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ABSTRACT Massive multiple-input-multiple-output (MIMO) systems support advanced applications with
high data rates, low latency, and high reliability in next-generation mobile networks. However, using
machine learning in massive MIMO resource allocation is challenging due to quality of service (QoS) and
network complexity across layers. This work presents a novel framework for adapting the scheduling and
antenna allocation in massiveMIMO systems using deep reinforcement learning (DRL). Rather than directly
assigning execution parameters, the proposed framework utilizes DRL to select combinations of algorithms
based on the current traffic conditions. The DRL model is trained using a specialized Markov decision
process (MDP) model with a componentized action structure and is evaluated in realistic traffic scenarios.
The results show that the proposed framework increases satisfied users by 7.2% and 12.5% compared to
static algorithm combinations and other cross-layer adaptation methods. This demonstrates the effectiveness
of the framework in managing and optimizing resource allocation in a flexible and adaptable manner.

INDEX TERMS Mobile network, resource allocation, QoS, deep reinforcement learning, automated
algorithm selection, massive MIMO.

I. INTRODUCTION
The rapid development of mobile networks proliferates
the demands of high data rate, low latency, and high-
reliability applications [1]. While the traditional mobile net-
work confronts challenges on spectrum insufficiency, the
multiple-input-multiple-output (MIMO) technology, which
contributes to crucial progress in system capacity and
reliability, is regarded as a necessary feature in the
fifth-generation (5G) and beyond (B5G) wireless network
systems [2]. However, when the quality of service (QoS)
and upper-layer information are considered, the coordination
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problem becomes more complex under emerging MIMO
technologies [3].

The massive MIMO system has achieved breakthroughs in
practice by accessing a large number of antennas on active ter-
minals [4]. It is characterized by base stations (BSs) equipped
with a large number of antennas that simultaneously serve
multiple users with shared time-frequency resources. In addi-
tion, the antennas steer energy in small regions to improve
system throughput and energy efficiency. However, due to
the scale of antenna and resource options, more advanced
resource allocation is required for BSs in massive MIMO
systems [5].

Cross-layer user scheduling and antenna allocation strate-
gies in massive MIMO across media access control (MAC)
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and physical (PHY) layers have been actively investigated.
Choi et al. [6] propose a joint user selection, power allo-
cation, and precoder design algorithm for massive MIMO
downlink systems providing gains in spectral efficiency.
Kuo and Lu [7] propose a utility-based antenna allocation
algorithm to efficiently allocate the number of antennas to
user equipments (UEs) in a massive MIMO system. The
work considered only scalable video streaming. Zhu et al. [8]
propose a joint antenna and user scheduling solution with
antenna/user deletion sub-problem solved by a low com-
plexity rule-based algorithm named JAUS-LCC for massive
MIMO scenarios. Though the sub-problem can be solved
effectively, the overall QoS-aware algorithm is not as scal-
able. Also, when dealing with next-generation networks with
significantly more control options, the rule-based algorithms
require higher computational complexity to achieve high per-
formance across layers due to their iterative nature and not
accelerated by GPU-based platforms [9], [10]. We suggest
developing a new framework capable of handling a more
comprehensive range of factors across QoS requirements,
scheduling, and antenna allocation.

With advances in artificial intelligence (AI), machine
learning (ML) based techniques are adopted to deal with
wireless network resource allocation problems. For exam-
ple, Fiandrino et al. [11] lay out an ML-based framework
containing a cross-layer orchestrator for 5G network opti-
mization. The framework adopted deep learning models for
traffic classification and forecasting. In [12], authors model
massive MIMO user scheduling as a Markov decision pro-
cess (MDP) and maximized the system sum-rate through a
deep deterministic policy gradient (DDPG) based method,
which is a landmark deep reinforcement learning (DRL) algo-
rithm. In summary, current cross-layer resource allocation
works appear not fully utilize machine learning for decision-
making, while massive MIMO-focused works consider less
on the application scenarios andQoS. To advance the state-of-
the-art, i.e., [8], [12], we proposed to deal with the open prob-
lem of coordinating the interaction of cross-layer resource
allocation algorithms in a MIMO system with QoS in mind.

While DRL is emerging as an essential resource manage-
ment technique, practical reinforcement learning (RL) issues
arise, such as challenging MDP properties, multi-objective
reward design, and real-time feasibility [13]. Specifically,
numerous control and condition parameters in a cross-layer
massive MIMO system may result in high-dimensional MDP
state and action spaces [3]. Also, diverse 5G QoS constraints
[14] complicate the reward functions. Accordingly, RL-based
automated algorithm selection is proposed to improve the
performance and run-time feasibility when solving complex
computational problems [15]. Studies have also shown that
DL-based algorithm selection models that timely interact
with environments have advantages in nonlinear and high
complexity dynamic tasks [16]. With algorithm selection, the
problem can be modeled as an MDP, and the instant action is
a mixture of algorithms formed dynamically at run-time [17],

[18]. Recently, the concept has been applied to 5G new radio
(NR) resource allocation tasks to improve the training process
but focused solely on user scheduling [19], [20]. We argue
that the automated algorithm selection framework consisting
of complementary algorithms can transform the cross-layer
resource allocation problem to be more suitable for DRL-
based solutions. For example, in B5G scenarios, when many
UEs is under strict latency constraints, the systems can pri-
marily benefit from providing higher priority to UEs with
data expiring. When most UEs are traffic demanding, pro-
portional fairness can be the preferred criterion. Therefore,
joint resource allocation actions adapting a combination of
feasible fundamental algorithms are worth investigating. It is
an essential step toward a smart BS in an AI-managed open
radio access network (O-RAN) [21] or general AI RAN [22].

