
master’s thesis was concerned with graph vari-
ational autoencoders and their applications in
bioinformatics. With the ideas and applications
introduced in his thesis, he placed 2nd on the
National Scientific Student’s Competition of Hun-
gary. His Ph.D. research is focused on graph-based
representation learning, self-supervised learning,
explainable Al, and their practical application in
3D medical image processing. He is a PhD student in Computer Engineering
at BME, under the supervision of Balint Gyires-Toth. He also works in
multiple industrial projects, which involve the introduction of deep learning
through real-world problems rooted in computer vision and network analysis.

BALINT GYIRES-TOTH received the Ph.D.
degree (summa cum laude) in January 2014. He
is an Associate Professor at BME. He has been
conducts research on fundamental and applied
machine learning since 2007. His leadership,
the first Hungarian hidden Markovmodel based
Text-To-Speech (TTS) system was introduced in
2008. Since then, his primary research field is
deep learning. His main research interests are

: sequential data modelling with deep learning, self-
supervised learmng and deep reinforcement learning. He also participates in
applied deep learning projects, including time series modelling, anomaly
detection, computer vision and conversational Al. He was involved in
various successful research and commercial projects. In 2017, he was
certified as NVidia Deep Learning Institute (DLI) Instructor and University
Ambassador. His latest Al-related research achievements contribute to the
recently launched Artificial Intelligence Systems National Laboratory as a
subproject leader.

VOLUME 11, 2023