This work proposes a DRL-based cross-layer user schedul-
ing and antenna allocation framework for massive MIMO
systems running 5G applications. Instead of directly assign-
ing resource allocation parameters, such as selected users,
the number of antennas, and precoding matrices, the task is
transformed into an automated algorithm selection process.
Combinations of algorithms in a flow of function components
are dynamically determined for scheduling and antenna allo-
cation. An MDP model is designed to meet the QoS require-
ments, including latency, data rate, and packet loss rate, and
fit DDPG training processes. As a result, a novel adapta-
tion framework incorporating automated algorithm selection,
DRL, and cross-layer resource allocation is presented for
QoS-aware resource management across a broad range of
network layers. The main contributions can be summarized
as follows:
• We formulate a QoS-aware radio resource alloca-
tion problem for joint scheduling and massive MIMO
antenna allocation. The utility function integrates user
requirements toward a long-term system-wide objective
that matches the MDP return.

• A componentized MDP action structure for automated
algorithm selection is proposed. The resource allocation
functions and fundamental algorithms for user schedul-
ing and antenna allocation are identified, so the dynamic
algorithm selection policy can be effectively trained and
executed.

• A training process based on DDPG [23] is developed for
the problem with continuous or high dimensional states
and actions. Action embedding [24] is also incorporated
to convert the algorithm selection actions into a contin-
uous space and take full advantage of DDPG.

The simulations are performed under realistic traffic scenar-
ios referring to traffic types in the 5G QoS identifier (5QI)
table [14]. Static algorithm combinations and baselines in
the literature are implemented for comparison. Simulation
results suggest that the proposed dynamic algorithm selection
satisfied 7.2% and 12.5% more users against static algorithm
selection and related joint allocation schemes under demand-
ing scenarios.
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In the rest of the paper, we present related works on
resource management and machine learning in Section II.
Then, Section III introduces the massive MIMO system
model and problem formulation of cross-layer scheduling and
antenna allocation. Section IV describes the proposed MDP
model with componentized actions. The simulation results
are demonstrated in Section V. Finally, Section VI concludes
the article.

II. RELATED WORKS
A. CROSS-LAYER USER SCHEDULING AND ANTENNA
ALLOCATION
User scheduling has been one of the primary resource
allocation topics across generations of mobile communica-
tion technologies. With massive MIMO, the antenna alloca-
tion further controls the availability of underlying physical
resources and can be jointly considered to enhance perfor-
mance. Reference [25] presents an adaptive algorithm for
joint user scheduling, precoding design, and beamforming in
dynamic MIMO small cell networks. The transmit direction
is optimized for every frame using conventional allocation
strategies across scheduling, precoding, and power control.
Sheikh et al. [26] propose user and antenna selection algo-
rithms to maximize the system sum-rate of a massive MIMO
system with various precoding schemes. Lagen et al. [27]
present a procedure for joint user scheduling, precoder
design, and transmission directing in MIMO small cell net-
works. Authors in [28] propose an improved user scheduling
approach with low-rank channels and precoding design based
on a two-stage precoding framework for large-scale MIMO
systems with frequency division duplexing. As a result, both
throughput gain and fairness were achieved. In [29] and [30],
joint scheduling and precoding for matching MIMO cellular
networks are investigated and analyzed. In [31], the authors
propose an antenna and user selection algorithm for downlink
massiveMIMO transmission using zero-forcing (ZF) precod-
ing. Singh et al. [32] develop an optimal resource fraction
algorithm (ORFA) combining the proportional fair UE rank-
ing and water filling resource allocation for MIMO networks
with a minimummean square error (MMSE) precoder. In [7],
a utility-based layer and antenna allocation (UBLAA) algo-
rithm is proposed to maximize the transmission efficiency
for layered video streaming. The marginal utility is evaluated
to determine the number of antennas assigned to UEs in a
massive MIMO system.

While cross-layer user scheduling and precoding can be
executed to some extent with conventional methods, the chal-
lenging application QoS requirements and rising complexity
of B5G systems lead to performance degradation [9]. There-
fore, machine learning-based approaches are worth studying
to integrate cross-layer functions for future networks [11].

Machine learning-based techniques have been actively
developed for next-generation network resource manage-
ment. Wei et al. [33] propose an actor-critic-based model for
user scheduling and resource allocation to efficiently utilize

radio resources in HetNets. The training was performed with-
out deep neural networks. Authors in [34] address the benefits
of artificial intelligence-aided wireless systems and catego-
rized primarymachine learning algorithms in next-generation
networks. Applicable wireless communication technologies
include massive MIMO, cognitive radios, heterogeneous net-
works, small cells, and device-to-device networks. Refer-
ence [35] builds a resource management model with DRL for
network slicing and demonstrates that DRL could incorporate
demand and supply, enhancing network slicing agility. Ref-
erence [36] propose a DRL-enabled coverage and capacity
optimization algorithm for massive MIMO systems consider-
ing perfect channel estimation. DRL is used to coordinate the
inter-cell interference and support user scheduling dynam-
ically. Reference [37] applies a DRL model for resource
allocation in vehicle-to-vehicle (V2V) communications. The
agents determine the sub-band and power levels for trans-
mission with local observations. Zhang et al. [38] propose
DRL-based control for resource management in spectrum
sharing. With dynamic power control, primary and secondary
users efficiently meet QoS requirements. Chien et al. [39]
propose the PowerNet using large-scale fading information
to predict the pilot and data powers with a varying number
of active users. Furthermore, it is independent of small-scale
fading and allows long-term throughput/spectral efficiency
(SE) optimization.

Overall, DRL has been applied to various resource
management tasks in wireless networks. However, cross-
layer coordination is more complex, less studied, and
requires specifically designed ML structures to be effectively
solved [40].

B. DEEP REINFORCEMENT LEARNING AND DDPG
RL is a machine learning technique to solve decision-making
problems typically modeled as an MDP, a mathematical
framework to describe the target environment [41]. In RL,
an agent learns through interacting with the environment
and iteratively improves its ability to achieve a pre-defined
goal. An MDP problem consists of states st ∈ S, actions
at ∈ A, transition probabilities Pr(st+1|st , at ), and rewards
rt = r(st , at ) ∈ R, where S andA are state and action spaces.
At time step t , an agent recognizes st from the environment
and chooses a suitable at . After the action is applied, the next
state st+1 and reward rt are observed from the environment.
This model aims to learn the stochastic policy π(at |st ), which
maximizes the long-term return

Rt =
T∑
i=t

γ i−tr(si, ai), (1)

where T and γ ∈ (0, 1) are termination time and the discount
factor. The action-value represents the expected return when
executing action at in state st following π as

Qπ (st , at ) = Ea∼π [Rt |st , at ], (2)

where E is the expectation operator.
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When modeled by MDP, the massive MIMO resource
allocation is a high complexity problem with large state
and action spaces to present possible situations. Therefore,
a DRL-based approach, specifically DDPG [23], is proposed
to integrate with the resource allocation process. DDPG is a
landmark scheme in the policy gradient family and is more
suitable for applications with complex actions than the deep
Q-network (DQN) [42]. The deterministic policy gradient
(DPG) [43] concept, experience replay, slow-learning target
networks from DQN, and the actor-critic structure are inte-
grated into DDPG.

The DDPG algorithm utilizes the recursive Bellman equa-
tion to evaluate action-value functions differently from DQN.
Thus the deterministic policy µ : S → A provides the action
at = µ(st ), and the action-value function becomes

Q(st , at ) = Ert ,st+1∼E [r(st , at )+ γQ(st+1, µ(st+1))]. (3)

Furthermore, we can optimize the action-value function by
training deep neural networks considering function approx-
imators parameterized by θQ and θµ. The actor network
updates the policy with aids from the critic network, where
the policy gradient is [43]

∇θµJ ≈ Ert ,st+1∼E [∇θµQ(st , at )]

= Est∼E [∇aQ(st , at |θ
Q)∇θµµ(st |θµ)]. (4)

Accordingly, the training procedures using samples from
experience replay, E , can be realized.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This section describes the massive MIMO network structure
and problem formulation. A cross-layer user scheduling and
antenna allocation problem is proposed to be modeled as an
MDP.

A. SYSTEM MODEL
We consider a single-cell massive MIMO system consisting
of an M -antenna BS, K single-antenna UEs, and cross-layer
controls [8]. Thus we have m ∈ M = {1, 2, . . . ,M} and k ∈
K = {1, 2, . . . ,K }. The BS assigns Nk,t number of antennas
to UE k at the t-th transmission time interval (TTI), where
TTI is TI -second long. Each UE is associated with a traffic
type, referring to the 5QI table [14]. UE properties include
channel quality indicators, requested data, and a traffic type.
The channel quality indicator, CQI, can be obtained from
the table defined in [44], given the signal to interference and
noise ratio (SINR). The requested data packets, Dk , is the
set of packet identification numbers (IDs) to transmit for UE
k . Finally, the properties attached with a traffic type, TYPE,
are packet size, mean packet arrival time, latency constraint,
guarantee bit-rate, and error rate constraint.

The cross-layer user scheduling and antenna allocation
framework is illustrated in Figure 1, with three function com-
ponents considered for automated algorithm selection. The
components are interdependent resource allocation functions
to be jointly adapted across layers; several complementary

FIGURE 1. The cross-layer user scheduling and antenna allocation
framework with automated algorithm selection. User prioritization,
antenna assignment, and precoding function components are adapted
across layers; each includes several algorithms as options.

algorithms should be included in each component. Thus, the
framework is extensible with more function component as
long as it takes advantage from automated algorithm selec-
tion. In addition, to be practical, other functions in the trans-
mission system run algorithms typically, if not included in
the cross-layer adaptation. In this work, user prioritization
is included in the framework as the core of the scheduling
function [32]. The antenna assignment and precoding, part of
antenna resource allocation and dependent on other function
components [45], are included and called antenna allocation
later in the article.

The outcome of user prioritization is defined as Ô =

{Ot |1 ≤ t ≤ T }, which ranksUEs every TTI.Ot is an ordered
subset of UEs containing requested data to be transmitted at t .
The antenna assignment results, N̂ = {Nt |1 ≤ t ≤ T }, record
the number of antennas assigned to prioritized UEs, where
Nt = {Nk,t |k ∈ Ot }. Also, the precoding matrix set, P̂ =
{Pt |1 ≤ t ≤ T }, is the set of precoding matrices evaluated
given antenna assignment Nt . Given user data requests and
traffic types, the algorithm selected in each function com-
ponent is determined according to channel quality indicator
CQI. Finally, a UE decodes the received signal yk for the data.

B. MASSIVE MIMO TRANSMISSION MODEL
The precoding influences the spectral efficiency by evalu-
ating the precoding matrix and providing raw capacity for
resource allocation. In massive MIMO communications, the
conventional realization of linear precoder requires a com-
plex, high-resolution phase shifter network. Furthermore,
each radio frequency (RF) chain is coupled to all anten-
nas resulting in an expensive and energy-demanding system.
Therefore, hybrid precoding/beamforming architecture [46]
is utilized in this work to mitigate hardware constraints while
realizing linear precoding. Assuming there areKr UEs simul-
taneously receiving data at a TTI, the received signal vector
y = [y1, y2, . . . , yKr ]

T
∈ CKr×1 can be expressed as

y = Hx+ n. (5)

H ∈ CKr×M denotes the channel matrix of all Kr users;
hk ∈ C1×M is user k’s channel vector. n = [n1, n2, . . . , nKr ]

T

is the additive white Gaussian noise (AWGN) with nk ∼
CN (0, σ 2), where CN denotes a complex Gaussian distri-
bution and σ is the noise standard deviation. Processed by
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TABLE 1. Summary of notations.

a power amplifier, the transmitted signal vector x ∈ CM×1 is
transmitted through the antennas. It is given as

x = Pχ. (6)

P = [p1,p2, . . . ,pKr ] ∈ CM×Kr with column vec-
tors pk ∈ CM×1 is the hybrid precoding matrix. χ =

[χ1, χ2, . . . , χKr ]
T
∈ CKr×1 is the modulated user signals

with E[χχH ] = ( ρ
Kr
)IKr , where I and ρ refer to the unit

matrix and the total transmission power. With the system
model defined in Figure 1, the received signal of user k is

yk = hk
Kr∑
i=1

piχi + nk . (7)

Therefore, after antenna assignment at the time index t ,
we have Kr = ∥Ot∥. The precoding matrix Pt = fp(Nt ) =
[p1,t ,p2,t , . . . ,pKr ,t ] ∈ CM×∥Ot∥ is evaluated by precoding
algorithm fp given antenna assignment Nt . The signal-to-
interference-plus-noise ratio (SINR) of UE k at t is [47]

SINRk,t =
ρ
∥Ot∥
|hk,tpk,t |2

σ 2 +
ρ
∥Ot∥

∑
j∈Ot ,j̸=k |hk,tpj,t |

2 . (8)

Hence, the data transmission rate 8 of UE k at time t is

8k,t =
W
∥Ot∥

· log
(
1+ SINRk,t

)
, (9)

whereW is the system bandwidth. Instead of ergodic expres-
sions, the adopted instantaneous SINR is more suitable for

the utility-based problem introduced later. We also assume
the SINR is estimated accurately to concentrate on the
cross-layer resource allocation in this work. Nevertheless,
the proposed framework can be augmented with advanced
channel estimation [48] for non-ideal situations.

C. QoS-AWARE USER SCHEDULING AND ANTENNA
ALLOCATION
User resource allocation maximizes the total system utility
by actively distributing resources. Packet-level transmission
utility is first defined to describe the QoS status in requested
data. Assuming set t(d) is the TTIs assigned to transmit
data packet d within its latency constraint. udk,t indicates the
receiving status of data packet d ∈ Dk and is defined as

udk,t =

{
1, if

∑
i∈t(d) 8k,i · TI ≥ εd

0, otherwise.
(10)

A packet is successfully received, i.e., udk,t = 1, if suf-
ficient resources are allocated to a packet in time. εd is
the packet size. Consequently, the number of successfully
received packets by UE k up to time t is

νk,t =
∑
d∈Dk

udk,t . (11)

Based on the receiving status defined above, the user resource
allocation problem maximizes the total utility every TTI.
The utility gain of UE k up to the t-th TTI, Uk,t , is a
function of data received over time. Simultaneously, appli-
cation requirements are satisfied, including guarantee bit rate
(GBR), packet loss rate, and latency. The GBR constraint can
therefore be derived as

1
t

t∑
i=1

8k,i ≥ GBRk , ∀k ∈ K. (12)

Also, the packet error rate constraint is

1−
νk,t

∥Dk∥
≤ Ek , ∀k ∈ K, (13)

where Ek is the packet error rate requirement from UE k’s
traffic type.

It is challenging to adapt all options from scheduling to
antenna allocation effectively. Given the antenna assignment,
the precoding matrix determines the resulting throughput,
while the antenna assignment is based on user prioritization.
Wemodel the complex interaction with a utility function inte-
grating requirements and dependencies toward a long-term
system-wide objective. The problems are jointly processed
under the componentized structure and automated algorithm
selection.

The QoS-aware cross-layer resource allocation objective
maximizes the number of satisfied users in the system given
their application requirements. Therefore, we propose a util-
ity functionwith integrated requirements until the termination
time T . The received utility of UE k , Uk , is set to 1 when
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GBR, loss, and latency requirements are satisfied given allo-
cated antenna resources. The utility function follows the con-
ditional concept for QoS [49] can be expressed as

Uk ≡ Uk,T =


1, if

1
T

T∑
i=1

8k,i ≥ GBRk

∧1−
νk,T

∥Dk∥
≤ Ek

0, otherwise.

(14)

The joint problem is formulated byQoS requirements embed-
ded utility and resource constraints as

max
Ô,N̂,P̂

∑
k∈K

Uk , (15)

subject to
∑
k∈Ot

Nk,t ≤ M , 0 ≤ t ≤ T (16a)

∑
k∈Ot

|pk,t |2 ≤ 1, ∀m ∈M. (16b)

The objective is to maximize the number of satisfied UEs by
determining the optimal Ô, N̂, P̂ over time. Ô, N̂, P̂ are the
outcomes of scheduling and antenna allocation algorithms
that influence the data transmission rate 8k,t and, thus, the
utility function. (16a) limits the total number of the allocated
antennas. (16b) is the constraint of the precoding matrix
gain. At the same time, the problem features a utility func-
tion depending on complex criteria and long-term returns.
Therefore, an MDP-based solution, which models complex
agent-environment interaction and optimizes future return
during the process, adequately fits the problem.

IV. DEEP REINFORCEMENT LEARNING FOR AUTOMATED
ALGORITHM SELECTION
This section presents theMDPmodel with states, actions, and
rewards. Also, the resource allocation function components
and the DDPG training procedures are detailed.

A. MARKOV DECISION PROCESS FORMULATION
Figure 2 illustrates the massive MIMO resource allocation
problem in the DDPG structure. The control agent in the BS
collects state information to determine resource allocation
actions during the RL process. In addition, the state aims to
assess system statistics regarding UEs channel quality levels,
the amount of data to transmit, and QoS requirements. The
channel quality level set, ˆCQI, records the distribution of
UE channel quality. The number of elements in ˆCQI equals
the number of modulation and coding scheme (MCS) levels
mapped from CQI by specifications in [44]. The values of
each element are the number of UEs at the MCS level. The
amount of data to transmit, D̂, is the requested data remaining
in the queue. The set of traffic types, ˆTYPE, presents the dis-
tribution of UE QoS requirements. The number of elements
in ˆTYPE equals the number of considered data types, and the
values of each element are the number of UEs that belong to
the type. Therefore, the model can deal with varying numbers

FIGURE 2. DDPG structure for massive MIMO resource allocation. The
control agent in the smart BS collects state and reward information to
determine resource allocation actions during the process.

of UEs without retraining. The state at the t-th TTI is defined
as

st = [ ˆCQI, D̂, ˆTYPE]. (17)

Based on the problem formulated in Section III-C, the
resource allocation action is formed as a combination of user
prioritization, antenna assignment, and precoder algorithms.
In addition, fundamental schemes proven helpful in specific
scenarios are included in a function component. The action
dynamically selects an algorithm in each component accord-
ing to the state observed every TTI and is expressed as

at = [c1,t , c2,t , c3,t ]. (18)

The details of included components are described later in
Section IV-B.
The reward keeps the data transmission on pace, consid-

ering traffic type-specific GRB and latency requirements.
However, due to higher uncertainty in quantifying the advan-
tage of proactive transmission, we adopt negative rewards
to discourage situations with transmission progress falling
behind [50]. The reward of UE k is formulated as

rk,t =
(

νk,t

∥Dk∥
− 1

)(
1+ α ·

(
1−

∑t
i=1 8k,i

t · GBRk

))
. (19)

The first term reflects the incompletion ratio of requested data
up to time t . As a penalty, the value is negative if requested
data from UE k are not fully transmitted. On the other hand,
if all request data are transmitted, the first term and thus the
reward becomes zero. The second term is the adjustment to
keep the transmission data rate on GBRk . α is the penalty
weight, and α = 0when the traffic type has noGBR assigned.
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FIGURE 3. Componentized actions and fundamental algorithms in each
component. After the algorithms are selected, execution results, Ot , Nt ,
and Pt , are sent to the following components or the transmitter.

Therefore, the reward function is

rt =
∑
k∈K

rk,t . (20)

Therefore, the reward function is R. With the reward func-
tion design, the learning process fits the utility optimization
problem (15) and realizes future return optimization in MDP.

B. COMPONENTIZED ACTIONS
The componentized action is the concept introduced to facil-
itate dynamic resource allocation via algorithm selection and
improve DDPG training. As shown in Figure 3, we decom-
pose the scheduling and precoding process into three function
components; a component contains several fundamental algo-
rithms as options. After an action of selected algorithms is
generated, the corresponding algorithms in each component
are then executed. Execution results, Ot and Nt , are sent to
the following components, while the transmitter takes Pt as
inputs. The included algorithms are diverse in design con-
cepts for meaningful selection. That is, Component 1 (C1)
prioritizes UE according to specific criteria. Component 2
(C2) decides the number of antennas assigned to each UE
per TTI. Finally, the precoding method is determined in
Component 3 (C3). The adopted algorithms are introduced
as follows.

The UE prioritization component ranks UEs in the system.
Four implemented sorting methods are:
• Channel quality first (CQI): sorts UEs according to
channel conditions. A UE with higher channel quality
is ranked higher.

• Expiring time first (Delay): ranks UEs on how close
its oldest requested data is expired. It depends on the
traffic-specific time constraints and how long the trans-
mission is delayed.

• Remaining data first (Remain): sorts UEs according to
the size of requested data remaining in the queue, i.e.,

∥Dk,t∥−νk,t−1. A UE receives higher priority with more
untransmitted data.

• First-in-first-out (FIFO): prioritizes UEs with the arrival
time of the earliest arrival packet.

Thus, component c1,t ∈ C1 = {CQI,Delay,Remain,FIFO}.
An ordered UE set Ot is generated every TTI.

The second component is to assign the system resources,
i.e., the number of antennasNk,t , to UEs based on the ordered
set Ot . As a result, c2 also controls the final number of UE,
which can be granted a transmission opportunity. In addi-
tion to algorithms, a percentage parameter ι is integrated to
extend the options. The fundamental assignment methods
implemented are:
• Fully satisfy in order (FSO): assign sufficient antennas
to fully transmit the remaining requested data of each
UE, ∥Dk∥ − νk,t−1, in the order of Ot until exhausting
the system resource. The number of antennas to fully
satisfy a UE, N fs

k,t , is defined as

N fs
k,t ≡ (Nk,t |8k,t · TI ≥ (∥Dk∥ − νk,t−1) · εk ). (21)

• Minimum guarantee (MinG) [51]: evenly distributes a
portion of antennas to a subset of UEs, OG

t ⊆ Ot , and
applies FSO on the remaining resources. Therefore, sev-
eral UEs can receive a minimum share of antennas, and
the portion of resources reserved for even distribution,
ιG, is a key parameter to consider. We determine the
number of UEs receiving guaranteed resources accord-
ing to the smallest N fs

k,t and can be expressed as

∥OG
t ∥ =

ιG ·M

mink∈Ot N
fs
k,t

, (22)

where ιG = {25%, 50%, 75%, 100%}. Thus, there are
four MinG-based options inC2. For example, the option
with ιG = 50% is denoted as MinG50.

• Proportional fair (PF) [52]: considers a subset of UEs
and allocates antenna resources proportional to the ratio
of currently available data rate, 8k,t , to the historical
transmission rate. In practice, the historical transmis-
sion rate can be updated through moving averages. The
parameter ιpf = {25%, 50%, 75%, 100%} determines
the percentage of UEs in Ot to be included.

The complete option set C2 has nine elements with all the
schemes and parameters.

The third component selects a precoding algorithm for
high spectrum efficiency in massive MIMO transmission to
evaluate the precoding matrix. The implemented precoders
are:
• Antenna selection (AS) [53]: greedily chooses antennas
to achieve high single antenna efficiency.

• Cross entropy (CE) [54]: is a probabilistic model-based
algorithm iteratively solving the combining problem.
The algorithm computes the achievable sum-rate of each
candidate and selects the best candidates as ‘‘elites.’’ The
probability distribution is updated based on the selected
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elites by minimizing the cross entropy. CE precoding
performs well with sufficient resources and a less sat-
urated system.

• Adaptive cross entropy (ACE) [55]: is a variation based
on the CE algorithm. The ACE algorithm weights
‘‘elites’’ adaptively based on their achievable sum-rates.
This precoding method can gain better SINR than CE in
saturated situations.

The component c3,t ∈ C3 = {AS,CE,ACE}. Overall, the
action at is one of 108 component combinations with all
options considered.

C. ACTION EMBEDDING AND TRAINING PROCEDURES
As introduced in Section II-B, DDPG takes advantage of
DQN, DPG, and the actor-critic structure [23]; it is utilized to
make resource allocation decisions for MDP problems with
continuous or high dimensional states and actions. Further-
more, we extend the actions in this work to a continuous space
through action embedding [24], where the original discrete
actions are embedded in continuous upon which the actor
can generalize. The function υ : Rdim(A)

→ A is defined
to convert the continuous action ǎt used for training into the
discrete action at applied to the environment, with dim(A)
denoting the dimension of action space A. Therefore, the
converting function is expressed as

at = υ(ǎt ), (23)

where ǎt = [č1,t , č2,t , č3,t ] is the action formed by the
continuous component values. Also, the deterministic policy
generating continuous action µ̌ : S → Rdim(A) is applied in
the model as the actor network µ̌(st |θµ).

The training process is described in Algorithm 1. First,
networks are initialized. Then, for every TTI, the agent gen-
erates continuous action ǎt = µ̌(st |θµ)+nexpt using the actor
network with exploration noise nexpt from random processN .
The discrete action at is obtained from (23) and applied to
the environment for the reward rt and the next state st+1 as
feedbacks. In order to reuse execution experiences, DDPG
stores transition (st , at , st+1, rt ) in the replay buffer. After
that, DDPG samples B number of transitions from the replay
buffer to form amini-batchB. Withmini-batch inputs, the tar-
get actor network µ̌′(st+1|θµ′ ) outputs the action to the target
critic networkQ′. The resulting action-value can be evaluated
based on (3). Therefore, the critic network is updated by
minimizing the loss function

L(θQ) =
1
B

∑
i∈B

[
ri + γQ′(si+1, υ(µ̌′(si+1|θµ′ ))|θQ

′

)

−Q(si, ai|θQ)
]
.

(24)

The actor network is updated following the deterministic
policy gradient theorem modified from (4) as [24]

∇θµJ (θµ) ≈
1
B

∑
i∈B
∇ǎQ(si, ǎi|θ

Q)∇θµµ̌(si|θµ). (25)

Finally, DDPG uses the soft-update to improve critic and
actor target networks with the constant τ as

θQ
′

← τθQ + (1− τ )θQ
′

,

θµ′
← τθµ

+ (1− τ )θµ′ , (26)

where← represents the assignment operator in the algorithm.
As a result, the parameters in target networks change slowly
and considerably improve the learning stability.

Algorithm 1 The DDPG Training With Action Embedding
1: Randomly initialize critic network Q and actor network

µ̌ in the DDPG agent
2: Initialize target network Q′ and µ̌′ with weights θQ

′

←

θQ, θµ′
← θµ.

3: Initialize replay buffer
4: for episode = 1 to end do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1 to T do
8: Generate continuous action ǎt = µ̌(st |θµ) + nexpt

from actor in DDPG
9: Convert the action form continuous to discrete

at = υ(ǎt ) to embedding on three components
[c1,t , c2,t , c3,t ]

10: Execute action at and observe reward rt and new
state st+1

11: Store transition (st , at , rt , st+1) in replay buffer
12: Sample a random mini-batch from the replay buffer

13: Update the critic by minimizing the loss (24)
14: Update the actor using the gradient (25)
15: Update the actor and critic network with the equa-

tion (25)(26)
16: end for
17: end for

The computational complexity of DDPG can be evalu-
ated using floating-point operations per second (FLOPS). Let
lactor and lcritic be the number of fully connected layers of
actor and critic networks, including hidden and output layers.
Then, the asymptotic upper bound,O, of training time is [56]

O
(∑lactor−1

i=0
ηactori ηactori+1 +

∑lcritic−1

i=0
ηcritici ηcritici+1

)
, (27)

where ηactori and ηcritici are the numbers of units in the i-
th layer of networks. Also, since only the actor network
is involved during the executing phase, the executing time
complexity is

O
(∑lactor−1

i=0
ηactori ηactori+1

)
. (28)

The sizes of input layers, ηactor0 and ηcritic0 , equal the state’s
dimension and increase with number of MCS levels and QoS
types. Therefore, it does not scale with the number of UEs
because only UE statistics are recorded in our state design.
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TABLE 2. Traffic type parameters [14].

TABLE 3. Scenarios in various UE traffic type ratios.

The output size of the actor network ηactorlactor is the dimension
of action, which is the number of function components. The
output of the critic network ηcriticlcritic is the Q value which has a
dimension of 1. Furthermore, after automated DDPG-based
algorithm selection, the selected fundamental algorithms are
executed in their conventional way with no extra computation
demands. Therefore we focus on DDPG complexity analysis
in this article.

V. NUMERICAL RESULTS
This section introduces simulation settings for traffic sce-
narios, the massive MIMO environment, and DDPG train-
ing. Numerical results compare the proposed learning-based
method with baselines, including static combinations of fun-
damental methods and related works.

A. SIMULATION SETUP
The simulation scenarios are built as mixes of applications
in a massive MIMO system. Table 2 shows six selected
traffic types based on 5QI specifications [14], including voice
over IP (VoIP), video streaming, gaming, and virtual reality
(VR) / augmented reality (AR). The properties attached to a
traffic type include latency, GBR, packet size, mean packet
arrival time, and error rate requirements. A UE is a traffic
session with a predetermined type and properties to generate
requested data. Traffic sessions from all types are mixed in
various UE ratios listed in Table 3 with specific focuses to
form scenarios. For the communication system, COST2100
[57] is used to model the MIMO channel, and a varying
number of active UEs are distributed following the Poisson
point process (PPP). The channel is also assumed to be under
block fading. The massive MIMO antenna allocation model

TABLE 4. Communication system parameters [7], [49], [57], [58].

TABLE 5. DDPG parameters.

[7] is also simulated under a small cell VR environment
[49], [58]. Table 4 lists the complete communication system
parameters.

The simulation datasets are formed by 60000-TTI-long
data blocks containing CQIs and requested data of UEs every
TTI. We generate four data blocks for each of six traffic types
for training, resulting in 24 distinguish traffic data blocks.
The training goes through 24 data blocks in random orders
in an epoch. Therefore the resulting model can handle traffic
scenarios in an arbitrary mix of data types. The testing is
performed on ten separately generated data blocks for each
scenario. Also, the penalty weight α in (19) is set to 0.5 when
GBR is available. The continuous component values in (23)
are set in [−1, 1] and evenly distributed for discrete actions
with dim(A) = 3. The training and decision-making mod-
els are implemented using TensorFlow [59] library version
1.14 on a desktop machine with an Intel i7-3770 CPU and
Nvidia RTX 2080Ti GPU. The under hyperparameters are
determined by grid search [60] and listed in Table 5. As shown
in Figure 4, the model converges to stable total rewards after
75 epochs of training in 102 minutes on average.
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FIGURE 4. Convergence plot. The proposed DDPG model converges to
stable total rewards after 75 epochs of training in 102 minutes on
average.

Several static fundamental method combinations and algo-
rithms in the literature are compared with the proposed learn-
ing method (Learning). The static actions, denoted in the
abbreviations introduced in Section IV-B, are

• CQI-MinG75-AS: applies channel quality first, min-
imum guarantee with 75% resources reserved, and
antenna selection precoder.

• CQI-PF50-ACE: applies channel quality first, propor-
tional fair with 50% of UEs included, and adaptive cross
entropy precoder.

• Delay-MinG75-ACE: applies expiring time first, mini-
mum guarantee with 75% resources reserved, and adap-
tive cross entropy precoder.

• Remain-MinG50-ACE: applies remaining data first,
minimum guarantee with 50% resources reserved, and
adaptive cross entropy precoder.

These benchmark combinations are the most frequently
selected ones from the learning results and are kept static
during simulation runs.

Related joint resource allocation works are also compared.
Due to variations in system setups, we extract algorithms
from related works for our environment with proposed con-
cepts maintained. The selected algorithms have to cover user
prioritization and are compatible with the antenna allocation
process. Also, if necessary, we supplement the algorithms
with the best-performing precoding methods for a fair evalu-
ation. The comparing algorithms are

• ORFA [32]: specified all three function components:
proportional fair UE ranking, water filling resource allo-
cation, and linear MMSE precoding.

• UBLAA [7]: defines the marginal utility in a mas-
sive MIMO video streaming system to prioritize
UEs for antenna allocation. Then, the AS precoder,
which matches the greedy-based UBLAA algorithm,
is applied.

• LWDF-JAUS: is a combination of LWDF-PF [61] QoS
scheduling and JAUS-LCC [8] massive MIMO antenna
allocation algorithms. LWDF-PF is a landmark propor-
tional fair algorithm that adopts weighted delay fair-
ness for UE scheduling, while JAUS-LCC determines
the number of antennas used for receiving UEs. The

combination is necessary to extend the JAUS-LCC for
fair comparison in our scenarios.

B. DYNAMIC VS. STATIC ALGORITHM COMBINATIONS
In this section, we compare the proposed learning-based
method against static combinations to demonstrate the advan-
tages of automated algorithm selection. In addition, perfor-
mance metrics in system utilities and throughputs are illus-
trated.

Figure 5a illustrates the normalized system utility defined
as the percentage of satisfied UEs through termination time
T . Due to its adaptive nature, the proposed learning-based
approach gains 2.2% to 7.2% more system utility than the
best static scheme across all scenarios. The most significant
advantage appears in Scenario 2 with doubled VR/AR traffic,
showing that the learningmethod can achieve high bandwidth
and low latency simultaneously. The performances of static
schemes are inconsistent across application scenarios. For
example, the delay emphasizing scheme, Delay-MinG75-
ACE, ranks second in Scenarios 2 and 5, where more latency
demanding VR/AR or gaming traffic exists. On the other
hand, the scheme Remain-MinG50-ACE is comparable with
the best ones in data rate demanding Scenario 3, 4, and
6. However, it achieves significantly less in others because
UEs with more remaining data are ranked higher. Further-
more, CQI-MinG75-AS is a more versatile static combina-
tion because CQI provides high system throughput while
MinG75 forces even distribution of most antenna resources.
The greedy nature of AS precoder also fits well with CQI and
MinG75.

From the system throughputs presented in Figure 5b,
we observe that greater throughput not necessarily reflects
greater utility. Schemes that apply the CQI method for c1,
CQI-MinG75-AS and CQI-PF50-ACE, result in the highest
throughputs because UEs are ranked according to channel
quality. The proposed learning-based method is ranked only
behind CQI methods in throughput and outperforms them in
system utility. When the overall traffic demand and through-
put are lower in Scenario 4, all schemes achieve system utility
greater than 0.9.

Algorithm selection details in Figure 6 can further reveal
the advantage of the learningmethod. The figure breaks down
the proportion of top actions chosen by the DDPG agent
in simulated scenarios. We observe that the learned strate-
gies are adjusted accordingly to the scenarios. In Scenario
2 and 5, where the proposed method gains more than 7%
utility, CQI-Min75-AS and Delay-MinG75-ACE are most
frequently selected with more than 70% TTIs combined.
It shows that timely switching between throughput and delay
priority timely is an effective strategy for simultaneously
fulfilling throughput and latency requirements. In Scenario
3 and 6, CQI-Min75-AS and Remain-MinG50-ACE are most
applied for high data rate applications. When the demand is
low in Scenario 4, CQI-PF50-ACE is more applied to empha-
size proportional fairness. In balanced Scenario 1,most action
combinations other than the top five are selected. Overall,
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FIGURE 5. The learning based automated algorithm selection method
compares with best-performing static algorithm combinations.

FIGURE 6. The proportion of top actions chosen by the DDPG agent in
simulated scenarios.

the simulations demonstrate the effectiveness of forming an
advanced resource allocation solution by switching between
fundamental algorithms. The proposed componentized action
structure is the key to realizing this concept under advanced
DRL training.

C. COMPARISON WITH JOINT RESOURCE ALLOCATION
ALGORITHMS
Figures 7a and 7b present the normalized system utility and
system throughput compared with joint resource allocation
algorithms in the literature. The proposed learning approach
outperforms ORFA, UBLLA, and LWDF-JAUS algorithms
in normalized system utility, though not providing the highest
throughputs. The largest utility gap is at 12.5% in Scenario 6,
with heavy traffic on high data rate and low latency types.
The smallest gap presents in the less loaded Scenario 4 at

FIGURE 7. The learning based automated algorithm selection method
compares with joint resource allocation algorithms in the literature.

4.4%. ORFA consistently achieves greater than 0.8 in utility
due to the optimality of the water-filling algorithm. However,
its’ general-purpose proportional fair scheduling suffers from
degraded performance under diverse application require-
ments. UBLAA fulfills data rate requirements and results in
high throughput in all scenarios. However, since latency is
not effectively presented via marginal utility, system utility
performance is not satisfactory in Scenarios 2, 5, and 6,
with latency-demanding VA/AR applications. LWDF-JAUS
performs worse than the learning and ORFA methods but
achieves top throughput results, because the proportional fair
strategy and effective antenna allocation provide system-wide
throughput advantages. However, it also suffers significant
utility drops in Scenarios 5 and 6 due to less cross-layer QoS
consideration.

Figure 8 shows detailed results for two representative
scenarios. Scenario 1 with a balanced traffic mixture and
Scenario 2 emphasizing VR/AR applications are selected.
Suppose we divide the whole simulation into 100-TTI win-
dows. In that case, the average utility of UE sessions ending
in the same 100-TTI windows is evaluated as short-term
average utility to analyze the system condition over time.
Figures 8a and 8d illustrate the cumulative distribution func-
tion (CDF) of short-term average utilities with 128 antennas
and 500 UEs. We can see that the learning method spread
mainly to 0.9 and above. ORAF has samples lower than
0.85. LWDF-JAUS outperforms UBLAA in Scenario 2 and
is close to ORFA when the resources are sufficient, i.e., more
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FIGURE 8. Simulation results of short-term average utility and the system utility under the various number of antennas and UEs. The representative
scenarios are: Scenario 1 with a balanced traffic mixture and Scenario 2 emphasizing VR/AR applications.

antennas or fewer UEs. UBLAA keeps all samples greater
than 0.83 in the balanced condition, while some samples fall
below 0.75 when there is more latency-sensitive traffic in
the system, like in Scenario 2. Figures 8b and 8e present
the system utility trend using 64 to 224 BS antennas with
500 total (42 average coexist) UEs. In general, systems gain
more utility with more antennas. When the resources are
limited to 64 antennas, the learning method gains 6.2% to
40% more utility than others in the balanced cases and 7.1%
to 22% more in VR/AR emphasized cases. Figures 8c and 8f
show the system utility trend with 100 to 600 total (8.3 to
50 average coexist) UEs at 128 antennas. The advantage of
learning-based algorithm selection grows with the saturation
level resulting from more UEs. Also, overall utilities drop
faster in VR/AR emphasized Scenario 2 than Scenario 1.

To summarize, the comparing joint methods fulfill the user
scheduling and resource allocation problem objective (15) in
general, where the decision is made to maximize the instant
utility Uk,t . In contrast, the proposed MDP-based method
maximizes the long-term utility (14) and thus joint objec-
tive (15), because maximizing the long-term return (1) is the
nature of MDP. Furthermore, the cross-layer integration of
scheduling and precoding also shows effectiveness.

VI. CONCLUSION
A DRL-based radio resource allocation approach for joint
scheduling and precoding in a massive MIMO system is
investigated in this work. We suggest an architecture decom-
posing the cross-layer adaptation decision as a combination
of algorithms and learning a dynamic algorithm selection
policy in challenging 5G traffic scenarios. Comprehensive
simulations are carried out to justify the effectiveness of

the proposed method. Overall, the proposed automated algo-
rithm selection framework can be the core of an extensible
smart agent to deal with complex decision-making problems
in future mobile networks. Future works will include the
self-adaptation of machine learning models and decisions
under imperfect channel estimation.
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